UNICODE-BASED GRAPHEMIC SYSTEMS FOR LIMITED RESOURCE LANGUAGES

M.J.F. Gales, K.M. Knill and A. Ragni

Cambridge University Engineering Department

Trumpington Street, Cambridge, CB2 1PZ, UK
{mjfg, kate.knill,ar527}@eng.cam.ac.uk

ABSTRACT

Large vocabulary continuous speech recognition systems require a
mapping from words, or tokens, into sub-word units to enable robust
estimation of acoustic model parameters, and to model words not
seen in the training data. The standard approach to achieve this is to
manually generate a lexicon where words are mapped into phones,
often with attributes associated with each of these phones. Context-
dependent acoustic models are then constructed using decision trees
where questions are asked based on the phones and phone attributes.
For low-resource languages, it may not be practical to manually gen-
erate a lexicon. An alternative approach is to use a graphemic lex-
icon, where the “pronunciation” for a word is defined by the letters
forming that word. This paper proposes a simple approach for build-
ing graphemic systems for any language written in unicode. The at-
tributes for graphemes are automatically derived using features from
the unicode character descriptions. These attributes are then used in
decision tree construction. This approach is examined on the IARPA
Babel Option Period 2 languages, and a Levantine Arabic CTS task.
The described approach achieves comparable, and complementary,
performance to phonetic lexicon-based approaches.

Index Terms— Low resource speech recognition, graphemic
acoustic models.

1. INTRODUCTION

There is a great deal of interest in expanding speech recognition cov-
erage of the world’s languages. In many cases the resources available
to train large vocabulary continuous speech recognisers are severely
limited. The standard phonetically based systems require a lexicon
where words are mapped into phones. This is often unavailable or
may be inconsistent if derived from multiple sources. Alternatively
a grapheme-based speech recognition system [1, 2] could be built.
The recogniser then only needs an orthographic lexicon to specify
the vocabulary rather than a pronunciation lexicon. For languages
with a close grapheme-to-phoneme relation, grapheme based mod-
elling has been shown to be as good as phone based modelling for a
wide range of languages including European [1, 2, 3], Arabic [4, 5],
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African [6, 7, 8], Indian [6] and Asian [9, 10] languages. However,
the approaches reported to date have typically used either very lim-
ited context questions in decision tree construction, manually crafted
them, or automatically derived questions for seen graphemes [1, 2].
This paper proposes a near automatic approach to graphemic speech
recognition. The scheme is applicable to a range of segmental writ-
ing systems, requiring no phonetic information. It can also handle
limited acoustic training data where there may be unseen graphemes.
There are four forms of writing system: Pictographic - graphemes
represent concepts; Logographic - words or morphemes; Syllabaries
- syllables; Segmental which can be split into

Alphabet  Consonants and vowels both written
Abugida  Vowels are marked as diacritics on consonants
Abjad Only consonants are marked,

vowels optionally written (diacritics)

This work considers graphemic systems for segmental languages.

To date, most graphemic systems have been built either for Latin
script languages or the script has been converted to Romanised form
before creation of the graphemic lexicon, e.g. [9, 10]. The grapheme
lexicon is typically created (following some text pre-processing such
as lower casing) by modelling each orthographic character as a sep-
arate grapheme e.g. ristung r 4 s t u n g. Manually
derived rules have been used to extend some grapheme sets based
on phonetic knowledge and/or position in the word [4, 11, 10]. For
some languages accented and/or rare characters have been mapped
to a common grapheme [4, 12] but at the loss of distinction between
these characters. Decision trees (DTs) are used to perform context
dependent state tying. Questions about the grapheme identity to the
left and right, and possibly word boundary, in general outperform
DTs based on mapping phonetic attributes to the graphemes.

When the amount of audio training data is very limited, some
graphemes in a language may be seen rarely or not at all. In ad-
dition, the same sound may be represented by multiple graphemes
when more than one script is used for a language, such as Kazakh
which uses both Latin and Cyrillic scripts. The approaches above
do not allow unseen graphemes to be modelled or require phonetic
knowledge, which may not be available. This paper proposes an au-
tomated approach to generating the graphemic lexicon and decision
trees that can handle unseen graphemes and complex segmental writ-
ing scripts. It exploits the information available in the Unicode Char-
acter Database' to derive grapheme labels and associated attributes
that can be asked as questions in the DTs.

The proposed approach to generating the graphemic lexicon
based on unicode attributes [13] is presented in Section 2. Sec-
tion 3 and Section 4 describe the data sets and experimental results,

Thttp://www.unicode.org
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respectively. Conclusions are drawn in Section 5.

2. GRAPHEMIC LEXICON

In this work it is assumed that the the text is written in unicode [13].
To illustrate the approach Kazakh, one of the more challenging Ba-
bel Option Period 2 languages in terms of its writing system, will be
used as an example. Instead of assigning each unicode character in a
language’s script to a separate grapheme to obtain the grapheme set,
the attributes of each unicode character are first obtained. These at-
tributes are then used to map the character into a root grapheme and
associated attributes. For example, for Kazakh, which is a mixture
of Cyrillic and Latin scripts, a subset of the graphemes associated
with the letter “I” are

i G6;D2D3D6 LATIN SMALL LETTER I

I  G6;D8D3D6 LATIN CAPITAL LETTER I

n G6;D1D2D3 CYRILLIC SMALL LETTER I

i1 G6;D1D2D3D4  cvyRILLIC SMALL LETTER I WITH GRAVE
it G6;D1D2D3D5  CcYRILLIC SMALL LETTER SHORT I

where the following attributes are defined

Dl  cwrnuc D2 sma D3
D5 suorr D6  Lamn D8

LETTER D4

CAPITAL

WITH GRAVE

All graphemes are thus mapped into a set of core graphemes,
and attributes associated with the set of graphemes. This mimics the
set of attributes associated with phones that can be obtained for all
using, for example, X-SAMPA phonetic look-up tables.

The above scheme has assumed that all unicode characters
have a distinct acoustic realisation. Unicode characters that do not
have an acoustic realisation, or alter the realisation of an adjoining
grapheme, can be split into two distinct groups. The first set are
language-dependent graphemes, and are related to diacritics, but
written as separate unicode characters, denoted by the word sion in
the character descriptor. Note voweL sioy characters in for example
Abugida written languages are kept as separate symbols with acous-
tic realisations. For Kazakh there are two such siox symbols

b D9
- DI0

CYRILLIC SMALL LETTER SOFT SIGN
CYRILLIC SMALL LETTER HARD SIGN

These are added as additional attributes to the grapheme on the left
of the sign, using the indicator in the second column. The second
set of symbols associated with writing schemes. The list below
describes these tokens and how they are interpreted >

U+0027  APOSTROPHE add DA to neighbouring grapheme
U+002D  HYPHEN-MINUS word-boundary

U+005F  LowLINE word-boundary

U+200C  zerowmrnNonJoner  Word-boundary

U+200D  zERO WIDTH JOINER no-action

The final information added to the lexicon is word-boundary
information. This is also used by default in the CUED phonetic
systems and has previously been found to be useful for some lan-
guages, including Arabic [5]. The initial grapheme is marked with
“I, the final grapheme with “F, and all others with "M. These word
boundary attributes have previously been found to be important for

2The set of characters listed here are those associated with the Babel lan-
guages examined in this paper. More generally punctuation and alphanu-
meric number mappings must also be dealt with through pre-processing.

Abjad languages such as Modern Standard Arabic (MSA). Thus the
Kazakh word for seven has the following phonetic (X-SAMPA) and
graphemic lexical entries

"s'*'T eM m'"F
G29°;D1D2D3 G1"M;D1D2D3 G24"F;D1D2D3D9

ceMb
CeMb

where the initial >"’ in the phonetic pronunciation indicates primary
stress, as used in the Babel lexicons. Note, for the phonetic system
phone attributes were obtained from an X-SAMPA look-up table.

For the Babel data, hesitations were marked in the transcriptions
using the <hes> symbol. For the phonetic systems multiple pro-
nunciations for this token were given for each language. As it is not
possible to obtain an explicit graphemic form for these tokens, to
address this two <hes> specific graphemes were added and used as
the pronunciation.

3. DATA

The primary data used for evaluating the graphemic systems were the
languages released under the IARPA Babel program [14] for Option
Period 2. The list of six languages and official release are given in
Table 1.

Language Id  Release

Kurmanji Kurdish 205 I[ARPA-babel205b-v1.0a
Tok Pisin 207 IARPA-babel207b-v1.0a
Cebuano 301 TARPA-babel301b-v1.0b
Kazakh 302 TARPA-babel302b-v1.0a
Telugu 303 TARPA-babel303b-v1.0a
Lithuanian 304 TARPA-babel304b-v1.0b

Table 1: Babel Option Period 2 Languages, and data releases

For each of these languages four language packs (LPs) were
released, each describing a different subset of data. The sizes of
the transcribed sections of the four language packs are (approximate
hours of speech and surrounding silence): Full LP (FLP) 40 hours;
Limited LP (LLP) 10 hours; Very Limited LP (VLLP) 3 hours;
Active-Learning LP (ALP) 1 hour . The data comprise primarily
Conversation Telephone Speech (CTS), with a limited amount of
scripted data for the the larger LPs (FLP and LLP). For the exper-
iments reported in this work only the transcribed data were used,
no semi-supervised training or data augmentation approaches were
adopted. The same test data (the supplied language development
data) was used for all LPs of a language, these data were not used
to tune any of the systems, simply for evaluation. For each language
there was approximately 10 hours of CTS distributed. For all the
Babel languages, high quality X-SAMPA lexicons are available.

In addition to the Babel data, a Levantine Arabic CTS task was
also examined. The data for this task was taken from the RATS pro-
gram, using the original, not retransmitted, data (channel 0). This
yields about 48 hours of transcribed training data. This is similar to
the size of a FLP. A 2.5 hour test set was also available. For this
Levantine Arabic data no phonetic lexicon was available. However
as Arabic has an Abjad written form the attributes of the pronuncia-
tion can be manually derived. This will be referred to as the Expert
attribute set.

3The ALP is not meant as a stand-alone set of transcribed data, but to start
an active-learning scheme. However here it is used as an example of a very
limited resource language.
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Language System Script Graphemes'
Kurmanji Kurdish ~ Alphabet Latin 62

Tok Pisin Alphabet  Latin 52
Cebuano Alphabet  Latin 53
Kazakh Alphabet  Cyrillic/Latin 126
Telugu Abugida  Telugu 60
Lithuanian Alphabet  Latin 62
Levantine Arabic ~ Abjad Arabic 36

Table 2: Attributes of Babel Option Period 2 Languages. { the num-
ber of graphemes in the FLP, excluding apostrophe.

Table 2 shows some of the attributes of the seven languages
investigated. Three different writing schemes were evaluated: Al-
phabet, Abugida, and Abjad. Four forms of writing script were ex-
amined: Latin, Cyrillic, Arabic and Telugu. Additionally the table
gives the number of “raw” graphemes, with no mappings, that are
observed in the FLP training transcriptions, or the complete Levan-
tine Arabic training transcriptions.

Language Grapheme Mapping #
Pack — [ cap [ scr [ atr [ sgn [| Phn
FLP 126 | 67 | 62 | 54 | 52 59
LLP 117 | 66 | 61 | 53 | 51 59
VLLP 95 59 | 54 | 46 | 44 59
ALP 81 55 | 51 | 43 | 42 59

Table 3: Number of unique tokens in Kazakh (302) (incrementally)
removing: cap capitalisation; scr writing script; attr attributes;
sgn signs

It is interesting to see how the number of graphemes varies with
the form of grapheme mapping used, and the size of the data (or
LP). Table 3 shows the statistics for Kazakh, which has the greatest
number of observed graphemes as both Cyrillic and Latin script are
used. The first point to note is that going from the FLP to the ALP,
45 graphemes are not observed in the ALP compared to the FLP.

As the forms of mapping are increased: removing capitalisation;
writing script; remaining grapheme attributes; and sign information,
the number of graphemes decreases. However comparing the FLP
and ALP, there are still 10 graphemes not seen in the ALP. If the
language model is only based on the acoustic data transcriptions
this is not an issue. However if additional language model training
data is available, then acoustic models are required for these unseen
graphemes. In contrast all the phones are observed in all LPs. Note
for all the phonetic systems, diphthongs are mapped to their individ-
ual constituents.

4. EXPERIMENTAL RESULTS

This section contrasts the performance of the proposed unicode-
based graphemic systems with phonetic systems, and also an expert
derived Levantine Arabic graphemic system. The performance us-
ing limited resources on CTS data is poor compared to using larger
amounts of resources, or simpler tasks.

4.1. Acoustic and Language Models

The acoustic and language models built on the six Babel languages
were built in a Babel BaseLR configuration [14]. Thus no additional
information from other languages, or LPs, was used in building the

systems. HTK [15] was used for training and test, with MLPs trained
using QuickNet [16]. All acoustic models were constructed from a
flat-start based on PLP-features, including HLDA and MPE training.
The decision trees used to construct the context-dependent models
were based on state-specific roots. This enables unseen phones and
graphemes to be synthesised and recognised, even if they do not oc-
cur in the acoustic model training data [17]. Additionally it allows
rarely seen phones and graphemes to be handled without always
backing off to monophone models. These baseline acoustic mod-
els were then extended to Tandem-SAT systems. Here Bottle-Neck
(BN) features were derived using DNNs with PLP plus pitch and
probability of voicing (PoV) obtained using the Kaldi toolkit [18] *.
Context-dependent targets were used. These 26-dimensional BN
features were added to the HLDA projected PLP features and pitch
features to yield a 71-dimensional feature vector. The baseline mod-
els for the Levantine Arabic system were identical to the Babel sys-
tems. However the Tandem-SAT system did not include any pitch or
PoV features, so the final feature-vector size was 65.

For all systems only the manual transcriptions for the audio
training data were used for training the language models. To give
an idea of the available data for Kazakh the number of words are:
FLP 290.9K; LLP 71.2K; VLLP 25.5K; and ALP 8.8K. Trigram
language models were built for all languages. For all experiments
in this section, manual segmentation of the test data was used. This
allows the impact of the quantity of data and lexicon to be assessed
without having to consider changes in the segmentation.

4.2. Full Language Pack Systems

WER (%)
Vit [ CN [ CNC

Phonetic 67.6 | 65.8
205 Graphemic || 67.0 | 65.3 64.1

.. Phonetic 41.8 | 40.6
Tok Pisin 207 Graphemic || 42.1 | 41.1 394

Phonetic 55.5 | 54.0
Cebuano 301 5 ohemic || 55.5 | 542 | 22©

Phonetic 549 | 53.5
Kazakh 302 Graphemic || 54.0 | 52.7 S5

Phonetic 70.6 | 69.1
Telugu 303 Graphemic || 70.9 | 69.5 67.5

. . Phonetic 51.5 | 50.2
Lithuanian 304 Graphemic | 50.9 | 49.5 48.3

Language ID  System

Kurmanji
Kurdish

Table 4: Babel FLP Tandem-SAT Performance: Vit Viterbi decod-
ing, CN confusion network (CN) decoding, CNC CN-combination.

To give an idea of relative performance when all available data
is used, FLP graphemic and phonetic systems were built for all six
Babel languages. The results for these are shown in Table 4. For
all languages the graphemic and phonetic systems yield compara-
ble performance. It is clear that some languages, such as Kurmanji
Kurdish and Telugu are harder to recognise, with Tok Pisin (a Cre-
ole language) being the easiest. As expected combining the phonetic
and graphemic systems together yields consistent performance gains
of 1.2% to 1.6% absolute over the best individual systems.

4Though performance gains were obtained using FBANK features over
PLP, these gains disappeared when pitch features were added in initial exper-
iments.
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Tree WER (%)
Questions || Vit | CN
Expert 45.0 | 439
Unicode 452 | 442

Table 5: Levantine Arabic STT performance of graphemic Tandem-
SAT systems: Vit Vietrbi decoding, CN confusion network (CN)
decoding.

For the Levantine Arabic CTS task no phonetic lexicon was
available. However as Arabic uses an Abjad writing form, all conso-
nants are marked. It is possible to derive attributes from each of these
consonants. This was the approach adopted from the graphemic
Modern Standard Arabic (MSA) systems in [19] and the system for
the RATS data in [20]. This expert derived set of decision tree ques-
tions was compared with the unicode-based graphemic approach de-
scribed in this paper. The results are shown in Table 5. The per-
formance of the two approaches is approximately equal. However it
is worth noting that the unicode approach adopted made no use of
expert knowledge, simply the attributes of the unicode symbols.

4.3. Restricted Language Pack Systems

One of the aims of this work is to build graphemic systems on very
limited acoustic model training data. Again Kazakh is initially con-
sidered as it has the largest number of graphemes.

Language WER (%)
Pack phon [ grph | CNC
FLP 53.5 | 52.7 | 515
LLP 654 | 644 | 629
VLLP 76.2 | 739 | 73.1
ALP — | 82.0 | —

Table 6: Kazakh WER (%) CN-decoding performance of phonetic
(phon) and graphemic (grph) Tandem-SAT systems: CNC CN-
combination.

Table 6 shows the performance of graphemic systems built on
all four of the LPs available. As expected the performance rapidly
degrades as the quantity of data decreases. To assess how well the
graphemic system was performing, phonetic systems were also built.
Note for the VLLP no phonetic information was available. To ad-
dress this the lexicon, and mispronounced words, were taken from
the FLP. For the FLP, LLP and VLLP the graphemic systems out-
performed the phonetic ones, with the absolute difference in perfor-
mance increasing as the quantity of data available decreases. Again
performing system combination yielded gains. Note the phonetic
ALP system was not built due to the very high error rates obtained.

Language WER (%)
Model phonetic [ graphemic
VLLP 76.2 73.9

FLP 71.2 69.0

Table 7: Kazakh VLLP acoustic model (CN) performance of pho-
netic and graphemic Tandem-SAT systems.

In order to simulate the use of additional language model data,
thus including graphemes that were not seen in the acoustic model

training data, the FLP language model was used with the VLLP
acoustic models. This was done for both the phonetic and graphemic
systems. The results are shown in Table 7. For both the phonetic
system and the graphemic system, gains of about 5% absolute were
obtained from using the FLP LM. What is more interesting is that
graphemes not seen in the acoustic model training data, for exam-
ple “h”, exist in the recognition output (and correctly). Thus the
proposed approach to generating graphemic systems allows semi-
supervised approaches to train models for unseen graphemes.

LP WER (%)
AM LM | Vit [ CN

FLP FLP 50.9 | 495
LLP LLP 61.8 | 59.5
VLLP VLLP || 71.3 | 68.6
VLLP FLP 66.3 | 63.6

Table 8: Lithuanian WER (%) performance of graphemic Tandem-
SAT systems with different Acoustic (AM) and Language (LM ) mod-
els: Vit Viterbi-decoding, CN CN-decoding.

To examine the performance on a second language, graphemic
systems were built on the three larger Lithuanian LPs. Table 8 shows
the performance of these systems. The same trends are observed
for Lithuanian as Kazakh. For this simpler alphabet, there are 35
distinct graphemes, excluding apostrophe and mapping capitals to
lower-case. For the VLLP only two graphemes are not observed
(“W” and “X”). Again the FLP LM was used to examine the ability
of the graphemic system to handle unseen graphemes. Using the im-
proved FLP LM yielded gains of about 5% absolute. Neither of the
unseen graphemes were hypothesised by the system, however they
are both very rare (“W” appears in one of the FLP words, “X” four
times), and are not in the scoring reference. A similar experiment
was also completed on Telugu, where similar to Kazakh, missing
graphemes were observed in the recognition output.

5. CONCLUSIONS

This paper has described a simple approach for building graphemic
lexicons making use of the unicode character descriptors. In the
same fashion as X-SAMPA phone attributes, such as voiced, front,
back, can be used for decision tree generation, the unicode character
descriptor is converted into attributes that are then used for cluster-
ing. By using general attributes combined with state roots of the
decision trees it is possible to synthesise unseen graphemes if, for
example, additional language model training data is available. The
process was applied, with no language-specific knowledge or tuning,
to the six JARPA Babel Option Period 2 languages: Kurmanji Kur-
dish, Tok Pisin, Cebuano, Kazakh, Telugu and Lithuanian. Perfor-
mance of the graphemic and phonetic systems for the FLPs is com-
parable. For Kazakh it was possible to recognise unseen graphemes,
using the VLLP acoustic model with the FLP language model. In
addition performance on a CTS Levantine Arabic task was exam-
ined. In addition to the languages examined in this paper, the same
framework has been applied to Tamil, Assamese, Zulu, Pashto and
English. Other than for English, comparable performance was ob-
tained for the graphemic and phonetic systems, similar to the results
for European languages in [1].

The current implementation has focused on only using the infor-
mation from the unicode characters. It is possible to combine this
information with, for example, automatically generated (by cluster-
ing) questions. This will be investigated in future work.
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