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Abstract

Our goal is to automatically determine the cast of a
feature-length film. This is challenging because the cast
size is not known, with appearance changes of faces caused
by extrinsic imaging factors (illumination, pose, expression)
often greater than due to differing identities. The main con-
tribution of this paper is an algorithm for clustering over
face appearance manifolds. Specifically: (i) we develop a
novel algorithm for exploiting coherence of dissimilarities
between manifolds, (ii) we show how to estimate the opti-
mal dataset-specificdiscriminant manifold starting from a
genericone, and (iii) we describe a fully automatic, prac-
tical system based on the proposed algorithm. The perfor-
mance of the system is evaluated on well-known feature-
length films and situation comedies on which it is shown to
produce good results.

1. Introduction

The problem that we address in this paper is that of auto-
matically determining the cast of a feature-length film. Ap-
plications of this research include content-based retrieval,
rapid browsing and organization of video collections, to
name just a few. Our approach is based on the recognition of
faces, faces being the most repeatable cue for person identi-
fication in this setting (although others, such as clothes [20],
can be used for further performance improvement).

Problem challenges. The inherent difficulties of face
recognition [1] and those specifically in the context of
feature-length films [3, 11, 27] are well appreciated across
the literature. Lighting conditions, and especially light an-
gle, facial expressions and head pose drastically change the
appearance of faces. Partial occlusions, be they objects
in front of a face or resulting from hair style change also
cause problems. To further complicate the problem, arte-
facts caused by motion blur and low spatial resolution are
also common, see Fig.1. In brief, the uncontrolled imaging

conditions in films provide an especially challenging work-
ing environment for automatic face recognition (AFR) al-
gorithms.

The broad topic of AFR encompasses a multitude
of different problem settings: classification (one-to-many
matching)[16], verification (one-to-one matching) [15], re-
trieval by similarity [3, 27] etc. In this paper we consider
the most difficult setting of all – fully automatic (i.e. with-
out any dataset-specific training information) listing of the
individuals present in a video.

1.1. Previous Work

Good general reviews of recent automatic face recogni-
tion (AFR) literature can be found in [4, 14, 35]. In this sec-
tion, we focus specifically on methods that deal with AFR
in a setting similar to ours.

Recent years have seen a development of algorithms that
use AFR for the analysis of media content. Most of these
deal with theretrieval problem in video [3, 11, 27]. Arand-
jelović and Zisserman [3] use signature images, obtained by
a cascade of transformations of the detected faces. These
are matched using a robust distance measure in an image-
to-image or image-to-set fashion to retrieve film shots based
on the presence of specific actors. Sivicet al. [27] match
face sets, representing individual faces using SIFT descrip-
tors corresponding to salient facial features. Everingham
and Zisserman [11, 12] employ a quasi-3D model of the
head to correct for varying pose and enrich the training cor-
pus via shot tracking.

Visual clustering of individuals in movies was first at-
tempted by Fitzgibbon and Zisserman [13]. Affine-invariant
image-to-image matching was used to achieve robustness to
pose and a simple band-pass filter to illumination changes.
Berget al. [6] consider the problem of clustering detected
frontal faces extracted from web news pages. Faces are first
affine registered and then classified in a Kernel PCA space
using combined image and contextual text-based features.
In this paper, we use only visual cues (i.e. no text).

1



illumination motion blur pose occlusion low resolution facial expression

Figure 1. The appearance of faces in films exhibits a great variability depending on the extrinsic imaging conditions. Shown are the most
common sources of intra-personal appearance variations (all faces are from the same episode of the situation comedy “Yes, Minister”).

1.2. Method overview

The first idea of our work concerns the observation that
some people are inherently more similar looking to each
other than others. As an example from our data set, Sir
Hacker (see Fig.1) may be difficult to distinguish from his
secretary, Sir Humphrey (see Fig.8 in §2.3), but he is un-
likely to be mistaken, say, for his wife (see Fig.4 in §2.1).
The problem is then of automatically extracting and rep-
resenting the structure of these inter-personal similarities
from unlabelled sets of video sequences. We show that this
can be done by working in what we term themanifold space
– a vector space in which each point is an appearance man-
ifold.

The second major contribution of this paper is a method
for unsupervised extraction of inter-class data for discrimi-
native learning on an unlabelled set of video sequences. In
spirit, this approach is similar to the work of Lee and Krieg-
man [21] in which a generic appearance manifold is pro-
gressively updated with new data to converge to a person-
specific one. In contrast, we start from a genericdiscrimi-
nativemanifold and converge to a data-specific one,auto-
maticallycollecting within-class data.

An overview of the entire system is shown in Alg. 1.

2. Method Details

In this section we describe each of the steps in the algo-
rithmic cascade of the proposed method: (i) automatic data
acquisition and preprocessing, (ii) unsupervised discrimina-
tive learning and (iii) clustering over appearance manifolds.

2.1. Automatic Data Acquisition

Our cast clustering algorithm is based on pair-wise com-
parisons of facemanifolds[2, 22, 24] that correspond to
sequences of moving faces. Hence, the first stage of the
proposed method is automatic acquisition of face data from
a continuous feature-length film. We (i) temporally seg-
ment the video intoshots, (ii) detect faces in each and, fi-
nally, (iii) collect detections through time by tracking in the
(X,Y, scale) space.

Shot transition detection. A number of reliable methods
for shot transition detection have been proposed in the lit-

Algorithm 1 Method Overview

Input: film frames{ft},
generic discrimination subspaceBG.

Output: cast classesC.

1: Acquisition: face manifolds
T ← get manifolds({ft})

2: Synthetically repopulate manifolds
T ← repopulate(T)

3: Adaptive discriminative learning: distance matrix
DS ← distance(T,BG)

4: Manifold space
M← MDS(T,BC)

5: Get initial classes
C← classes(DC)

6: Anisotropic boundaries in manifold space
for Ci,Cj ∈ C

7: Get PPCA models
(Gi,Gj) ← PPCA(Ci,Cj ,M)

8: Merge clusters w/ Description Length
∆DL(i, j) < threshold ? merge(i, j,C)

9: end loop

erature [18, 26, 33, 34]. We used the Edge Change Ratio
(ECR) [33] algorithm as it is able in a unified manner to de-
tect all 3 standard types of shot transitions: (i) hard cuts, (ii)
fades and (iii) dissolves. The ECR is defined as:

ECRn = max(Xin
n /σn, Xout

n−1/σn−1) (1)

whereσn is the number of edge pixels computed using the
Canny edge detector [8], andXin

n andXout
n the number of

entering and existing edge pixels in framen. Shot changes
are then recognized by considering local peaks ofECRn,
exceeding a threshold, see [23, 33] for details and Fig.2 for
an example.

Face tracking through shots. We detect faces in clut-
tered scenes on an independent, frame-by-frame basis with
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Figure 2. The unsmoothed Edge Change Ratio for a 20s segment
from the situation comedy “Yes, Minister”.

Figure 3. The X coordinate of detected faces (red dots) through
time in a single shot and the resulting tracks connecting them (blue
lines) as determined by our algorithm.

the Viola-Jones [31] cascaded algorithm1. For each de-
tected face, the detector provides a triplet of theX andY
locations of its centre and scales. In the proposed method,
face detections are connected by tracks using a simple track-
ing algorithm in the 3D spacex = (X, Y, s). We employ a
form of the Kalman filter in which observations are deemed
completely reliable (i.e. noise-free) and the dynamic model
is that of zero mean velocity[ẋ] = 0 with a diagonal noise
covariance matrix. A typical tracking result is illustrated in
Fig. 3 with a single face track obtained shown in Fig.4 (a).

2.2. Appearance Manifold Discrimination

Having collected face tracks from a film, we turn to the
problem of clustering these (relatively) short sequences by
identity. Due to the smoothness of faces, each track corre-
sponds to an appearance manifold [2, 22, 24], as illustrated
in Fig. 4. We want to compare these manifolds and use the
structure of the variation of dissimilarity between them to
deduce which ones describe the same person.

Data preprocessing. The first step in the comparison of
two appearance manifolds is a simple preprocessing on a
frame-by-frame basis that normalizes for the majority of il-
lumination effects and suppresses the background. IfX is
an image of a face, in the usual form of a raster-ordered

1We used the freely available code, part of the Intelr OpenCV library.

Algorithm 2 Data-specific discrimination.

Input: manifoldsT = {Ti}.
generic discrimination subspaceBG.

Output: distance matrixDS .

1: Distance matrix w/ generic discrimination
DG ← distance(T,BG)

2: Get provisional classes
CT ← classes(DG)

3: Data-specific discrimination space
BS ← constraintsspace(CT )

4: Mixed discrimination space
BC ← combineeigenspaces(BS ,BG)

5: Distance matrix w/ data-specific discrimination
DS ← distance(T,BG)
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Figure 5. (a) The mask used to suppress cluttered background in
images of automatically detected faces, and (b) an example of a
detected, unprocessed face and the result of illumination normal-
ization and background suppression.

pixel vector, we first normalize for the effects of illumi-
nation using a high-pass filter (previously used in [3, 13])
scaled by local image intensity:

XL = X ∗Gσ=1.5 (2)

XH = X−XL (3)

XI(x, y) = XH(x, y)/XL(x, y). (4)

This is similar to the Self-Quotient Image of Wanget
al. [32]. The purpose of local scaling is to equalize edge
strengths in shadowed (weak) and well-illuminated (strong)
regions of the face.

Background is suppressed with a weighting maskMF ,
produced by feathering (similar to [3]) the mean face outline
M, as shown in Fig.5:

MF = M ∗ exp−
(

r(x, y)

4

)2

(5)

XF (x, y) = XI(x, y)MF (x, y). (6)
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Figure 4. A typical face track obtained using our algorithm. Shown are (a) the original images are detected by the face detector (rescaled
to the uniform scale of50× 50 pixels) and (b) as points in the 3D principal component space with temporal connections.

Synthetic data augmentation. Many of the collected
face tracks in films are short and contain little pose varia-
tion. For this reason, we automatically enrich the training
data corpus by stochastically repopulating geodesic neigh-
bourhoods of randomly drawn manifold samples.

Under the assumption that the face to image space em-
bedding function is smooth, geodesically close images cor-
respond to small changes in imaging parameters (e.g. yaw
or pitch). Hence, using the first-order Taylor approxima-
tion of the effects of a projective camera, the face motion
manifold is locally topologically similar to theaffine warp
manifold. The proposed algorithm then consists of random
draws of a face imagex from the data, stochastic pertur-
bation ofx by a set of affine warps{Aj} and finally, the
augmentation of data by the warped images.

2.2.1 Comparing Normalized Appearance Manifolds

For pair-wise comparisons of manifolds we employ the
Constraint Mutual Subspace method (CMSM) [15], based
on principal angles between subspaces [19, 25]. This choice
is motivated by: (i) CMSM’s good performance reports in
the AFR literature [2, 15], (ii) its computational efficiency
[7] and compact data representation, and (iii) its ability to
extract themost similarmodes of variation between two
subspaces.

As in [15], we represent each appearance manifold by a
minimal linear subspace it is embedded in – estimated us-
ing Probabilistic PCA [29]. The similarity of two such sub-
spaces is then computed as the mean of their first 3 canoni-
cal correlations, after the projection onto theconstraint sub-
space– a linear manifold that attempts to maximize the sep-
aration (in terms of canonical correlations) between differ-
ent class subspaces, see Fig.6.

Computing the constraint subspace. Let {Bi} =
B1, . . . ,BN be orthonormal basis matrices representing

Figure 6. A visualization of the basis of the linear constraint
subspace, the mostdescriptivelinear subspace (eigenspace using
PCA [30]) and the mostdiscriminativelinear subspace in terms of
within and between class scatter (LDA [5]).

subspaces corresponding toN different classes (cast mem-
bers, in our case). Fukui and Yamaguchi [15] compute
the orthonormal basis matrixBC corresponding to the con-
straint subspace using PCA from:

(BR BC)

(
ΛL 0
0 ΛS

) (
BT

R

BT
C

)
=

N∑
i=1

BiB
T
i , BT

RBC = 0 (7)

whereΛL andΛS are diagonal matrices with diagonal en-
tries, respectively, greater or equal than 1 and less than 1.
We modify this approach by weighting the contribution of
the projection matrixBi by the number of samples used to
compute it. This way, a more robust estimate is obtained
as subspaces computed from smaller amounts of data (i.e.
with lower Signal-to-Noise Ratio) are de-emphasized:

(BR BC)

(
ΛL 0
0 ΛS

) (
BT

R

BT
C

)
= N

N∑
i=1

NiBiB
T
i /

N∑
i=1

Ni

(8)

From generic to data-specific discrimination. The
problem of estimatingBC lies in the fact that we do not
know which appearance manifolds belong to the same class
and which to different classes i.e.{Bi} are unknown. We



therefore start from agenericconstraint subspaceBg
C , com-

puted offline from a large data corpus. For example, for the
evaluation reported in§3 we estimatedBi, i = 1, . . . , 100
from 700 sequences (7 for each of the 100 people in the
database) acquired in our laboratory.

Now, consider the Receiver-Operator Characteristic
(ROC) curve of CMSM in Fig.7, also estimated offline. The
inherent tradeoff between recall and precision is clear, mak-
ing it impossible to immediately draw class boundaries us-
ing the inter-manifold distance only. Instead, we propose to
exploit the two marked salient points of the curve merely to
collect data for the construction of the constraint subspace.
Starting from an arbitrary manifold, the “high recall” point
allows to confidently partition apart of the data into differ-
ent classes. Then, using manifolds in each of the classes we
can gather intra-class data using the “high precision” point.
The collected class information can then be used to compute
the basisBs

C of thedata-specificconstraint subspace.
The problem in using the above defined data-specific

constraint subspaceBs
C is that it is constructed using only

the easiest to classify data. Hence, it cannot be expected
to discriminate well in difficult cases, corresponding to the
points on the ROC curve between “high precision” and
“high recall”. To solve this problem, we do notsubsti-
tute the data-specific for the generic constraint subspace,
but iteratively combinethe two based on our confidence
0.0 ≤ α ≤ 1.0 in the former:

BC = mix(α, 1− α,Bs
C ,Bg

C) (9)

whereα and (1 − α) are mixing weights. We used an
eigenspace mixing algorithm similar to Hallet al. [17].
The mixing confidence parameterα is determined as fol-
lows. Consider clustering appearance manifolds using each
of the two salient points. The “high precision” point will
give an overestimateNh ≥ N of the number of classesN ,
while the “high recall” one an underestimateNl ≤ N . The
closerNh andNl are, the more confident we can be that
the constraint subspace estimate is good. Hence, we com-
puteα as their normalized difference (which ensures that
the condition0.0 ≤ α ≤ 1.0 is satisfied):

α = 1− Nh −Nl

M − 1
(10)

whereM is the number of appearance manifolds.

2.3. The Manifold Space

In §2.2.1 we described how to preprocess and pair-
wise compare appearance manifolds, optimally exploit-
ing generic information for discriminating between human
faces and automatically extracted data-specific information.
One of the main premises of the proposed clustering method
is that there is a structure to inter- and intra-personal dis-
tances between appearance manifolds. To discover and ex-
ploit this structure, we consider amanifold space– a vector
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Figure 7. The ROC curve of the Constraint Mutual Subspace
Method, estimated offline. Shown are two salient points of the
curve, corresponding to high precision and high recall.

space in which eachpoint represents an appearance mani-
fold. In the proposed method, manifold representations in
this space are constructed implicitly.

We start by computing a symmetricN ×N distance ma-
trix D between all pairs of appearance manifolds using the
method described in the previous section:

D(i, j) = CMSM dist(i, j). (11)

Note that the entries ofD do not obey the triangle inequal-
ity, i.e. in general:D(i, j) � D(i, k) + D(i, j). For this
reason, we next compute the normalized distance matrixD̂
using Floyd’s algorithm [9]:

∀k. D̂(i, j) = min[D(i, j), D̂(i, k) + D̂(k, j)]. (12)

Finally, we employ a Multi-Dimensional Scaling (MDS) al-
gorithm (similarly as Tenenbaumet al. [28]) on D̂ to com-
pute the natural embedding of appearance manifolds under
the derived metric. A typical result of embedding is shown
in Fig. 8.

Anisotropically evolving class boundaries. Consider
previously mentioned clustering of appearance manifolds
using a particular point on the ROC curve, corresponding to
a distance thresholddt. It is now easy to see that in the con-
structed manifold space this corresponds to hyper-spherical
class boundaries of radiusdt centred at each manifold, see
Fig. 9. We now show how to construct anisotropic class
boundaries by considering the distributions of manifolds.
First, (i) simple, isotropic clustering in the manifold space
is performed using the “high precision” point on the ROC
curve, then (ii) a single parametric, Gaussian model is fit
to each provisional same-class cluster of manifolds, and fi-
nally (iii) Gaussian models corresponding to the provisional
classes are merged in a pair-wise manner, using a criterion
based on the model+data Description Length [10]. The cri-
terion for class-cluster merging is explained in detail next.
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Figure 8. Manifolds in the manifold space (shown are its first 3
principal components), corresponding to preprocessed tracks of
faces of the two main characters in the situation comedy “Yes,
Minister”. Each red dot corresponds to a single appearance man-
ifold of Jim Hacker and black star to a manifold of Sir Humphrey
(samples from two typical manifolds are shown below the plot).
The distribution of manifolds in the space shows a clear struc-
ture. In particular, note that intra-class manifold distances are
often greater than inter-manifold ones. Learning distributions of
manifoldsprovides a much more accurate way of classification.

Figure 9. In the manifold space, the usual form of clustering –
where manifolds within a certain distance (chosen from the ROC
curve) from each other are grouped under the same class – corre-
sponds to placing a hyper-spherical kernel at each manifold.

Class-cluster merging. In the proposed method, classes
are represented by Gaussian clusters in the implicitly com-
puted manifold space. Initially, the number of clusters is
overestimated, each including only those appearance mani-
folds for which the same-class confidence is very high, us-
ing the manifold distance corresponding to the “high preci-
sion” point on the CMSM’s ROC curve. Then, clusters are
pair-wise merged. Intuitively, if two Gaussian components
are quite distant and have little overlap, not much evidence

for each is needed to decide they represent different classes.
The closer they get and the more they overlap, more sup-
porting manifolds are needed to prevent merging. We quan-
tify this using what we call theweighted Description Length
DLw and merge tentative classes if∆DLw < threshold
(we usedthreshold = −20).

Let j-th of C appearance manifolds bemj and let it
consist ofn(j) face images. Then we compute the log-
likelihood of mj given the Gaussian modelG(m;Θ) in
the manifold space, weighted by the number of supporting-
samplesn(j):

C

C∑
j=1

n(j) log P (mi|Θ)/

C∑
j=1

n(j) (13)

The weighted Description Length of class data under the
same model then becomes:

DLw(Θ, {mj}) =
1

2
NE log2(n(j))−

[
C∏

j=1

P (mi|Θ)n(j)

]C/
∑

n(j)

(14)

3. Evaluation and Results

In this section we report the empirical results of eval-
uating the proposed algorithm on the “Open Government”
episode of the situation comedy “Yes, Minister”2. Face de-
tection was performed on every 5th out of 42,800 frames,
producing 7,965 detections, see Fig.10 (a). A large num-
ber of non-face images is included in this number, see
Fig. 10 (b). Using the method for collecting face motion
sequences described in§2.1 and discarding all tracks that
contain less than 10 samples removes most of these. We end
up with approximately 300 appearance manifolds to cluster.
The primary and secondary cast consisted of 7 characters:
Sir Hacker, Miss Hacker, Frank, Sir Humphrey, Bernard, a
BBC employee and the PM’s secretary.

Baseline clustering performance was established using
the CMSM-based isotropic method with thresholds corre-
sponding to the “high recall” and “high precision” points
on the ROC curve. Formally, two manifolds are classified
to the same class if the distanceD(i, j) between them is less
than the chosen threshold, see (11) and Fig.9. Note that the
converse is not true due to the transitivity of the in-class
relation.

3.1. Results and Discussion

The cast listing results using the two baseline isotropic
algorithms are shown in Fig.11 (a) and11 (b) – for each
class we displayed a 10 image sample from its most likely

2Available at http://mi.eng.cam.ac.uk/ ∼oa214/
academic/

http://mi.eng.cam.ac.uk/~oa214/academic/�
http://mi.eng.cam.ac.uk/~oa214/academic/�
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Figure 10. (a) The ”Yes, Minister” data set – every 70th detection
is shown for compactness. A large number of non-faces is present,
typical of which are shown in (b).

manifold (under the assumption of normal distribution, see
§2.2.1). As expected, the “high precision” method produced
a gross overestimate of the number of different individu-
als e.g. suggesting three classes both for Sir Hacker and
Sir Humphrey, and two for Bernard. Conversely, the “high
recall” method underestimates the true number of classes.
However, rather more interestingly, while grouping differ-
ent individuals under the same class, this result still con-
tains two classes for Sir Hacker. This is a good illustration
of the main premise of this paper, showing that the in-class
distance threshold has to be chosenlocally in the manifold
space, if high clustering accuracy is to be achieved. That is
what the proposed method implicitly does.

The cast listing obtained with anisotropic clustering is
shown in Fig.12. For each class we displayed 10 images
from the highest likelihood sequence. It can be seen that
the our method correctly identified the main cast of the film.
No characters are ‘repeated’, unlike in both Fig.11 (a) and
Fig. 11 (b). This shows that the proposed algorithm for
growing class boundaries in the manifold space has implic-
itly learnt to distinguish between intrinsic and extrinsic vari-
ationsbetween appearance manifolds. Fig. 13corroborates
this conclusion.

An inspection of the results revealed a particular fail-
ure mode of the algorithm, also predicted from the theory
presented in previous sections. Appearance manifolds cor-

Class 01:

Class 02:

Class 03:

Class 04:

Class 05:

Class 06:

Class 07:

Class 08:

Class 09:

Class 10:

Class 11:

Class 12:

Class 13:

(a)

Class 01:

Class 02:

Class 03:

Class 04:

(b)

Figure 11. (a) “High precision” and (b) “high recall” point
isotropic clustering results. The former vastly overestimates the
number of cast members (e.g. classes 01, 03 and 13 correspond to
the same individual), while the latter underestimates it. Both meth-
ods fail to distinguish between inter- and intra-personal changes
of appearance manifolds.

Sir Hacker:

Miss Hacker:

Humphrey:

Secretary:

Bernard:

Frank:

Figure 12.Anisotropic clustering results – shown are 10 frame se-
quences from appearance manifolds most “representative” of the
obtained classes (i.e. the highest likelihood ones in the manifold
space). Our method has correctly identified 6 out of 7 primary
and secondary cast members, without suffering from the problems
of the two isotropic algorithms see Fig.11and Fig.13.

responding to the “BBC employee” were classified to the
class dominated by Sir Humphrey, see Fig.13. The rea-



Figure 13.Examples from the “Sir Humphrey” cluster – each hor-
izontal strip is a 10 frame sample from a single face track. Notice
a wide range of appearance changes: extreme illumination condi-
tions, pose and facial expression variation. The bottom-most strip
corresponds to an incorrectly clustered track of “BBC employee”.

son for this is a relatively short appearance of this charac-
ter, producing a small number of corresponding face tracks.
Consequently, with reference to (13) and (14), not enough
evidence was present to maintain them as a separate class.
It it is important to note, however, that qualitatively speak-
ing this is a tradeoff inherent to the problem in question.
Under an assumption of isotropic noise in image space,any
class in the film’s cast can generateanypossible appearance
manifold – it is enough evidence for each class that makes
good clustering possible.

Similar results to those shown were obtained on the film
“Groundhog Day”.

4. Summary and Conclusions

The proposed method of extracting face appearance
manifolds and anisotropically growing their class bound-
aries in the corresponding manifold space has been demon-
strated to achieve good automatic cast listings in films.

In the future, we would like to employ a more sophis-
ticated way of comparing appearance manifolds, which we
believe will further increase the clustering robustness.
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