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Abstract

In this paper we consider face recognition from sets of face
images and, in particular, recognition invariance to illumi-
nation. The main contribution is an algorithm based on
the novel concept of Maximally Probable Mutual Modes
(MMPM). Specifically: (i) we discuss and derive a lo-
cal manifold illumination invariant and (ii) show how the
invariant naturally leads to a formulation of “common
modes” of two face appearance distributions. Recognition
is then performed by finding the most probable mode, which
is shown to be an eigenvalue problem. The effectiveness
of the proposed method is demonstrated empirically on a
challenging database containing the total of 700 video se-
quences of 100 individuals.

1. Introduction
In this work we are interested in illumination invariance for
automatic face recognition (AFR), and, in particular, the
case when both training and novel data to be matched are
imagesets or sequences. Invariance to changing lighting
is perhaps the most significant practical challenge for AFR.
The illumination setup in which recognition is performed
is in most cases impractical to control, its physics difficult
to accurately model and face appearance differences due to
changing illumination are often larger than differences be-
tween individuals [1]. Additionally, the nature of most real-
world AFR application is such that prompt, often real-time
system response is needed, demanding appropriately effi-
cient matching algorithms.

In this paper we propose a novel framework for face set
matching under varying illumination. By considering face
appearance we identify an illumination invariant in the local
topology of the corresponding manifold. We next propose
a manifold representation based on the invariant and derive
an efficient matching method robust to pose variation.

Previous work – AFR across illumination Two most in-
fluential approaches to achieving robustness to changing
lighting conditions are the illumination cones of Belhumeur
et al. [3, 7] and the 3D morphable model of Blanz and Vet-
ter [4]. In [3] the authors showed that the set of images
of a convex, Lambertian object, illuminated by an arbitrary

number of point light sources at infinity, forms a convex
polyhedral cone in the image space with dimension equal to
the number of distinct surface normals. In [7], Georghiades
et al. successfully used this result for AFR by reilluminat-
ing images of frontal faces. In the 3D morphable model
method, parameters of a complex generative model which
includes the pose, shape and albedo of a face are recovered
in an analysis-by-synthesis fashion.

Both illumination cones and the 3D morphable model
have significant shortcomings for practical AFR use. The
former approach assumes very accurately registered face
images, illuminated from seven to nine different well-posed
directions for each head pose. This is difficult to achieve
in practical imaging conditions (see§4). On the other hand,
the 3D morphable model requires high resolution [5], strug-
gles with non-Lambertian effects and multiple light sources,
has convergence problems in the presence of background
clutter and partial occlusion (glasses, facial hair), and is
very computationally demanding.

2. Manifold Illumination Invariants
Let us start by formalizing our recognition framework. Let
x be an image of a face andx ∈ RD, whereD is the num-
ber of pixels in the image andRD the corresponding image
space. Thenf(x,Θ) is an image of the same face after
the rotation with parameterΘ ∈ R3 (yaw, pitch and roll).
Functionf is the generative function of the corresponding
face motion manifold, obtained by varyingΘ.

As a slight digression, note that strictly speaking,f
should beperson-specific. Due to occlusion of parts of
the face,f cannot produce plausible images of rotated faces
simply from a single imagex. However, in our work, the
range of head rotations is sufficiently restricted that under
the standard assumption of face symmetry [2],f can be con-
sidered generic.

Rotation affected appearance changesNow, consider
the appearance change of a face due to small rotation∆Θ:

∆x = f(x, ∆Θ)− x. (1)

For small rotations, geodesic neighbourhood ofx is linear
and using Taylor’s theorem we get:

f(x, ∆Θ)− x ≈ f(x,0) +∇f |(x,0) ·∆Θ− x. (2)
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where∇f |(x,Θ) is the Jacobian matrix evaluated at(x,Θ).
Noting thatf(x,0) = x and writingx = xL + xH :

∆x ≈∇f |x,0 ·∆Θ = ∇f |xL,0 ·∆Θ+

∇f |xH ,0 ·∆Θ (3)

But xL is by definition slowly spatially varying and there-
fore:

∥∥∇f |xL,0 ·∆Θ
∥∥ ¿

∥∥∇f |xH ,0 ·∆Θ
∥∥, (4)

and

∆x/∆Θ ≈ ∇f |xH ,0. (5)

It can be seen that∆x is a function of the person-specific
xH but not the illumination affectedxL. Hence, the direc-
tions (inRD) of face appearance changes due to small head
rotations form alocal manifold invariantwith respect to il-
lumination variation.

Invariant representation. To effectively exploit the de-
rived invariant, we (i) cluster manifold samples (faces) us-
ing k-means algorithm and (ii) represent each manifold as
a collection of Gaussian distributionspi(x) ∼ N (0,Ci),
each corresponding to a single clusterci:

Ci =
1

|ci| − 1

∑
j∈ci

(xj − x̄)T (xj − x̄)/‖xj − x̄‖2. (6)

The normalization of length is done in order to learn only
the directions of appearance changes, not the extent which
is dependant on the magnitude of pose changes.

3. Comparing Appearance PDFs
In §2 we identified a face manifold illumination invariant
and addressed the issue of appropriate representation of face
appearance variation, see (6). Now we turn our attention to
the problem of comparing two such representations, while
achieving robustness to pose changes and noise.

We pair-wise compare all clusters of two manifolds and
choose the maximal of cluster similarities as the overall
manifold similarity. To compare two Gaussian clusters, we
propose to find the most probable mode of mutual variation
between the two, disregarding the remainder of (potentially
very differing) variation. Our method bears most resem-
blance to the canonical correlation-based pattern recogni-
tion algorithms so we next briefly summarize these.

3.1. Canonical Correlations
Canonical correlations1 ≥ ρ1 ≥ . . . ≥ ρd ≥ 0 be-
tween twoD-dimensional linear subspacesU1 andU2 are
uniquely defined as the maximal correlations between any
two vectors of the subspaces:

ρi = max
ui∈U1

max
vi∈U2

uT
i vi (7)

(a) (b)

Figure 1:First two principal vectors for a comparison of two lin-
ear subspaces corresponding to the same (a) and different individ-
uals (b). In the former case, the most similar modes of variation,
represented by the principal vectors, are very much alikein spite
of different illumination conditionsused in data acquisition.

subject to:

uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, j = 1, ..., i− 1. (8)

We will refer to ui and vi as thei-th pair of principal
vectors. Intuitively, the first pair of principal vectors cor-
responds to the most similar modes of variation of two lin-
ear subspaces; every next pair to the most similar modes
orthogonal to all previous ones. This concept is illustrated
in Fig. 1 on the example of sets of face appearance images.

In practice, the orthonormal basis vectors ofUi are typi-
cally found by Principal Component Analysis (PCA): only
the topd components are retained for each class by as-
suming that class data is intrinsically low-dimensional [6].
Novel data is then classified according to the first canonical
correlationρ1, used as a similarity score between classes.

3.2. Maximally Probably Mutual Modes

Unlike in the case when dealing with subspaces, in general
both of the compared distributions can generateany point
in theD-dimensional embedding space. Hence, the concept
of the most-correlated patterns from the two classes is not
meaningful in this context. Instead, we are looking for a
mode – i.e. a linear direction in the pattern space – along
both distributions corresponding to the two classes are most
likely to “generate” observations.

We define the mutual probabilitypm(x) to be the product
of two densities atx:

pm(x) = p1(x)p2(x). (9)

Generalizing this, the mutual probabilitySv of an entire
linear modev is then:

Sv =

∫ +∞

−∞
p1(xv)p2(xv)dx. (10)

Substituting 1
(2π)D/2|Ci|1/2 exp

[− 1
2x

T C−1
i x

]
for
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pi(x), we obtain:

Sv =

∫ +∞

−∞

1

(2π)D/2|C1|1/2
exp

[
−1

2
xvT C−1

1 vx

]

1

(2π)D/2|C2|1/2
exp

[
−1

2
xvT C−1

2 vx

]
dx = (11)

1

(2π)D|C1C2|1/2

∫ +∞

−∞
exp

[
−1

2
x2vT (

C−1
1 + C−1

2

)
v

]
dx.

(12)

Noting that the integral is now over a 1D Gaussian distri-
bution (up to a constant):

Sv =
1

(2π)D|C1C2|1/2
(2π)1/2

[
vT (

C−1
1 + C−1

2

)
v
]−1/2

=

(13)

(2π)1/2−D|C1C2|−1/2
[
vT (

C−1
1 + C−1

2

)
v
]−1/2

(14)

The expression above favours directions in which both
densities have large variances, i.e. in which Signal-to-Noise
ratio is the highest, as one would intuitively expect.

The mode that maximizes the mutual probabilitySv

can be found by considering eigenvalue decomposition of
C−1

1 + C−1
2 . Writing:

C−1
1 + C−1

2 =

D∑
i=1

λiuiu
T
i , (15)

where0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λD and

ui · uj = 0, i 6= j

ui · ui = 1. (16)

and since{ui} spanRD:

v =

D∑
i=1

αiui, (17)

it is then easy to shown that the maximal value of (14) is:

max
v

Sv = (2π)1/2−D|C1C2|−1/2λ
−1/2
D . (18)

This defines the class similarity scoreν. It is achieved for
α1,...,D−1 = 0, αD = 1 or v = uD, i.e. the direction of
the eigenvector corresponding to the smallest eigenvalue of
C−1

1 + C−1
2 . A visualization of the most probable mode

between two face sets of Fig. 2 is shown in Fig. 3.

3.3. Numerical and Implementation Issues
The expression for the similarity scoreν = maxv Sv in
(18) involves the computation of|C1C2|−1/2. This is prob-
lematic asC1C2 may be a singular, or a nearly singular,
matrix (e.g. because the number of face images if much
lower than the image space dimensionalityD).

Person P1
Illumination I1

Person P1
Illumination I2

Person P2
Illumination I1

Figure 2:Examples of detected faces from the database used for
method evaluation. A wide range of illumination and pose changes
is present.

3.8e7

2.1e6

(a) [P1, I1] – [P1, I2] (b) [P1, I1] – [P2, I1]

Figure 3: The maximally probable mutual mode, shown as im-
age, when two compared faces sets belong to the (a) same and (b)
different individuals (also see Fig. 2).

We solve this problem by assuming that the dimension-
ality of the principal linear subspaces corresponding toC1

andC2 is of dimensionalityM ¿ D, and that data is per-
turbed by isotropic Gaussian noise. Ifλ

(i)
1 ≤ λ

(i)
2 ≤ · · · ≤

λ
(i)
D are the eigenvalues ofCi:

∀j > M. λ
(1)
D−j = λ

(2)
D−j . (19)

Then, writing

|Ci| =
D∏

j=1

λ
(i)
j , (20)

we get:

ν = (2π)1/2−D|C1C2|−1/2λ
−1/2
D = (21)

= const×
(

λD

D∏
i=D−M+1

λ
(1)
i λ

(2)
i

)−1/2

. (22)

4. Experimental evaluation
Methods in this paper were evaluated on a database of video
sequences acquired in our laboratory (from here on referred
to asFaceDB100). This database contains 100 individu-
als of varying age and ethnicity, and equally represented
genders. For each person in the database we collected 7
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Table 1:Recognition performance statistics (%).
MPMM FaceIt MSM KLD

average 92.0 64.1 58.3 17.0
std 7.8 9.2 24.3 8.8

video sequences of the person in arbitrary motion (signif-
icant translation, yaw and pitch, negligible roll). Each se-
quence corresponds to a different illumination setting, ac-
quired for 10s at 10fps and320× 240 pixel resolution (face
size≈ 40 to 80 pixels)1.

To establish baseline performance, we compared our
recognition algorithm to:

• State-of-the-art commercial system FaceItr by Identix
[8] (the best performing software in the recent Face
Recognition Vendor Test [10]),

• Mutual Subspace Method(MSM) [6], used in a state-
of-the-art commercial system FacePassr [13],

• KL divergence-based algorithm of Shakhnarovichet
al. (KLD) [11],

• Majority vote across all pairs of frames usingEigen-
facesof Turk and Pentland [14].

4.1. Results
A summary of the experimental results is shown in Ta-
ble 4.1. Firstly, note that the proposed algorithm signifi-
cantly outperforms other methods. A high average of 92%
was obtained under extreme lighting changes.

The difficulty of the recognition task is witnessed by the
performance of the KLD method which can be considered
a proxy for gauging the difficulty of the task, seeing that it
is expected to perform well if imaging conditions are not
greatly different between training and test [11]. It is also
important to observe that the standard deviation of our al-
gorithm’s performance across different training and test il-
luminations is lower than that of other methods, showing
less dependency on the exact imaging conditions used for
acquisition.

Finally, the Receiver-Operator Characteristics (ROC)
curve for the MPMM method is shown in Fig. 4.

5 Summary and Conclusions

This paper introduced a novel face recognition algorithm
for matching face sets, based on a local manifold invariant.

1Seehttp://removedforreview for more information on this
database and examples of video sequences.
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Figure 4:Receiver-Operator Characteristic of MPMM.

In an empirical evaluation on a large dataset of face mo-
tion sequences it outperformed state-of-the-art commercial
software and set matching methods in the literature.

The main direction for future work is to match more
complex manifold models (e.g. based on redundant locally
linear patches), which we hope would more effectively ex-
ploit the identified manifold invariant. Another possible im-
provement to the method would be to augment each data set
with synthetic samples obtained by random perturbations
(see [9, 12]).
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