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Abstract

The resolution of ultrasound images can be improved by deconvolving the images with an

estimate of the point-spread function. However, it is difficult to obtain an accurate estimate of

the point-spread function in vivo because of the unknown properties of the soft tissue through

which the signal propagates. The purpose of this paper is to explore the sensitivity of a state-

of-the-art deconvolution algorithm to uncertainty in the point-spread function. We present

simulated and in vitro sensitivity analyses of two-dimensional deconvolution while varying

six parameters on which the point-spread function depends. The results are analysed both

quantitatively and in terms of the perceived image quality. Our findings indicate that effective

deconvolution can be performed without stringent tolerances on the accuracy of the assumed

point-spread function. These findings are confirmed in a further experiment involving the

deconvolution of an in vivo ultrasound image.

PACS: 43.80.Vj; 43.60.Fg; 87.63.dh

Keywords: medical ultrasound image; non-blind deconvolution; image restoration; point-spread

function; dual-tree complex wavelet transform

1 Introduction

Ultrasound scanners are widely used in medical imaging applications [1, 2, 3]. Compared to most

other modalities, they are safe, portable, quick and cost-effective. Ultrasound scanners do, however,

produce images which are often hard to interpret due to the nature of the image formation process.

Noticeable effects are blurring in areas of the image which are not well focused, and the presence

of a characteristic pattern called speckle, which results from the constructive and destructive

interference of scatterers within the range of the point-spread function (PSF) of the ultrasonic

imaging system. The larger the main lobe of the PSF, the coarser the speckle.

Deblurring has been a keenly pursued topic in the realm of general image signal processing.

It is one of main objectives of image restoration. The physical phenomenon of blurring is math-

ematically modelled as convolution, hence deblurring can be described as deconvolution. For the
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process of deconvolution, two distinct approaches have been developed depending on the availabil-

ity of prior knowledge of the point-spread function: blind and non-blind deconvolution. Non-blind

algorithms are generally more successful than blind techniques as they make use of more prior in-

formation. In [4, 5, 6], we proposed an efficient, novel, non-blind deconvolution algorithm which is

capable of taking into account the structure of ultrasound speckle. However, the algorithm requires

prior knowledge of the PSF. While this can be measured in vitro or calculated from knowledge of

the transducer design, there is always uncertainty in vivo because of variability in the overlying

tissue through which any scan must be performed. The main motive of this paper is therefore

to establish the sensitivity of the deconvolution algorithm to variation in the assumed PSF, and

consequently to establish the feasibility of deconvolution in vivo, where the exact PSF is unknown.

2 Non-blind ultrasound deconvolution

2.1 Ultrasound image formulation

The A-lines of an ultrasound imaging system can be mathematically modelled as a Fredholm inte-

gral of the first kind [4]. Without loss of generality, if we adopt a discrete space-time formulation,

the integral can be further simplified using a vector-matrix notation with x as the field of scatterers

and y as the ultrasound signals:

y = H x (1)

H is a block diagonal matrix along the lateral and elevational dimensions. Each block matrix maps

from the axial depth dimension to the time domain at a given lateral and elevational position. Here,

multi-dimensional images are rearranged into 1D equivalents by lexicographic orders, and hence

x is a NxNyNz × 1 vector, H is a NxNyNt × NxNyNz matrix, and y is a NxNyNt × 1 vector.

Although Nt is usually assumed to be equal to Nz, we distinguish them at this stage to highlight

the mapping from the spatial z to the temporal t dimension achieved by the operator H.

It is worth noting that, in traditional deconvolution algorithms, a blurring function is usually

assumed to be spatially shift invariant. This tends to be true along the lateral and elevational

dimension of an ultrasound image, but the blurring function is significantly shift dependent in the

axial direction (i.e. with depth). Our deconvolution algorithm is therefore designed to be capable

of dealing with the blurring operator (H) as spatially shift dependent along the axial direction and

shift invariant along the lateral and elevational dimensions [4].

2.2 Deconvolution

Further to the discrete modelling of the Fredholm integral equation, we introduce additive noise

(n) to take into account potential measurement errors [5]:

y = H x + n (2)

Our goal is therefore to estimate x from a noisy and blurred image y. For simplicity, we denote

the sizes of the vectors and the matrix as N × 1 for x, n, and y, and N × N for H.

Our deconvolution algorithm operates in a Bayesian context. The scatterer field (x) is estimated

from the observed blurred ultrasound image (y) corrupted by Gaussian noise (n). Because of the
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ill-posed blurring process (H), a direct inverse approach is likely to fail, hence regularisation is

incorporated in a maximum a posteriori framework [7] with a prior on the scatterer field. Possible

priors could involve assuming Gaussian or Laplacian statistics for the scatterer field. The Gaussian

prior, in particular, leads to the well-known Wiener filter solution, and in a further simplified case,

to zero-order Tikhonov regularisation. Instead of using these conventional priors for the entire

tissue (x), a unique feature of our algorithm is the efficient modelling of tissue reflectivity as

the product of a macroscopically smooth tissue-type image called the echogenicity map (S) and

microscopically randomised fluctuations (w) [5]:

x = S w . (3)

Here, w is a N × 1 vector, and S is a N × N diagonal matrix.

Our algorithm uses wavelet-based denoising to separate x into its w and S components. We

therefore represent the reflectivity function (x) using the dual-tree complex wavelet transform

[8, 9] which has been shown to be particularly effective in denoising applications [10]. Finally,

we incorporated an Expectation-Maximisation [7] iterative algorithm in which the echogenicity

map (S) is gradually denoised by the wavelet shrinkage rule and the overall scatterer field (x) is

estimated using a Wiener regularisation process by assigning a Gaussian prior to w.

2.3 Estimation of the PSF

To estimate the PSF, we use Field II simulation program [11, 12]. The transducer parameters

studied in this paper are the width of the transducer elements in the lateral direction (width), the

width of the transducer elements in the elevational direction (height), the distance between the

elements in the lateral direction (kerf), the radius of the elevational focus (Rfocus), the axial depth

of the lateral focus (focus), and the system impulse response. The terms inside the brackets refer

to the notation in the Field II users’ guide.

We convert the pulse-echo response obtained from Field II into its complex baseband counter-

part. This enables the data to be downsampled in the axial direction without introducing aliasing.

The demodulated data is then low-pass filtered and downsampled to match the size of an image.

At this point, we have calculated the matrix H in our discrete model of the deconvolution problem

in Equation (1). Next, the discrete Fourier transform is applied along the lateral and elevational

dimensions, because H is shift invariant in these dimensions and so efficient Fourier domain con-

volution methods may be used. The pulse-echo data generated in this way is used as a basis for

the comparison of different PSFs, which are presented later in the paper.

3 Simulation model

In the previous section, we chose to present key equations in 3D spatial coordinates for com-

pleteness. However, in the following simulation work, we use only two-dimensional data, with 2D

blurring of the ultrasound images [13]. This is mainly because of limits on computational resources.

We wanted to investigate as many variations as possible to reach concrete conclusions, but running

a single 3D case is equivalent to running orders of magnitude more 2D cases.

For the simulations described below, we first chose a reference set of input parameters for Field

3



sampling frequency 66.67 MHz
speed of sound 1540 m/s

number of elements 128
width (of element) 0.1708 mm
height (of element) 6 mm

kerf (gap between elements) 0.025 mm
Rfocus 13 mm
focus 16 mm at depth

Table 1: Reference parameters for simulation.

II. We then created a reflectivity function (x). Next, we calculated a pulse-echo response PSF,

which was shift-invariant in the lateral dimension but shift-dependent in the axial direction, and its

kernel was demodulated and downsampled to our format of the PSF (H). The reflectivity function

was then convolved with the PSF and white Gaussian noise was added. Subsequently the same

PSF was used for the deconvolution of the simulated, blurred and noisy image.

3.1 Simulation parameters

The reference parameters in Table 1 were chosen to be similar to some ultrasound transducers and

acquisition systems that we own. With these parameters, the field of view (FOV) for 2D images

is 24.8 mm.

One crucial parameter that is missing from Table 1 is the electro-mechanical impulse response.

We estimated this empirically by processing in vitro data acquired by one of our ultrasound systems

which has a similar configuration to the one in Table 1. A phantom of weak scatterers was scanned

and its data was analysed by a linear prediction technique [14] to yield the estimate of the impulse

response. See Appendix (A) for further details.

3.2 Simulated reflectivity function

A two-dimensional imaginary phantom was created with five cysts (see Figure 1). The diameter

of each cyst is 6.5 mm. Their centres are located at 10 (for two cysts), 16 and 22 mm (for two

cysts) away from the probe surface. The bright cysts are ten times stronger than the background

scatterers, the dark ones are ten times weaker, and the medium one is three times stronger. This

five-cyst image corresponds to an echogenicity map (S) characterised by macroscopically smooth

features. The reflectivity within each scatterer type is then made random by incorporating a

Gaussian distribution which represents microscopic fluctuations (w). A reference image (x) for

the scatterer field is shown in Figure 1(a). After a down-sampling by nine in the axial depth

direction, the size in pixels is 256 (in depth) × 128 (in lateral width).

3.3 Simulated image formation

We blur each scatterer field by calculating a forward convolution of the image in Figure 1(a) with

the PSF evaluated by Field II. This convolution approach was chosen over another possible way

of blurring using Field II alone because it is faster to run and makes it easier to quantify the

effect of the deconvolution later in the work. The time taken for creating the PSF by Field II is

significantly lower than that required to blur the entire scatterer field directly by Field II. This is
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Figure 1: Reference images for the simulation. (a) reflectivity function or scatterer field, (b)
blurred image with additive white Gaussian noise of SNR = 40 dB, (c) reference deconvolution of
the image in (b), and (d) deconvolution of a noisy image blurred solely by Field II, which is not
shown here. The dynamic range of the logarithmically compressed images is 80 dB. The probe
surface corresponds to a value of zero in the axial depth dimension.

because for the former we do not need to calculate the PSF for the entire image due to its finite

support and it being shift-invariant in the lateral and elevational dimensions, and for the latter

approach, to create a realistic ultrasound image, the number of scatterers needs to be much more

than the number of pixels.

After blurring, zero-mean white Gaussian noise (n) is added to the simulated ultrasound image.

The blurred and noisy image used as a reference throughout the simulation part of this paper is

shown in Figure 1(b). The signal-to-noise ratio after the addition of zero-mean white Gaussian

noise is 40 dB. The image is demodulated to baseband, envelope detected and logarithmically

compressed into an 80-dB dynamic range.

In Figure 1(b), we can easily identify the symptoms typically associated with ultrasound imag-

ing. When interpreting this image it is useful to note that the axial depth of the lateral focus is

16 mm and corresponds to the designed centre of the cyst in the middle. More serious blurring is

easily spotted for scatterers away from the axial depth of the lateral focus. We can also note that

the speckle gets coarser compared to that in Figure 1(a).
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3.4 Deconvolution of simulated images

The reference blurred and noisy image is restored using the algorithm in [4, 5], whose core structure

was briefly outlined in Section 2. The same PSF used for the blurring was used in the deconvolution.

The result is shown in Figure 1(c). A considerable degree of restoration is observed. The cysts

appear, once again, as circles with sharp boundaries. Furthermore, the speckle size is significantly

reduced, but the speckle is retained, which is important as this textural information can be usefully

interpreted in clinical applications.

One may ask why the deconvolved result does not look exactly the same as the designed

reflectivity function despite the use of the same PSF for both forward and backward operations in

the simulation. This is because of the presence of the additive Gaussian noise, and because of the

very nature of blurring which involves some loss of high frequency information.

In the last section, it was explained why the convolution approach was taken for forward

blurring. However, readers may ask whether such independent convolution produces a realistic

ultrasound blurring. Therefore, we constructed an alternative blurred image by direct use of Field

II and the addition of Gaussian noise. The subsequent deconvolution is shown in Figure 1(d). Since

both deconvolutions exhibit a similar level of restoration, we are satisfied that the aforementioned

advantages of the forward convolution approach do not invalidate the parameter sensitivity study.

4 Quantification of deconvolution results

4.1 Linear metrics

The performance of the deconvolution algorithm may be quantified by using the improvement in

the signal-to-noise ratio (ISNR, dB). This is defined as [5]

ISNR = 20 log
10

(‖y − x‖

‖x̂− x‖

)

. (4)

where x is the true scatterer field, as shown in Figure 1(a); y is the blurred baseband image from the

ultrasonic transducer, as shown in Figure 1(b); and x̂ is an estimate of the scatterer field, obtained

from the deconvolution process, as shown in Figure 1(c). This approach is straightforward, but

applicable only to a simulation, where the true field is known.

Since in this paper the PSFs are deliberately modified by adjusting their parameters, we can

also evaluate the discrepancy between them by introducing matrix norms. The ‘PSF match’ is

defined as the logarithm of a ratio:

PSF match = 20 log
10

( ‖Hr‖F

‖Hv − Hr‖F

)

. (5)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The subscript r denotes the reference case

where the PSF is represented by the set of fixed parameters in Table 1, and v is for cases of

numerous varied PSFs due to changes in the parameters.
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4.2 Logarithmic metric

In the previous section, we discussed metrics based on linear values. Here we mean linear in the

sense that the arguments of the final logarithm are linear. This is because our restoration model and

the related fundamental physics operate on linear values. The ISNR defined in Equation (4) (which

we refer to as the linear ISNR henceforth) yielded useful values when evaluating the performances

of different restoration algorithms [5].

However, in the context of this paper where the aim is to investigate sensitivity within the

same deconvolution algorithm, we have discovered that the linear ISNR is not adequate to assess

perceptual differences between cases with different parameters. The drawback of the linear ISNR

is mainly because discrepancies in dark cysts are not weighted as much as those in bright cysts,

because the amplitude of dark cysts is usually several orders of magnitude lower. B-scan ultrasound

images are always displayed using logarithmic compression. It is on such images that our perceptual

evaluation is based. Hence, a modified metric is required to weight the errors in dark cysts as much

as those in bright cysts. Therefore, we have replaced linear arguments with logarithmic ones:

logarithmic ISNR = 20 log
10

(‖ log |y| − log |x| ‖

‖ log |x̂| − log |x| ‖

)

. (6)

It should also be noted that we judge images in the magnitude domain since B-scans are displayed

after envelope detection. Thus, the logarithmic ISNR based on magnitude information may be more

relevant to perceptual evaluation than its linear counterpart in Equation (4), which is calculated

in the complex domain.

5 Parameter sensitivity in simulation

Among the various parameters that define the PSF, we will study six to assess their effects on

the deconvolution results. These are: the axial depth of the lateral focus (focus), the radius of

the elevational focus (Rfocus), the width of the transducer elements in the elevational direction

(height), the width of the elements in the lateral direction (width), the speed of sound in soft

tissue, and the attenuation rate of the electro-mechanical impulse response.

We chose to change each parameter of the PSF one at a time while the others were fixed at the

values in Table 1. Simultaneous variation of two or more parameters would be computationally

infeasible. However, the approximately linear nature of the system enables such multivariate

situations to be inferred from the cases of single parameter variation. We also assume that the

electro-mechanical elements in the transducer aperture are identical and hence we do not investigate

the effect of variation in individual elements.

In the following parameter study, the reference blurred image in Figure 1(b) is deconvolved

using an assumed PSF with parameters that differ from the reference set. Since the deconvolution

is performed using an incorrect PSF, we expect the restored image not to be as good as the one

in Figure 1(c).
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Figure 2: Effect of the variation in the axial depth of the lateral focus: the PSF match vs. ISNR
values and examples of deconvolved images. The reference focal depth is 16 mm. The dynamic
range of the logarithmically compressed magnitude of the B-scan images is 80 dB. The title of
each B-scan image shows two ISNR measures. The left value gives the linear version of the ISNR
and the right value inside brackets gives the logarithmic version. The reference values are +12.04
and +5.81 dB respectively. Images are chosen based on their logarithmic ISNR: plot (b) has a
logarithmic ISNR of approximately 1.5 dB lower than that of the reference scenario, plot (c) is 3.0
dB lower, and plot (d) is 4.5 dB lower. The same convention is adopted in subsequent figures of
simulation.

5.1 Axial depth of the lateral focus

The axial depth of the lateral focus (henceforth, lateral focus for short) is controlled by beamform-

ing delays to each transducer element. It is therefore a readily available quantity when the speed

of sound is known. However, it is likely that the focus realised when scanning inhomogeneous

tissue will not be the same as that intended, primarily because of speed of sound variation. We

investigated deconvolution sensitivity by changing the focus as much as 10 mm away from the

reference focus of 16 mm.

We present the simulation results in figures with four subplots. Their format and general

notation are explained in the caption to Figure 2. It is easy to see the common qualitative trend

between the linear ISNR and the PSF match. There is, however, a qualitative difference between

the logarithmic ISNR and the PSF match. Especially for the case of lateral focus variation, we

8



−7 −3.5 0 3.5 7
−6

−3

0

3

6

9

12

(a) Variation in radius of elevational focus,  mm

R
at

io
,  

dB

 

 

PSF match
linear ISNR
log ISNR

D
ep

th
,  

m
m

ISNR = −1.02 dB    (log: +4.36 dB)

(b)            ∆ = +0.615 mm
−10 −5 0 5 10

5

10

15

20

25

Lateral,  mm

D
ep

th
,  

m
m

ISNR = −1.40 dB    (log: +2.84 dB)

(c)            ∆ = +1.3 mm

−10 −5 0 5 10

5

10

15

20

25

Lateral,  mm

ISNR = −2.40 dB    (log: +1.38 dB)

(d)            ∆ = +2.5 mm

−10 −5 0 5 10

5

10

15

20

25

Figure 3: Effect of the variation in the radius of the elevational focus: the PSF match vs. ISNR
values and examples of deconvolution images. The reference focal radius is 13 mm.

characterise the logarithmic ISNR as a single-slope curve, because its rate of degradation does not

experience a significant change in either direction and the curve keeps decreasing.

In addition to the ISNR plot, we can also assess the perceived quality of the deconvolved

images,‡ which are shown in the subplots (b), (c) and (d). When subplot (b) is compared to the

solution using the exact PSF in Figure 1(c), there is no significant perceptual difference between the

two. In other subplots, we can see the gradual deterioration of the restored images. Considering the

two ISNR measures for the sample images, we may conclude that the logarithmic ISNR is better

suited than its linear counterpart to describe the human perception of the ultrasound images.

5.2 Radius of the elevational focus

Unlike the lateral focus which is controlled by a beamformer, the radius of the elevational focus

(henceforth, referred to as the elevational focus) is fixed at the factory through the design of the

acoustic lens. As with the lateral focus, it may not be possible to predict the effective focal length

in a practical in vivo scan of potentially inhomogeneous soft tissue.

The subplot (a) in Figure 3 shows its sensitivity by means of the deconvolution ISNR and the

‡Some subtle differences in perceptual evaluation may not be obvious in the printed version of this paper: readers

are encouraged to inspect the images in the electronic format.
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PSF match. Again, we observe a close match between the linear ISNR and the PSF match. Both

show a fluctuation quite different from the graphs for the lateral focus. The logarithmic ISNR

trend is also significantly different: we characterise it as a dual-slope curve, since the initial slopes

around the peak are much higher than those near the values of ±7 mm.

Visual inspection of the restored images reveals that subplot (b) is as good as the exact-PSF

restoration in Figure 1(c). Since the sample B-scan images have a similar logarithmic ISNR, one

might expect the same trend of degradation for subplot counterparts between different parameter

variations. This seems to be the case for the subplots (b) between the lateral and elevational foci

variation. But a rather different degradation is noticed between subplots (c) and (d). If a priority

of perceptual evaluation is put on the sharpness of the restored cyst edges, one may find that the

level of restoration in subplots (c) and (d) of the elevational focus is as good as that of the subplot

(b).

At this stage, readers may wonder why both ISNR measures show a significant reduction in

decibels, although the restored images are noticeably deblurred. This may be because there are

two main factors that influence the ISNR. One is the level of blurring, the other is the scaling of

the solution. Such scaling may be observed between subplot (b) and the others in Figure 3.

We may conclude that there is a systematic difference in the sensitivity to variation of the

lateral focus and the elevational focus. When the lateral focus is varied, the changes in the

logarithmic ISNR are associated with deblurring. However, the variation in the elevational focus

seems to result in changes in image intensity. This can be explained by the fact that the blurring

of a two-dimensional ultrasound image is created mainly by beamforming in the lateral direction:

changing the lateral focus changes the blurring characteristics. However, for the elevational focus,

the acoustic lens merely guides the beamformed sound. Therefore, a biased PSF may result in the

wrong level of intensity in the restored image.

5.3 Height of the transducer elements

We chose a reference height of 6 mm and changed its value over a range of ±2 mm. The quantitative

measures of the restoration are shown in Figure 4(a), and examples of the deconvolved images are

shown in Figure 4(b), (c), and (d). The characteristics of the variation of the elemental height

are very similar to those of the elevational focus. The deblurring is effective through a wide range

of parameter values but there is evidence of incorrect scaling and the logarithmic ISNR shows a

dual-slope tendency.

Such similarity may be attributed to the fact that the element height is strongly associated

with the dimensions of the acoustic lens in the elevational direction, and hence its variation could

affect the performance of the lens, even though the radius of the elevational focus is fixed in this

simulation. In addition, the element height does not play a role in the inter-elemental time delays

central to lateral focusing.
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Figure 4: Effect of the variation in the height of the transducer elements: the PSF match vs. ISNR
values and examples of deconvolution images. The reference height is 6 mm.

5.4 Width of the transducer elements

For this part of the study, we assume that the FOV and the number of elements are fixed at 24.8

mm and 128 respectively. A reference width of 170.8 µm is chosen and varied over the range of

±20 µm. The kerf is also modified accordingly to maintain a constant spacing between element

centres.

We have previously observed that the curves of the PSF match and linear ISNR share a general

trend. However, in Figure 5, the linear ISNR appears effectively constant over the range shown

in the plot, which covers ±12 % of the reference width. While the PSF match shows very acute

sensitivity, its decibel value is much higher than for the variation of the other parameters, implying

that these PSFs are effectively the same as the reference one. Therefore, the element width is not

a critical parameter in the deconvolution process. This outcome suggests that the elements and

possible uncertainties are small enough in the lateral direction, and hence there is no significant

finite effect in the width. Figure 5 also indicates that the restored images are not sensitive to

variation of the element width, and hence such results are not shown here.
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Figure 5: Effect of the variation in the width of the transducer elements on the PSF match and
linear ISNR while the field-of-view and number of elements are fixed. The reference width is 170.8
µm. The decibel values for the PSF match are shown on the left-hand side, and the linear version
of the ISNR is shown on the right. The logarithmic version of the ISNR is not shown.

5.5 Speed of sound

So far, we have investigated the sensitivity of parameters specific to ultrasound transducers. Per-

haps more uncertainty may reside in parameters found in the tissue than in the transducer. We

have therefore included variation in the speed of sound in our sensitivity study.

There is considerable uncertainty in the speed of sound when scanning in vivo, both in terms

of the absolute speed and its homogeneity. In this section, however, we investigate the sensitivity

only under the assumption of an homogeneous medium. In other words, the speed of sound is

varied uniformly throughout the tissue away from the nominal 1540 m/s. It is changed over the

range of ±200 m/s.

The results in Figure 6 are similar to those for the lateral focus in Figure 2. The logarithmic

ISNR can be characterised as a single-slope curve and its effect on the B-scan images is one of

blurring, not intensity change. Even though the lateral focus of the ultrasound system is fixed, the

variation in the speed of sound will change the effective time delays between transducer elements,

leading to different blurring characteristics.

5.6 Attenuation in the electro-mechanical impulse response

Another tissue specific parameter is the frequency-dependent attenuation of the ultrasonic signal.

Here, we deal with such attenuation by adjusting the frequency spectrum of the electro-mechanical

impulse response (henceforth, short as ‘pulse’).

In a real soft tissue environment, frequency-dependent attenuation occurs progressively with

propagation distance. However, we simplify the situation by applying frequency-dependent atten-

uation uniformly throughout the medium. The reference pulse was acquired in a phantom where

it could have suffered attenuation of approximately 1.5 dB/MHz. Hence, the attenuation rate was
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Figure 6: Effect of the uniform variation in the speed of sound in soft tissue: the PSF match
vs. ISNR values and examples of deconvolved images. The reference speed is 1540 m/s.

varied from amplification of 1.5 dB/MHz (a hypothetically unattenuated signal) to the extreme

case of -10 dB/MHz.

Figure 7 shows the simulation results. In terms of perceptual evaluation, it appears that the

deblurring is not especially sensitive to the rate of attenuation. In terms of its operating mechanism,

the attenuation rate is not closely related to either beamforming or the acoustic lens aspect of the

ultrasound system. Therefore, it is considered to behave independently of any other parameters

investigated in this paper.

6 Deconvolution of in vitro ultrasound images

It would appear that human perception does not demand exceptionally high accuracy from a

deconvolution algorithm. In the previous simulation experiments, we observed negligible change

in the perceived image quality as long as the logarithmic ISNR was within −1.5 dB of the ideal

solution. In some situations, a reduction in ISNR of as much as 4.5 dB was acceptable, with

corresponding PSF parameters significantly beyond the nominal uncertainty in their accuracy.
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Figure 7: Effect of the uniform variation in the frequency-dependent attenuation of the electro-
mechanical impulse response in the ultrasound system: the PSF match vs. ISNR values and ex-
amples of deconvolved images.

In this section, we explore whether our assessment from the simulations is observed in more

realistic ultrasound images. A custom-made phantom containing several cysts was scanned using

a clinical ultrasound system. We assumed the same set of reference parameters as those given in

Table 1, apart from the elevational focus and elemental height, whose values are now 9.6 and 3.5

mm respectively. These parameters were chosen to match our best understanding of the transducer

geometry.

Even if these parameters were exactly correct, there is another reason why the PSF used for

deconvolution may not match the actual PSF in vitro. In simulation, we can create an ultrasound

image by way of a perfect two-dimensional interaction, but in practice ultrasound image formation

is a three-dimensional process, due to the extension of the resolution cell in the elevational direction.

Therefore, the reference two-dimensional PSF may not exactly match the ultrasound system’s true

PSF.

Figure 8 shows the ultrasound image acquired in vitro and its restored image using the reference

PSF. The deblurring is evident and the cysts recover their circular shape with sharper boundaries.

The physical size of the speckle is notably reduced as well.

The amount of deconvolution can be assessed quantitatively by investigating the level of correla-
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Figure 8: Reference images for in vitro phantom. (a) image acquired by an ultrasound machine,
(b) deconvolved image using the PSF with the reference parameters. The dynamic range of the
logarithmically compressed magnitude of both images is 80 dB.
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Figure 9: Correlation length in the lateral direction of in vitro ultrasound images of a phantom in
Figure 8.

tion in ultrasound images. Since the PSF of a typical ultrasound system is spread mainly laterally

rather than axially, the effect of deblurring can be gauged by measuring the lateral correlation

length at each axial depth. To this effect, the autocorrelation was evaluated and the half-energy

width from its peak was recorded. Figure 9 shows a significant reduction in the correlation length

for the restored image of Figure 8(b) compared with that of the original image of Figure 8(a). The

mean correlation length is 0.61 and 0.32 mm, for the original and the restored image respectively.
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Figure 10: Examples of deconvolved images and their mean correlation length for the in vitro

phantom with the variation in the axial depth of the lateral focus. The reference focal depth is
16 mm. The dynamic range of the logarithmically compressed magnitude of the images is 80 dB.
The title of each image shows its mean correlation length in the lateral direction, and those of the
original ultrasound image and the reference deconvolution are 0.61 and 0.32 mm, respectively.
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Figure 11: Examples of deconvolved images and their mean correlation length for the in vitro

phantom with varying values of the radius of the elevational focus. The reference focal radius is
9.6 mm.

Figure 10 shows the restored images when the assumed lateral focus is varied. The errors in the

parameter are the same as in the simulations, apart from in the last subplot (d), which shows the

effect of a large offset from the correct value. This same convention is followed in subsequent cases.

Since we do not know the scatterer field a priori for the in vitro restorations, the ISNR cannot be

evaluated in these cases. However, we provide the mean correlation length in the lateral direction

as an alternative way of quantifying the deblurring effect. Perceptually, the in vitro study shows

a similar trend to that observed in the simulations. Subplot (a) looks very similar to the reference

16



Lateral,  mm

D
ep

th
,  

m
m

(a)   ∆ = −0.1875 mm

corr. = 0.32 mm

−10 −5 0 5 10

10

15

20

25

30

35

40

Lateral,  mm
(b)   ∆ = −0.5 mm

Height of Elements
corr. = 0.32 mm

−10 −5 0 5 10
Lateral,  mm

(c)   ∆ = −1.75 mm

corr. = 0.36 mm

−10 −5 0 5 10
Lateral,  mm

(d)   ∆ = −2 mm

corr. = 0.39 mm

−10 −5 0 5 10

Figure 12: Examples of deconvolved images and their mean correlation length for the in vitro

phantom for various values of the height of the transducer elements. The reference height is 3.5
mm.
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Figure 13: Examples of deconvolved images and their mean correlation length for the in vitro

phantom for various values of the speed of sound in soft tissue. The reference speed is 1540 m/s.

deconvolution in Figure 8(b), with a gradual reduction in the deblurring capability thereafter.

Figure 11 shows the deconvolution results when the assumed elevational focus is adjusted. In the

simulation, we saw that the deterioration of the logarithmic ISNR was related to scaling ambiguity

rather than deblurring performance. The same trend is observed in the in vitro deconvolution. It

is also noted that the correlation length is virtually unchanged. These confirm that deblurring of

a two-dimensional ultrasound image is mostly unaffected by the assumed elevational focus.

Figure 12 presents the restored images with various values of assumed element height. As with

the simulations, the deblurring power is largely unaffected, but there is a subtle difference in the

intensity of the restored images.
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Figure 14: Examples of deconvolved images and their mean correlation length for the in vitro

phantom assuming various degrees of frequency-dependent attenuation in the electro-mechanical
impulse response.

As demonstrated in the simulations, variation in the assumed element width does not produce

any noticeable difference when the FOV and the number of elements are fixed. The situation will

not be any different in vitro, since the PSFs are almost identical.

Figure 13 demonstrates in vitro deconvolution using various values for the assumed speed of

sound in the phantom. The deterioration in image quality is subtle, but its characteristic seems to

be similar to that of the lateral focus. It also appears that the errors in the PSF mainly degrade

the deblurring performance of the restoration.

Figure 14 shows the in vitro deconvolution when various degrees of frequency-dependent at-

tenuation are assumed in the impulse response of the ultrasound system. The behaviour of this

parameter is different from the others. The extreme case of −10 dB/MHz does not show severe

lack of deblurring or different background intensity compared with the other values.

These in vitro results have confirmed the findings of the simulations. Since the success of de-

convolution is perceived primarily in terms of deblurring and not image intensity, the most critical

parameters for two-dimensional deconvolution are the lateral focus and the speed of sound.

7 Deconvolution of in vivo ultrasound image

In this section, we apply our deconvolution algorithm in vivo. A clinical ultrasound system was

used to scan a left forearm, near the elbow. Figure 15 shows the acquired ultrasound image and

its restored version using the PSF used for the reference deconvolution of in vitro images.

We expect the discrepancy between reference and true parameters to get even worse in vivo,

the most significant reason being the inhomogeneous composition of soft tissue. Nonetheless,

the deconvolution result illustrates the robustness of our restoration method and its applicability

in vivo. The physical size of the speckle is reduced and deblurring is evident, especially in the

dominant curved feature.
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Figure 15: Ultrasound images for in vivo forearm. (a) image acquired by an ultrasound machine,
(b) restored image using the PSF with the reference parameters. The dynamic range of the
logarithmically compressed magnitude of the images is 80 dB.
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Figure 16: Correlation length in the lateral direction of in vivo ultrasound images of a forearm in
Figure 15.

The lateral correlation lengths for the in vivo images are shown in Figure 16. The reduction is

consistent at all depths, though not as significant as the in vitro case: this is unsurprising given

the likely discrepancy between the assumed and the actual PSF in vivo. The mean correlation

length is 0.55 mm in the original image and 0.42 mm in the restored image.
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8 Conclusions

In the simulations, we observed that the quantitative difference in deconvolution in terms of the

linear version of the ISNR was similar to that derived from measuring changes directly in the PSF.

We believe that the ISNR measure based on the logarithmic image amplitude is a better indicator

of the perceived improvement in the restored ultrasound images.

Simulation and in-vitro studies showed that, in terms of effective deblurring in a two-dimensional

restoration, the two most influential parameters are the axial depth of the lateral focus and the

speed of sound in soft tissue. The other parameters principally adjust the intensity level of the

restored image, but do not make significant differences to deblurring.

Based on these perceptual judgements, assisted by the logarithmic ISNR metric, we conclude

that a PSF with acceptable accuracy can be estimated in most cases. Satisfactory in-vivo deconvo-

lution can normally be accomplished despite imperfect assumptions about the ultrasound system

and the soft tissue under examination.
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A Estimation of electro-mechanical impulse response

In this appendix, we briefly describe how the electro-mechanical impulse response (henceforth, re-

ferred to as the ‘pulse’) may be estimated using a parametric method based on acquired backscat-

tered RF data.

The use of parametric methods to estimate the shape of the ultrasound pulse was proposed

by Jensen [15]. His method assumes an ARMA (auto-regressive moving average) model and the

parameters are estimated using acquired A-line data by an iterative gradient-search scheme. Here,

however, we discuss the task of estimating the same pulse more simply by using an AR (auto-

regressive) model. It is well known that an ARMA model can be approximated by an AR model of

sufficiently high order, and AR models may be preferred because their parameters are much easier

to estimate.

Parametric methods assume that the observed trace may be represented as the result of filtering

a white noise process. If the white noise process is considered to be a random spike series, then this

assumption is equivalent to saying that the observed trace is obtained by convolving the underlying

pulse onto this spike series [16]. For a region characterised by uniform weak scattering, this appears

to be a reasonable assumption to make since the scatterers within the region behave approximately

like spikes, randomly spaced and with random scattering strengths.

AR modelling represents the underlying pulse as an all-pole filter. Let the digitised samples of

an observed trace be g(n), the white noise process be e(n) and the digitised samples of the pulse

be v(n). The corresponding z-transforms are denoted by G(z), E(z), and V (z), respectively. The
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filtering operation may be expressed as,

G(z) = E(z)V (z) =⇒
G(z)

E(z)
= V (z) =

1

1 +
∑M

m=1
amz−m

(7)

where am is the sequence of filter coefficients that need to be determined to obtain v(n), and M is

the order of the AR process. This z-domain equation may also be expressed in the more familiar

form of a difference equation:

g(n) +

M
∑

m=1

amg(n − m) = e(n) (8)

The sequence am may be estimated by minimising the error in the least squares sense, for example

using the Yule-Walker or normal equation. This procedure is also known in the domain of predictive

deconvolution [16] or forward linear prediction [14].

To recover the underlying pulse v(n), the discrete-time Fourier transform V (ejω) of v[n] can be

computed from Equation (7) with the substitution z = ejω. The inverse Fourier transform is then

applied to V (ejω). We then assumed a minimum phase for the pulse shape. Figure 17 shows an

example of an electro-mechanical impulse response estimated by the method outlined here. It is

used throughout this paper and acted as the reference pulse when frequency-dependent attenuation

was applied.
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Figure 17: Example of an electro-mechanical impulse response
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