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Abstract

The vast majority of classification systems are designed with a single set of features, and op-
timised to a single specified cost. However, in examples such as medical and financial risk
modelling, costs are known to vary subsequent to system design. In this paper, we present a
design method for feature selection in the presence of varying costs.

Starting from the Wilcoxon nonparametric statistic for the performance of a classification sys-
tem, we introduce a concept called the maximum realisable receiver operating characteristic
(
���������

), and prove a related theorem. A novel criterion for feature selection, based on the
area under the

���������
curve, is then introduced. This leads to a framework which we call

Parcel. This has the flexibility to use different combinations of features at different operating
points on the resulting

���������
curve. Empirical support for each stage in our approach is

provided by experiments on real world problems, with Parcel achieving superior results.
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Chapter 1

Introduction

1.1 Motivation

Question 1 Why should we do feature selection?

To construct a supervised classification system, one requires a data set of labelled examples
with which to train and test the system. Each example is made up of a class label, i.e. what
it is an example of, and a number of features, i.e. measurements or attributes describing the
example. A classification system contains a model of how these features describe the differ-
ent classes, and it is hoped that this model will allow novel examples, for which no label is
available, to be correctly classified. If, for some reason, one does not wish to use all of the avail-
able features, then one must carry out feature selection: pick a subset of features from those
available.

Why would we want to do this? Intuitively, the greater the number of features, the richer our
classification models will become, and hence the better able to classify unknown examples.
Theoretically,1 this is indeed the case: classification accuracy increases monotonically with the
number of features, or dimensions, in the data being modelled. In real world situations this is
not the case: the classification accuracy can decrease as a result of having too many features.
This effect is known as the curse of dimensionality. 2

The curse of dimensionality can be caused by a number of factors. The probability distributions
of the features must be modelled by the classification system. In the theoretical case, these
distributions are known a priori. In practice this is rare, and so these distributions must be es-
timated from the available data. If we think of the examples as points in feature space, we can
see why increasing the dimensions of the data can lead to problems in estimating probability

1In theory, there is no difference between theory and practice. In practice, there is.
2A number of definitions for the curse of dimensionality, exist, which differ in effect and cause; in this report, the

curse of dimensionality will be used to refer to the decrease in performance of a classification system, observed when
dimensionality increases above some point, regardless of the underlying cause.
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I

II

III

Figure 1.1: The effects of increasing dimensionality on a data set of twenty examples. I. With
one ten-valued dimension, the data fills the ten location feature space rather well. Probability
estimates made with this data, in this sized feature space, might be reasonably reliable. II. Two
dimensions, and one hundred possible locations. The data is now more sparsely spread over
the feature space. III.With three dimensions, and one thousand possible locations, the data fills
the feature space poorly. Probability estimates made with this data, in this sized feature space,
would be very unreliable.

distributions. As we increase the number of features, without increasing the number of exam-
ples, we create an ever more sparsely populated space. Take the example in Figure 1.1; if we
had one feature, which could take on ten possible values, then having twenty examples might
fill our feature space rather well, as there are only ten locations in it. If we were to then add
another ten-valued feature, but no more examples, we see that we now have one hundred pos-
sible locations, and only twenty examples to fill it; add a third such feature, and the situation is
worse again, twenty examples in one thousand locations. In fact, the requirement for data in-
creases exponentially with the dimensionality of the feature space. If a feature space is sparsely
populated, estimates of distributions in that space will be poor. The problems associated with
estimation are compounded by the increased effects of noise; it is clear from Figure 1.1 that
any noise present in the three dimensional space will have a much greater influence upon a
probability estimate than noise in the one dimensional space.

The inclusion of useless, or irrelevant, features can also cause performance to decline. A num-
ber of classification algorithms are known to be adversely affected by inclusion of irrelevant
features in the data. For example, Langley[64] and Aha[1] both observe that the volume of data
required by nearest-neighbour algorithms increases exponentially in the presence of irrelevant
features, without which performance degrades significantly; similarly, Caruana and Freitag[20]
and Kohavi[57] note that decision trees also suffer degraded performance and increased com-
plexity attributable to irrelevant features. Strongly correlated, or redundant, features can also
be problematic. Once again, certain classification algorithms, such as the naive Bayes classifier,
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are adversely affected by redundancy in the features used to describe the data.

The factors contributing to the curse of dimensionality,

� sparsely populated feature spaces,
� noise,
� irrelevance, and
� redundancy,

are well known problems in the statistical pattern recognition and regression communities.
These issues have been addressed for some time, and a number of solutions to the feature se-
lection3 problem have been developed. It is more recently that the machine learning and data
mining communities have shown a strong interest in feature selection; the latter two factors, ir-
relevance, and redundancy, are of particular interest, as these cause pathologies in classification
algorithms4 that may not be encountered in some statistical domains.

With the widespread integration of information technology throughout industry and public
sector institutions, the need for sophisticated data analysis has grown. Many businesses now
hold large databases of customer information, and these businesses wish to use this data to
make predictions about customer and market behaviour. Likewise, vast amounts of medical
data are now stored digitally, and there exist significant potential benefits to society, if that data
can be used for the accurate diagnosis of disease, and prediction of outcome.

These data sets may not, however, have been gathered with classification as an objective. Fre-
quently, they are the product of a business initiative to simply computerise all records, the idea
of using the data for classification being a posteriori. As such, along with many useful features,
these data sets tend to have large numbers of noisy, irrelevant and redundant features. Com-
pounding this, the data might not be interpretable by a system designer: the data might consist
of infra-red energy readings from satellite images. These factors indicate the need to use some
form of automated feature selection procedure when designing a classification system, so as to
avoid the curse of dimensionality. The elimination of features has other, not insignificant, ben-
efits: some features are costly to gather, and removal of these features without detriment to
performance can make a classification system more attractive to an end user. For example, in a
medical diagnosis system, the features might be measurements from blood tests and biopsies.
In addition to cost and discomfort, there may be a risk associated with some of these features,
such as the biopsy. If the biopsy features could be eliminated without reducing the accuracy
of the diagnosis system, this would represent both a financial saving and a minimisation of
patient risk. The motivation for feature selection might be summarised as so:

“General motivation. We are given the task of designing a classification system, for
which the available data have a large number of dimensions. We need to select an

3Known as variable selection in this field.
4Sometimes referred to as induction algorithms.
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appropriate subset of features, from the large number available. Furthermore, we
wish to select the smallest possible appropriate subset.”

1.1.1 Variable costs

An issue not widely addressed in the feature selection literature is that of variable costs. The
accuracy of a classification system simply reports how many of the test examples were cor-
rectly labelled. In many cases getting one class wrong is far worse that another. It is generally
accepted that it is far worse to tell a sick patient he is healthy, than to tell a healthy patient he
is sick: the latter might start treatment, but would soon be discovered to be healthy, the for-
mer, left untreated, might die. It is straightforward to assess the performance of a system given
some specific trade-off, such as “it is ten times worse to misclassify a sick patient than a healthy
one”. A cost function can be computed with such a trade-off, and a system trained to minimise
this cost.

This relies crucially upon an accurate assessment of this trade-off, and this can sometimes be
difficult, or impossible, to obtain. In a number of environments, the users of a system would
like to be able to set a cost trade-off dynamically; to have the freedom to alter the trade-off,
perhaps in response to changes in operating circumstances, or in professional opinion as to the
effects of misclassification.



5

Chapter 2

Data and methods

2.1 Introduction

In this report a number of feature selection algorithms will be described and empirically evalu-
ated. Each empirical test will use the same methodology, employ one of two possible classifica-
tion algorithms, and obtain results on one or more real world classification tasks; this chapter
describes the experimental method, classification algorithms and classification tasks.

2.2 Experimental method

Feature selection algorithms are utilised during the design of a classification system. It follows
that a reasonable method for comparing two feature selection algorithms is to build two classi-
fication systems, evaluate the performance of the two systems, and compare the results. In any
practical implementation, only a finite amount of data is available, hence the performance of a
classification system must be estimated. An unbiased estimate of performance can be obtained
using a hold-out data set; that is, data that was not available during the construction of the clas-
sification system. Given two unbiased performance estimates, one can test the null hypothesis
that a difference between the two occurred by chance, and is not indicative of a difference in
the true system performances.

Adopting this methodology, each experiment in this report will use three data sets, as shown
in Figure 2.1.

1. A training data set, used to train the classification system.

2. A validation data set, used to estimate performance during construction of the system; for
example, during feature selection. This data set may be used multiple times during the
training of the system.
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3. A hold-out data set, unavailable during any part of the training of the classification system.
This data is used once only, to give an unbiased estimate of performance.

training data

validation data optimised?

hold-out data

Classification algorithm

No

Yes

Classification system

Classifier construction

Performance estimate

Figure 2.1: Obtaining unbiased estimates of classification system performance.

When comparing two feature selections algorithms, both use the same data sets, i.e. both are
given the same resources for training, and tested on the same hold-out data.

2.3 Classification algorithms

Two classification algorithms were used in this report: a simple linear model, and naive Bayes.
These algorithms were deliberately chosen for their simplicity. The experiments carried out
in this report aim to demonstrate the effects of feature selection, and the differences in feature
selection algorithms. These effects and differences are, in general, independent of the classifi-
cation algorithm used1. Having simple classification algorithms removes a layer of complexity
that might otherwise confuse the results obtained: if the algorithms behaviour is stable and
well understood, then the effects of a feature selection algorithm might not be confused with
some artifact of the classifier being used.

1However, some classification algorithms may be more robust than others to some of these effects.
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2.3.1 Simple linear model

The implementation of a simple linear model by Rasmussen[95] was used in this report. The
model is defined as

� � ��� ���
������
�
	 � � ��� �

�
(2.1)

� � , 
 � � � � � ��� � �
, are the model parameters, with � ����� acting as the bias, � � are the features

(i.e. the model inputs), with an extra feature � ����� for the bias parameter. The model is fit to
the data by maximum likelihood, assuming zero mean Gaussian noise.

2.3.2 The naive Bayes classifier

The naive Bayes algorithm computes a discriminant function for each of 
 possible classes.
Let � be an example vector, with � features ��� � � � � ��� � � , and 
 ����� � the discriminant function
corresponding to the 
 th class. The chosen class,

���
, is the one for which


 � ��� ��� 
 ����� ����
����� �

The discriminant function 
 � ��� � is defined as


 ����� ����� � � � � �"!#! � � � �
�$
% 	 � � � ���

% �'& %)( �*� �"!#! � � � � �

where & % is the value of feature � % in example � .

The classification rule might be changed to reflect some desired operating conditions: in a two
class problem the rule might be changed such that if one discriminant were above a given
threshold, then that class would be assigned, regardless of the value of the other discriminant.

This classification algorithm is optimal for problems in which the features in the data are inde-
pendent, see Michie et al[77] and Ripley[96], and this assumption is made during training and
classification. As this assumption is rarely true, the algorithm has been given various (mildly
derogatory) names such as naive and stupid Bayes. However, the interested reader is pointed
to the recent article of [31], in which the regions of optimality for this algorithm are shown to
be far greater than those indicated by the independence assumption. Indeed, empirical stud-
ies comparing the performance of naive Bayes to many more powerful algorithms such as

� � � �
[93], on the real world datasets at the repository in UCI [72], indicate that naive Bayes is a much
under rated algorithm, as it outperforms

� � � � on + ��� of the datasets examined.

2.4 Data

Seven real world classification tasks were used to test the algorithms presented in this report.
Some of these algorithms address two-class classification tasks, hence, for consistency and to
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allow all results to be comparable, two-class tasks were used throughout. As detailed in the
experimental methodology, there were three data sets for each of the seven problems: training,
validation and hold-out. Table 2.1 gives the number of cases in each data set; each data set was
formed by randomly partitioning the original data.

Classification task training set validation set hold-out set
Adult � � ����� ����� � � ���������
BrodSat

� � ��� ����� �����
Cotton � 
 ��� � � + � � �����
Field

������� ������� ����
 �
Grey � 
 ��� � � + � � �����
Thyroid � ��� � � � � + � � ���
Tree

������� ������� ����
 �

Table 2.1: The data sets for the seven classification tasks examined in this report; the number of
cases in each data set are given.

In experiments using the naive Bayes classifier, discrete data sets are required. Thediscretize
software, see Kohavi et al[60], was used to discretise continuous data. This implements entropy
based discretisation, described in Dougherty et al[32]. Only default settings were used. For each
classification task, the hold-out data set was discretised using parameters estimated with the
training and validation data alone, thus avoiding the introduction of an experimental bias.

Adult This two-class problem originated from the US Census Bureau, 1994 Census database,
and involves predicting whether a person will have a salary of greater or less than � ��� � ����� . In
total, it contains � � � � � � labelled examples, with fourteen features. This data is held at the UCI
repository[72].

BrodSat This problem was originally a seven-class problem, with target classes: brickface,
sky, foliage, cement, window, path, and grass. It was transformed to a two-class problem, man-
made and natural, by combining brickface, cement, window, and path, to form man-made, and
combining sky, foliage, and path, to form natural. The data was created from a satellite image
classification problem by Carla Brodley at the Vision Group, University of Massachusetts. In to-
tal there are � ����
 examples, with nineteen features. This data is held at the UCI repository[72].

Cotton and Grey Both of these classification problems were formed from a multi-class Land-
Sat image classification problem. The problem was originally used by King et al[53] and Michie
et al[77] in the Statlog project. There are a total of

� � � � examples with thirty six features. Ini-
tially there were six classes: red soil, cotton crop, grey soil, damp grey soil, soil with vegetation
stubble, very damp grey soil.
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Combining grey soil, damp grey soil, and very damp grey soil, into the grey class, and the
remainder into a class called other, gives the Grey two-class problem. Likewise, combining
cotton crop and soil with vegetation stubble into the cotton class, and the remaining classes
into other, gives the Cotton two-class problem. This data is held at the UCI repository[72].

Field and Tree These two problems were formed from a geological remote sensing data set,
used by Bailey et al[7], and held at the Image Processing and Neural Networks Laboratory
University of Texas at Arlington. It has four classes: urban, fields, trees, and water. The Field
problem has two classes, one combining field and urban, the other combining. The Tree prob-
lem has keeps the class tree, and combines the remainder into a class named other. In total
there are

� � � ��
 � examples in the data, with eighteen features.

Thyroid The data for this three-class problem was originally used by Schiffmann et al[97]
to train and test neural network classifiers. The three classes were: normal, hypo-thyroid,
and hyper-thyroid. The two-class problem in this report has classes abnormal and normal.
There are a total of + ��� � examples, with twenty one features. This data is held at the UCI
repository[72].
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Chapter 3

Literature review

3.1 Introduction

Question 2 What methods of feature selection have others developed?

Currently a topic of much interest in the machine learning (see Bradley[15], Langley[64], Michal-
ski et al[76] and Morik[80]) and data mining communities (see Craven and Shavlik[25], Gly-
mour et al[41], Fayyad and Smyth[36] and Fayyad et al[35]), feature selection has been studied
widely in the pattern recognition and statistics literature. Reviews of this problem domain
and the solutions available are given in Devijer and Kittler[29], Kittler[56], and Wyse et al[109];
many of the algorithms described in these papers are currently applied in the machine learn-
ing literature, although in some cases the algorithms make assumptions that are not valid in
this domain, as noted by John et al[52]. Recent comparative studies of these and more recent
algorithms, applied to machine learning, include those carried out by Dash and Liu[26], Gor-
don and desJardins[42], Langley [63], Siedlecki and Sklansky[100], Jain and Zongker[50] and
Kohavi and John[59], the last of which is referenced in detail in subsequent chapters of this
report.

In general, feature subset selection algorithms have two components: an evaluation function
� ��� � , which “scores” candidate feature sets, and a search engine for finding those sets. Given a
set of features the selection algorithm will examine a series of sets of features, and choose the
one that maximises

� ��� � ; in the event of multiple feature sets maximising
� ��� � , the smallest one

is chosen.

When examining the current state of the art, one finds that feature selection algorithms fall
broadly into two different frameworks, wrappers and filters, this categorisation being deter-
mined by the nature of

� ��� � .
Relevant work regarding wrappers and filters is described next. In section 3.3, the state of
the are concerning feature selection search engines is discussed. Section 3.4 contains details of
additional feature selection algorithms that could be categorised as either filters or wrappers,



CHAPTER 3. LITERATURE REVIEW 11

but are either sufficiently distinct conceptually or specific to a particular type of classification
algorithm, to warrant a separate description.

3.2 Filters and wrappers

Langley[63] defines a taxonomy of two types of feature selection framework, derived from the
nature of the evaluation function

� ��� � used: filters and wrappers. In a filter framework,
� ��� �

measures the performance of a feature set in a manner that does not include the classification
algorithm which will eventually use the features. In the classifier design process, filters carry
out feature selection prior to classifier optimisation (training). In a wrapper framework,

� ��� �
incorporates the classification algorithm. As such, in a wrappers framework, feature selection
and optimisation are carried out in a single step during system design.

3.2.1 Filters

A filter is defined as a feature selection algorithm using a performance metric based entirely on
the training data, without reference to the classifier for which the features are to be selected. The
named is derived from the way in which the features are filtered before the classification system
is trained and tested. Two types of filter measures will be discussed: statistical dependence and
inter-class distance.

3.2.1.1 Statistical dependence

The features used to describe a data set can be thought of as random variables, with some
distribution that can be estimated from the data. Dependence metrics seek to estimate the
statistical dependence of an output variable on a set of features. Metrics based on the mutual
information (see Cover and Thomas[24]) between the features and the target class labels have
been developed by Battiti[9] and Bonnlander[13].

This is appealing theoretically, as mutual information offers a powerful measure of the sta-
tistical dependences between the data and the class labels. It is these dependencies that a
classifier attempts to model when mapping from inputs to outputs. However, the accurate
estimation of mutual information from continuous valued data is difficult, and requires an ex-
tremely large amount of data for even small feature dimensions ( � �

), which has been noted
by Bonnlander[13, 14] and, in the context of image registration, Viola[107, 108].

Bonnlander[13] evaluates candidate feature sets by estimating the mutual information between
the current feature set and the target output of a multi-layer perceptron. To do so, a non-
parametric, Parzen window density estimation technique (see Venables and Ripley[106]) is em-
ployed to model the joint probability density function between the feature and target variables.

It could be argued that, once the probability function has been modelled, the use of a neural
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network is redundant, and might even be detrimental to the design of a classification system.
If the goal is to model this density, and that has already been done using the Parzen window
estimation technique, why do so again with the neural network? A counter to this could be
that the network might provide a more concise model of the density, and so reduce the com-
putational overheads associated with the Parzen window, which requires the storage of all the
training data; as noted, if accurate estimates are sought, this might prove to be extremely large.
However, this is not addressed by Bonnlander in [13]. If the Parzen density estimate were
kept and used for classification, then this technique for feature selection would belong in the
wrapper framework.

3.2.1.2 Distance

A number of measures exist that measure the inter-class separation, or distance, produced by
a subset of features. Logically, the larger the separation between classes, the easier it will be to
define a decision boundary, and to achieve a lower error rate on novel data. Methods such as
the Mahalanobis distance, see Devijer and Kittler[29] and Duda and Hart[34], make Gaussian
assumptions about the data. Others, such as the Bahttacharyya distance do not make Gaussian
assumptions, see Kittler[56] and Ripley[96].

These distance measurement arise in the statistics literature. Despite apparently producing
large inter-class distances, some feature sets may subsequently produce poor classifiers, see Jain
and Zongker[50]. This is symptomatic of the curse of dimensionality, as described by Bishop[12],
Duda and Hart[34], Hand[45] and Jain and Zongker[50]. As the dimensionality (i.e. number
of features) of a data set increases, the resulting of estimates of inter-class distance become less
reliable. These distance estimates monotonically increase with the dimensions of the data, but
only for that data set: these estimates may not generalise to the novel data used in subsequent
classification tests. Despite this weakness, these measure have been widely used. A good
reason for this is that the majority of distance measures are cheap to compute, especially when
compared to the computational cost of training and testing a classifier. Therefore, in times when
computing power was expensive, these methods held an obvious attraction; as computing
power is now cheap, a major justification for using such measures has been removed.

3.2.2 Wrappers

It is a general weakness of filter frameworks that feature subsets may rate highly, even when
they are inappropriate to the classification algorithm being used. This weakness provides a
compelling argument for the inclusion of the classification algorithm in the performance metric
� ��� � , and has lead to the development of wrapper algorithms. The name is derived from the
notion that the feature selection algorithm is inextricable from the end classification system,
and is wrapped around it.

Although the term wrapper was coined recently, the logical idea of using the performance of
an actual classifier in feature selection is not new. Ben-Basset[10] noted that measures such as
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the Bahttacharyya distance do not, over arbitrary feature subsets drawn from the same origi-
nal features, induce the same order of preference as that obtained by comparing the errors of
the Bayes classifier. This evidence, coupled with the reasons detailed above, has lead many
researchers, such as Siedlecki and Sklansky [100] to conclude:

“it seems that the only promising and legitimate way of evaluating features must
be through the error rate of the classifier being designed.”

Consequently, increasing interest is falling upon feature selection algorithms that are classifier
inclusive, i.e. that use the test performance of a classifier as

� ��� � . In this case
� ��� � is evaluated

as the expected loss, of the classifier trained and tested using the feature set in question. If
zero-one loss, see Friedman[40], is used, then this is equivalent to the error rate, or

���
accuracy,

of the classifier.

A number of papers present results indicating that, on real world datasets, wrapper algorithms
that carry out subset selection can significantly increase the performance of the classification
systems being designed. Lovell et al [65, 66, 67] have extensively studied the feature selection
problem in the context of a large obstetrics risk prediction problem, involving over + ��� � �����
patient histories, making novel use of the area under the

�����
curve (receiver operating char-

acteristic, see Chapter 5) used as a classifier inclusive metric. Lovell found that the estimates of
patient risk produced by systems that had used feature selection were significantly better than
those that had not. Other recent work reporting the successful use of wrapper algorithms on
real world problems include Kohavi[57], Doak[30], Aha and Bankert[3] and Mladenic[79].

Kohavi and John[59] have recently published a large empirical study of wrapper algorithms,
using a number of artificial and real world datasets. The classification accuracy of the

� � � �
decision tree (see Quinlan[93]) and naive Bayes classifiers (see Chapter 2) was estimated on
a wide range of problems, using both the total set of features for each problem and a subset
selected by a wrapper. They conclude that feature subset selection significantly improved the
accuracy of the classification systems produced.

3.3 Search engines

Regardless of the choice of evaluation function
� ��� � , i.e. whether it is a wrapper or a filter, an

algorithm will require a method of generating candidate feature sets. The solution space of all
possible feature subsets can be viewed as a lattice; Figure 3.1 illustrates the lattice for a problem
with four features. Each node represents a feature set, a one indicates feature inclusion, a zero
exclusion. Hence, the operation of a feature selection algorithm can be seen as a search of this
lattice, seeking the node, � , such that

� � ��� is maximised; this is a common view, adopted in,
among others, Siedlecki and Sklansky[100], Jain and Dubes[49], Davies and Russell[27] and
Kohavi and John[59].

From a node representing a feature set, the children of the node can be reached by inclusion or
exclusion of individual features from the set, and by repeated actions, any node in the lattice
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may be reached from any start point. The manner by which the lattice is traversed, the inclusion
and exclusion operators, defines the search engine of the feature selection algorithm.

0000

0001 0010 10000100

01010110 101011001001 0011

01111011 11101101

1111

Figure 3.1: The solution space of the feature subset selection problem can be viewed as a graph
or lattice.

The lattice for a problem with 
 features has � 
 nodes. Due to the exponentially explosive na-
ture of this search space, exhaustive search of the lattice is not a feasible solution for real world
problems. As a result, a number of sub-optimal search strategies from the artificial intelligence
literature have been applied to feature selection.

The most simple searches, widely used in both filter and wrapper frame works, are forwards
selection ( � � ) and backwards elimination ( 
 � ). ��� starts with an empty feature set and has
an inclusion operator, adding one feature at a time, attempting to maximise

� ��� � ; in contrast 
 �
starts with a set of all the available features, and uses only an exclusion operator. These meth-
ods have been generalised to stepwise forwards selection ( � ��� ) and stepwise backwards elimination
( ��
 � ), wherein both use inclusion and exclusion operators, see Devijer and Kittler[29]; it is
the convention that a search starting with an empty set is moving “forwards”, and one starting
with a full set “backwards”. These forms of searches appear in the statistics and regression
literature as variable selection algorithms, for examples see Draper and Smith[33], Peduzzi et
al[86], and Stark and Fitzgerald[102].

Numerous applications have used these types of search engines, including Bonnlander[13],
Caruana and Freitag[20], John et al[52], Kittler[55, 56], Lovell et al[67]. Bonnlander uses ���
exclusively, as the number of features used in 
 � render the required probability estima-
tions computationally infeasible given the Parzen estimation method employed. Similarly,
researchers using wrapper algorithms report a high complexity associated with backwards
searches, which can make them less attractive than their forwards counterparts, for example
Kohavi and John[59] and Langley[63]. Aha and Bankert[2, 3]applied wrapper feature selec-
tion algorithms to the problem of cloud classification, and empirically compared forwards and
backwards searches, concluding that forwards search was superior.

The only possible search engine that guarantees an optimal solution is branch and bound . Theo-
retically, an exhaustive search of the lattice is implicitly carried out using the branch and bound
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algorithm and, therefore, this strategy should always select an optimal feature set; descriptions,
applications, and comparisons of this algorithm to others are to be found in Hand[44], Jain and
Zongker[50], Foroutan and Sklansky[39], Narendra and Fukunaga[83], Ripley[96], and Yu and
Yuan[110].

However, branch and bound makes the assumption that
� � ��� monotonically increases with the

dimensionality of the data set; this assumption is a necessary condition for the implicit exhaus-
tive search. Branch and bound usually employs a distance metric, such as the Mahalanobis dis-
tance, for

� ��� � . As we have seen, the Mahalanobis distance and other similar distance measures,
are indeed monotonic within one data set, but in practice suffer from the curse of dimensionality,
and do not behave monotonically on novel data sets. Even if the monotonicity assumption is
made, the search space can still be exponential, and for problems with more than thirty fea-
tures this can prove an infeasible search. In a case particularly relevant to machine learning,
Siedlecki and Sklansky[100] demonstrate that the monotonicity requirement does not hold for
error rates, and note that, in general, the monotonicity requirements of branch and bound cannot
be assumed.

Without the monotonicity requirement of branch and bound, all sequential search algorithms
that do not perform an exhaustive search are sub-optimal, as shown by Cover and Campenhout[23]
for hill-climbing searches. Despite the sub-optimal nature of feature selection, many algorithms
exist that significantly improve the performance of classification systems by selecting an ap-
propriate subset of features from those available, and in doing so justify the investigation and
application of feature selection algorithms.

Recent advances in search strategies include the development of the sequential forwards float-
ing selection( ������� ) and sequential backwards floating elimination ( � 
 � � ) algorithms by Pudil et
al[90]. Genetic algorithms, indicated by Siedlecki and Sklansky[100] as a direction of future re-
search, have been explored by Punch et al[91]. They used a combination of a genetic algorithm
and a � nearest-neighbours algorithm, hence a wrapper; the computational overhead of this
approach required a parallel implementation to make it attractive, and so does not yet offer a
widely applicable solution to the feature selection problem.

In the recent empirical study by Jain and Zongker [50], fifteen search algorithms were com-
pared empirically; ��� ��� , ����� , and ��� , three search algorithms examined in this report, as
well ��� 
 � and a genetic algorithm, were amongst the fifteen. A filter framework was used,
using the Mahalanobis distance for the evaluation function

� ��� � , and both artificial data and
a satellite image classification problem. It was concluded that ��� ��� was the best search al-
gorithm of those tested. An empirical comparison of ������� to ��� was reported by Pudil et
al[88]; a wrapper method was employed, utilising the classification accuracy of a Gaussian
classifier, and two real world problems were examined. Pudil et al concluded that ����� � was
the best algorithm tested, based on the results obtained. However, it appears that the classifi-
cation accuracy was estimated on data that was also used during feature selection. A number
of papers have reported classification results in feature selection that were not calculated with
hold-out data, and as such are optimistically biased and should be interpreted with caution; as
a result, the empirical evidence reported in Pudil et al may be neither statistically significant,
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nor conclusive. Kohavi[57] points to results produced by Doak[30], Aha and Bankert[3] and
Mladenic[79], as examples of biased results, that should be treated with similar caution.

3.4 Alternative approaches

Recently, work in the artificial intelligence community has been carried out on algorithms that
attempt to select features based on relevance determination. If a feature is important, in some
sense, to modelling a concept or target function correctly, it is said to be relevant.

Some interest has developed in algorithms, Relief and FOCUS, that attempt to eliminate irrele-
vant features prior to classifier training; as such these algorithms fall into the filter framework.
In the neural network community, an attempt to detect suitable features through the effects
they produce on weights during training has lead to algorithms for relevance detection; as
this inherently uses the neural network classifier in evaluating the feature set, such algorithms
would belong in the wrapper framework.

The use of decision trees, as either wrappers or filters, has attracted a wealth of attention in
the data mining community. Seen as more interpretable and “user friendly” than other classi-
fiers, such as neural networks, much application-oriented research has been undertaken, with
the aim of creating easy-to-use, interactive data mining tools for end users; decision tree pack-
ages available in the commercial sector include

� � ��� , see Steinberg[103], and
� 
 
 � � ��� , see

Bunk et al[18] and Kohavi[58]. The commercial success of these and other systems, such as
� � ��� � � � � [89], indicates a large commercial market for feature selection tools.

3.4.1 Relief and FOCUS

Kira and Rendell[54] and Kononenko[61] examine the Relief algorithm, in which a relevance
weighting is attributed to each feature in the dataset. A drawback of this approach is that it
does not discriminate between two features that may be redundant with respect to each other,
i.e. if one were identical to the other, both would have the same relevance. Selection on this
basis will select both, which would not be beneficial, and would in some cases be detrimental,
to a classification algorithm: no benefit is gained as both carry the same information, harm
is done because classifier parameter estimation is carried out in a higher dimensional feature
space than necessary.

Kohavi and John[59] report problems associated with variance in relevance estimates from the
original algorithm. They have implemented an adaption, Relieved, that does not suffer from the
variance in relevance estimates, but still selects redundant features. Caruana and Freitag[21]
compared the accuracy of a series of

� � � � decision tree classifiers that had used either wrapper
feature selection algorithms or one of two relevance selection algorithms, Relief or � ��� � � (see
Almuallim and Dietterich[4, 5, 6]).

Caruana and Feitag found that both algorithms selected features that, while qualifying as rel-
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evant, were not useful for classification. They found that, for the problems considered, the
wrapper algorithms produced superior classifiers, and concluded

“it is not clear that one needs to resort to proxy measures like relevance to perform
attribute selection.”

Davies and Russell[27] considered the � ��� � � algorithm, and concluded that, although good
results can be obtained with � ��� � � , the search for relevant features in some real world prob-
lems is intractable. A number of assumptions and adaptations are required to make � ��� ���
useful in a practical setting. Even with such assumptions, Davies and Russell, with reference to
John et al[52], note that the use of wrapper algorithms may be more appropriate than relevance
algorithms such as � ��� ��� .

3.4.2 Neural networks

Automatic relevance determination ( � � � ) (see Mackay[68, 69] and a recent empirical review
by Neal[84]) is a wrapper algorithm, applicable to multi layer perceptron[68, 69] classification
systems. Relevance weightings are produced for each of the inputs to the network by examin-
ing the parameters of the network during training.

No features are ever completely excluded, so � � � is not strictly a feature selection algorithm;
it always uses all the features available. However, � � � can be said to be performing a form of
soft selection, see Neal[84], due to the application of relevance weightings. Neal concludes that
for neural network architectures, soft feature selection (of the kind carried out by � � � ) is often
helpful. Unlike the other wrapper algorithms considered here, � � � is not generally applicable:
it is specifically designed for neural network architectures.

Recently Messer et al[73, 74, 75] have developed a feature selection algorithm that also selects
features based the effects observed in the weights of a training neural network. This has been
successfully applied this to an image retrieval problem domain. An empirical comparison with
a filter, using floating forwards search[90] and a statistical criterion for

� ��� � , led Messer et al
to conclude that the weight analysis method offered “an attractive alternative to the statistical
method”.

3.4.3 Decision trees

The use of decision trees such as CART[16] and
� � � � [94] perform feature selection as part of

the construction process. There is no constraint on such algorithms to use all of the available
features, and in many cases a subset will be used. The tree algorithm selects a feature based
on that feature producing the best split of the training data, in terms of some training objective
function. This objective might take the form of an impurity measure, such as the Gini index
employed by CART, or an information theoretic measure such as those used in

� � � � .
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There has been a recent surge of interest in the field of decision trees, from both the data-mining
and machine learning communities. The inherent feature selection carried out during tree con-
struct indicates useful or important features; hence such algorithms are used for the purposes
of knowledge discovery and data-mining in large commercial databases. However, results re-
ported by Kohavi and John[59] indicate that the results of

� � � � are improved by applying a
wrapper feature selection algorithm during classifier design. Ongoing research in the decision
tree literature seeks improved methods of selecting features to split the training data, i.e. fea-
ture selection; see Brodley[17], Fisher[38], Lopez de Mantaras[70], Mingers[78] and Murthyet
al[81, 82].

Decision trees can be classed as wrappers if the constructed tree is used for classification, or as
filters, if the tree is used to select features that will subsequently be used for another algorithm,
for example Cardie[19] uses decision trees to select the features for a case-based learning al-
gorithm. Cherkauer and Shavlik[22] use the � � �

algorithm (the public domain pre-cursor to
� � � � , see Quinlan[92, 93] and Quinlan and Cameron-Jones[94]) to indicate features that form
good representations of target concepts. These features are subsequently used as the inputs to
a neural network algorithm. The construction and optimisation of one algorithm to suggest
features for another is similar, conceptually, to the work of Bonnlander[13]. Cherkauer and
Shavlik justify this filter method by arguing that the neural network algorithms that are even-
tually used are computationally complex; � � �

can be trained and tested more efficiently, and
so is appropriate to use as a filter.
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Chapter 4

Classification in variable cost
domains

4.1 Introduction

In the previous chapter, the feature selection literature was reviewed. From the recent findings
of Kohavi and John[59], we conclude that wrapper feature selection algorithms present a useful
method by which feature selection may be carried out. Given the motivation of this report,
detailed in Chapter 1, we shall pose three questions:

Question 3 Is it likely that variable misclassification costs might be encountered in practice?

Question 4 What are the implications of variable costs when carrying out feature subset selection?

Question 5 Is it possible, using the wrapper algorithms we have seen, to find a single feature set that
that performs well across multiple costs?

Real world examples will be provided, showing that variable costs are indeed encountered
in practice. For the designer of a classification system, the implication of this is that existing
wrapper algorithms can actually reject a feature subset that produces the best classification
system, for some set of misclassification costs. If this set of costs contains the operating costs of
the system (chosen after implementation), then the best available system is not being provided
to the end-user.

Before giving these examples and empirical results, I will discuss variable costs, and how one
might assess the performance of a classification system in a variable cost domain. In the next
section, I describe the receiver operating characteristic (

��� �
) curve, which can graphically

summarise performance over the complete range of possible operating costs. Furthermore, an
��� �

allows a designer, or user, to use problem specific criteria to choose a suitable threshold
with which to perform classification, and so tailor a system to suit individual needs.
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4.2 The receiver operating characteristic

A large fraction of decision support systems, particularly those used in medical diagnostics
(e.g. diagnosis of cancer with digital mamography), are two-class pattern classification sys-
tems. Once a set of features and the functional form of the classifier have been chosen, the
classifier is designed to optimise some cost function. When the costs of the different types of
errors can be specified exactly, the optimum classifier may be designed to minimise the ex-
pected risk [34]. The particular feature set and the functional form chosen then define how
well the performance of the classifier approaches the Bayes’ performance.

It is often the case, in many real world applications, that the cost of different types of errors is
not known at the time of designing the classifier. One also finds applications where the costs
change over time. Further, some costs cannot be specified quantitatively. In such situations we
resort to specifying the classifier in the form of an adjustable threshold and a receiver operating
characteristic (

��� �
) curve obtained by setting the threshold to various possible values. An

example of such an
�����

curve is shown in Figure 4.1. In the example, the classifier must
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Figure 4.1: An
��� �

curve for a medical diagnostic test for abnormal thyroid condition. The
true positive rate corresponds to the probability that a sick patient will be diagnosed as sick,
the false positive to the probability that a healthy patient will be diagnosed as ill.

classify a patient’s condition as either adverse or benign. The data in the example was obtained
from the UCI Machine Learning repository (see Chapter 2 and [72]), and represents the results



CHAPTER 4. CLASSIFICATION IN VARIABLE COST DOMAINS 21

of a number of diagnostic tests for abnormal thyroid conditions. A simple linear classification
algorithm (see Chapter 2) was used, producing a continuous output, and a threshold is placed
upon the output to determine the final classification.

Two rates can be calculated for any series of classifications: the true-positive and false-positive
rates. When an adverse case is correctly classified as adverse, a true-positive has occurred, and a
false-positive when a benign case is incorrectly classified as adverse. By varying the level of the
threshold, different degrees of true-positive and false-positive rates can be achieved, producing
the
�����

.

Each point on the
��� �

curve represents a classifier, formed by setting the threshold to an
appropriate level. Given the

�����
curve for a classification system, an end user can pick a

point on the curve, that represents an operating classifier with the most desirable true- and
false-positive rates. The manner in which this point is chosen may vary, but the result is the
same: a point on the curve indicates which threshold should be applied during classification.

Early work on analysis of systems using the
�����

was carried out on signal detection for mil-
itary applications, see Swets [104], Jerison [51] and Hatfield [48]. In recent years an increasing
number of researchers in the medical diagnosis/risk prediction domain have applied

�����

techniques, for example see the obstetrics risk prediction work of Lovell et al [65, 67, 66] and
the modelling of rejection risk in liver transplant patients studied by Melvin [71]. A plenary
text book on the matter was written by Swets and Pickett [105], which has without doubt con-
tributed to the propagation of

�����
analysis in cost variable domains.

The correct interpretation and analysis of summary statistics such as the area under the
�����

have been examined in a number of papers. This is equivalent to the Wilcoxon (or Mann-
Whitney) statistic [28, 45, 46, 47, 67]. If � and

�
are two sets of continuous observations, for

example a diagnostic test on sick and healthy patients respectively, then the Wilcoxon statistic
indicates the probability that a randomly drawn pair ��� � 
 � , ��� � � 
�� � , will be ordered
correctly in terms of risk (i.e. � � 
 ) by this classification system. As this metric is divorced from
any single set of misclassification costs, it would seem a natural choice when analysing systems
for which costs may be unspecified or variable. It has been proposed that the ��� ����� could
be used in a wrapper type feature selection algorithm. Lovell et al[67, 66] use this statistic as a
criterion for feature selection in a large obstetrics problem involving � � features and + ��� � �����
cases.

Hanley and McNeil [46, 47] offer techniques for non parametric summaries of the
��� �

, given
certain assumptions about class distributions, and DeLong et al [28] have offered a fully non
parametric estimate of the area under the

��� �
. In a real world situation, one might need to

choose between candidate classification systems. This might occur if a novel classification al-
gorithm were applied to an existing problem, for which there already existed a classification
system. Given the novel system, it might fall to a designer to decide which system was supe-
rior. In many case studies reported in the literature, this decision is made on the basis of the
� � ��� � , the system with the larger area being chosen.

The � � ��� � , however, is a gross simplification of the information conveyed by a
�����

, as
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noted by Hand in [45]. The costs of different operating points need to be taken into consid-
eration. Hand further suggests this to be an important factor when the

�����
curves of the

classification systems that are being considered cross. Experimental results in this chapter will
show that the

�����
with the largest � � ��� � is not necessarily dominant across all operating

conditions, supporting the cautionary stance adopted by Hand.

Recently, some focus has shifted to the analysis of the
�����

based on realistic or probable op-
erating costs and conditions, as suggested by Hand[45]. Halpern et al [43] propose the analysis
of
�����

curves through optimal operating points,1 and iso-cost2 lines tangential to the
�����

.
The utility of

�����
analysis for cost variable classification problems is starting to be realised

by the pattern recognition and machine learning communities. Provost and Fawcett [87] have
proposed the use of

�����
analysis in classification problems beyond medical decision making,

as many real world problems exhibit variable cost. Independently of Halpern et al they also
suggest the analysis of

�����
data by iso-cost lines and optimal operating points, pointing out

that the set of tangential iso-cost lines forms a convex hull on the
��� �

.

4.2.1 Neyman Pearson criterion

Once a classification system has been designed (and possibly selected from a range of systems),
one must select an operating point from the

��� �
curve. There are a number of ways to do this,

including methods that pick points such that a cost function is minimised, as described in the
text by Hand [45]. However, such methods require a precise definition of the costs associated
with misclassification; for example, one may have to specify that it is exactly twenty times
worse to misclassify a sick patient than it is to misclassify a healthy one. This is not always
desirable, nor is it always possible.

In many systems being designed today, it is specified that the user be able to choose operating
points in a flexible, or even subjective, manner, guided by practical or contractual constraints.
The user may not be able, nor wish, to express the misclassification costs in a precise fashion,
but may instead wish to pick an operating point based on the specific true- and false- positive
rates that this would yield.

In such a situation, a Neyman Pearson criterion might be employed: a maximum allowable
false-positive rate is decided upon by the user, the selected system must have a false-positive
rate less than this. Once a Neyman Pearson criterion is decided, a point on the

��� �
curve

is then chosen, this having the highest true-positive rate with a false-positive rate less than or
equal to the maximum allowable. Figure 4.2 illustrates a Neyman Pearson criterion.

1An optimal operating point is one that minimises the expected cost of the classifier with respect to a specific set
of misclassification costs.

2This is a straight line, whose slope is determined by a cost function, comprised of a set of misclassification costs
and prior class probabilities. All classifiers on this straight line have the same overall expected cost with respect to
the cost function, despite having different true- and false-positive rates.
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Figure 4.2: An example of a Neyman Pearson criterion. A maximum false-positive rate of
�����

is
set, describing a vertical line in

�����
space. The point on the

�����
curve that intersects this line

indicates a threshold that should be applied to the classification system to achieve the desired
true- and false-positive rates.

4.2.2 Design examples with variable operating conditions

The selection of an appropriate threshold and classifier from an
�����

curve does not necessarily
occur once, at the end of the design process. There are a number of problem domains within
which the end user will want to be able to vary the choice of threshold, and so control the true
and false-positive rates of the classifier dynamically, after it has been designed. Given the

�����

curve of a classification system, and appropriate software, this can be easily achieved: the user
simply enters a desired maximum false-positive rate, and the threshold used for classification
can be updated dynamically. Although it is possible to envisage a number of scenarios where
this might occur, it may be useful to give two real world examples of this, and therefore provide
an affirmative answer to

Question 3 Is it likely that variable misclassification costs might be encountered in practice?

Predicting liver rejection. Melvin et al [71] have carried out extensive work designing a clas-
sification system for predicting whether a patient, who has recently undergone a liver trans-
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plant, is in an early phase of organ rejection. A patient classified as “early reject” is treated to
prevent the onset of a full rejection episode.

The clinicians involved did not want to have to fix a specific set of misclassification costs.
Rather, it was decided that they should be supplied with the

��� �
curve of a diagnostics sys-

tem, and be given the ability to set various Neyman Pearson criteria. Furthermore it should
be possible for them to alter these criteria at will, thereby varying the classification thresh-
old. It was envisaged that variation in criteria might occur due to subjective differences in the
operating conditions favoured by different clinicians, and also through changes in financial
constraints placed upon the institution concerned.

Detecting oil spills in satellite images. In a recent paper, Kubat et al [62], describe the design
and implementation of a system for detecting oil spills in satellite radar images. The problem
involved early detection of oil spills at sea, thus enabling action to be taken to prevent possible
ecological damage from pollution. However, there was a considerable cost involved in sending
aircraft to verify that an oil spill existed, hence a trade off resulted between the benefits of max-
imising early detection and the cost of a false positive. A classification system was produced,
and described by an

��� �
, from which a user could select a desired operating point.

“ We decided that in the version of the system that will be delivered to end users
there will not be a preprogrammed way of condensing the

��� �
curve to a single

performance measure. Instead, the user will be able to move along the curve and
choose the point that best meets his/her current needs. This is typical of fielded
systems. The user needs to be able to tune the system’s behaviour so as to trade off
various conflicting needs.” Kubat, Holte and Matwin[62].

4.3 Wrappers and variable cost problems

We have seen specific design examples where the operating costs of a classification system are
not known at the time of system design. Despite not knowing the eventual operating costs, fea-
ture selection and classifier training must still be carried out. In this situation, feature selection
is normally executed with reference to a single fixed cost function, typically classification accu-
racy.3 Subsequent to feature selection and training, such systems may operate in variable cost
domains, such as those described in the previous section. The second of the questions posed at
the start of this chapter is now considered:

Question 4 What are the implications of variable costs when carrying out feature subset selection with
the wrapper algorithms?

A wrapper will select a single feature set to use in the construction of a classification system. I
will show empirically that the

��� �
curve of the classification system produced using such a

3Also called error rate and zero-one loss.
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feature set is not dominant across all operating conditions. Furthermore, I will demonstrate that
a wrapper may reject feature sets that produce systems that are superior, for some operating
conditions, to the final system.

The implication of this is that wrappers will produce unpredictable results in variable cost do-
mains.4 The designer of a classification system is therefore presented with a dilemma: feature
selection is required, but the methods available were not constructed for variable cost domains,
and so assurances cannot be given that the best available system is being designed. Such an as-
surance can only be made about a system operating at the costs for which the wrapper objective
function was optimised.

The designer might try to answer this dilemma by modifying the wrapper objective function,
making it more suitable for variable cost problems. In this vein, Lovell et al[67] attempted to
maximise the ��� ����� as the objective function of a feature selection wrapper. However, as
pointed out by Hand[45], the � � ��� � is a drastic simplification of the information conveyed
by an

��� �
. A comparison between two curves on the basis of area gives no indication of

whether the curves cross, which is precisely the situation we wish to avoid.

In the next section I will show that neither the use of accuracy nor � � ��� � as a wrapper
objective produces systems that are superior over all operating conditions.

4.4 Empirical results

Current wrapper methods, whether they employ accuracy or � � ����� , are inappropriate in
variable cost domains. It is being assumed implicitly that the feature set which produced the
best classifier for the fixed costs used by the wrapper, will also produce the best classifier for
other costs. While it is not clear that this is necessarily always untrue, intuitively the assumption
does not seem reasonable. This assumption is tested here, for wrappers using accuracy and
� � ��� � objectives, and shown to be incorrect for the problems examined.

By examining two real world problems, using wrapper algorithms, I will illustrate the effects
of variable operating conditions, and provide results with which we might answer the third
question posed in this chapter:

Question 5 Is it possible, using the wrapper algorithms we have seen, to find a single feature set that
that performs well across multiple costs?

4.4.1 A wrapper with an accuracy based objective

The first test was to examine accuracy based wrappers. The results of applying a sequential
forwards floating selection ( ��� ��� ) algorithm to the Grey and BrodSat problems were examined.

4It is also clear that filter algorithms will also face these problems, as a fixed cost function is also assumed.
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� �	��
 BrodSat
� � � � � ��� �
� � � � � � � ����������� �
� � � � � � � � � �
� � � � � � �
��� �	��
 �	��� �

Table 4.1: The feature sets considered by a � ����� wrapper using an accuracy objective criterion,
applied to the � ��� 
 and 
���� ������� data sets. The sets eventually selected are in bold-face type,
the other sets were considered but rejected by the wrapper.

In each case, a sequence of feature subsets had been considered during the operation of ������� ,
these are given in Table 4.1.

Each of these feature sets was used to train a classification algorithm, and an
�����

curve pro-
duced for each resulting classification system. Following the experimental methodology de-
tailed in Chapter 2, a hold-out data set was used to calculate the

�����
curves. For each prob-

lem, the hold-out
�����

curves were plotted together to see if overlap occurred. A problem
will occur for the designer if the classification system

��� �
curve for the selected feature set is

crossed by the curve produced using a rejected set.

In both the ���	��
 and the 
���� � ����� problems, the
�����

curves of the classification systems
trained with rejected subsets crossed the

�����
curve of the system trained using the final subset

(see Figures 4.3 4.4 and ). In the case of the 
������ ��� � problem, this crossing does not appear
severe, it is nevertheless problematic. At the points where the curves cross and touch, the
operating performance is similar, and it might be argued that simply picking the generally
more dominant curve is the correct option, in this case. However, should the system eventually
operate at these points, that would mean that we had selected a classification system twice as
complex as was needed: it would use two features when one would suffice.

4.4.2 A wrapper with an 
�������� objective.

Lovell et al [67] account for variable operating costs by attempting to maximise the ��� �����

rather than accuracy, when carrying out feature selection. It was decided to test the results of
this wrapper for crossing

��� �
curves. A wrapper which used a naive Bayes classification al-

gorithm and an ��� ����� based objective function was applied to the 
������ ��� � problem. Using
a � ��� search algorithm, a feature set was chosen that maximised the � � ��� � on a validation
data set. The feature sets considered by the wrapper are given in Table 4.2.
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Figure 4.3: The five feature subset
�����

s in the � �	��
 problem. The
�����

curves cross indicating
that no system is dominant over all operating conditions.
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Figure 4.4: The two feature subset
�����

s in the 
���� � � � � � problem. The
�����

curves cross
indicating that no system is dominant over all operating conditions.

As in the previous tests,
�����

curves were calculated using hold-out data sets, for classification
systems trained with each of the feature sets in Table 4.2. The curves are plotted in Figure 4.5.
It can be seen that the problem of crossing

��� �
curves has not been avoided by maximising

the � � ��� � rather than accuracy in the wrapper objective function.

4.5 Conclusions

This chapter answered three questions; the first by giving real world examples, the others with
empirical results.

Question 3 Is it likely that variable misclassification costs might be encountered in practice?

Question 4 What are the implications of variable costs when carrying out feature subset selection?

Question 5 Is it possible, using the wrapper algorithms we have seen, to find a single feature set that
that performs well across multiple costs?
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���� � �����
� ��� �
� � � � ��� �
� � � � � � ��� �
��� ��� � ����� ����� �

Table 4.2: The feature sets considered by a ������� wrapper using an � � ����� objective crite-
rion, applied to the 
������������ data set. The set in bold-face was selected by the wrapper, the
remainder were considered, but rejected.

Through real world examples of classification system design, we have seen that variable oper-
ating conditions arise not only as a result of undetermined misclassification costs, but also as a
requirement in the design specifications.

The results of carrying out feature selection with a wrapper algorithm were then examined.
Two types of wrapper objective function were used: one maximising classification accuracy,
the other maximising � � ����� . For two real world problems, it was shown that variable costs
could lead to unpredictable, and undesirable behaviour from the wrapper, regardless of the
objective function used. A single feature set, producing a generally dominant

�����
curve,

could not be discovered for either of the classification problems considered.

Based on the examples and results presented in this chapter, we can conclude that there exist
design problems for which we

1. must carry out feature selection;

2. cannot specify the operating conditions a priori;

3. cannot find a single feature set, producing a classification system with a dominant
�����

curve, using the ��� ��� wrapper.

These conclusions raise the following question:

Question 6 If we cannot find a suitable single feature subset for designing a particular classification
system, what might we do about this?

In the rest of this report, I will develop a novel algorithm for carrying out feature selection;
one that is robust to variable operating conditions, and that is not limited to selecting a single
feature set. In the next chapter, a new technique for combining distinct classifiers is presented,
allowing the utilisation of multiple feature sets. This leads, in Chapter 6, to the Parcel algorithm
for feature selection in variable cost domains.
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Chapter 5

The maximum realisable
� � �

5.1 Introduction

When applied in variable cost domains, wrapper feature selection algorithms can produce un-
satisfactory results. Essentially, each feature subset considered by the wrapper represents a
classification system. In order to pick the “best” feature subset, the wrapper decides which
classification system is the “best”. In the light of the results of Chapter 4, we have posed the
question:

Question 6 If we cannot find a suitable single feature subset for designing a particular classification
system, what might we do about this?

This chapter addresses the issue arising when the
�����

curves of two or more candidate clas-
sification systems cross: that of choosing the “best” system. It will be shown that, in this sit-
uation, no single system can be said to be superior to the others. Rather, a system made by
combining the best aspects of the originals should be formed, this being generally superior to
any of the original individual systems.

The chapter opens by describing in detail the problem of determining the “best” classification
system when the

�����
curves of the candidates cross. Next, a novel technique for combining

classifiers is proposed, and a related theorem proved. This technique leads to a method for
combining two or more classification systems. For all false positive rates, the resulting combi-
nation system is as good as, or better than, all of the originals, in terms of true positive rates.
The chapter concludes with empirical results from both artificial and real world problems, and
a discussion on the applicability of this method in practice.
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5.2 Choosing the “best” classification system

During the design of a classification system, a number of candidate systems may be considered,
and it is the goal of the design process to choose the system that is, in some sense, the “best”
of those available. This section will illustrate that this goal is not, in many practical situations,
achieved. It would be incorrect to interpret the “best” system as meaning “the dominant single
system from the set of existing systems”. We will show that a truly “best” system will be com-
prised of elements of a number of existing systems, instead of just one, and a simple method for
producing such a composite system will be described. We will then indicate that it is possible
to produce more sophisticated composite systems by the application of a novel technique for
combining classifiers. The rest of this Chapter will be devoted to the description of these more
sophisticated systems.

In Chapter 3 we reviewed the literature concerning a feature selection framework, the wrapper,
that selects the candidate system (and thus a feature set) that maximises classification accuracy
(or some related function of misclassification costs). Then, in Chapter 4, variable or unde-
fined operating costs were introduced. The Neyman Pearson criterion (a maximum allowable
false positive rate) was defined, and it was shown that this criterion could be imposed during
operation, to choose a classifier from the

�����
curve of a classification system. It was also

stated that, due to changing practical constraints during operation, the Neyman Pearson cri-
teria might change, and in this event an alternative classifier would be chosen from the

��� �
,

using the new maximum false positive rate.

In a real world example,
��� �

curves were used to analyse the performance of the candidate
systems being considered by a wrapper. It was shown that the curve of the chosen system
and those of the rejected systems crossed at various points. Although the wrapper selected the
“best” system for

� � �
loss, it is clear that, for various Neyman Pearson criterion, the chosen

system might not be the best available (see Figure 5.1 for an example of this). Furthermore,
it was shown that using the area under the

��� �
( � � ����� ) as a performance criteria did not

remedy the problem. The wrapper, using the ��� ����� , still selected a system whose
�����

curve was crossed by those of rejected systems. The underlying problem can be stated as so:

If two or more classification systems are being considered, the
��� �

curves of which
cross, then this indicates that no single system is superior, in terms of true positive
rates, to the others across the entire range of possible false positive rates. Instead,
one system may be superior for some subset of operating conditions, and others
superior for those remaining. Therefore, it is not possible, in this circumstance, to
pick a single “best” classification system from those available; “best” implies that
there is no false positive rate for which an alternative system would have a higher
true positive rate, i.e. a “best”

�����
curve encloses all others.

This problem makes the use of unqualified summary metrics, such as the � � ��� � (the Wilcoxon
statistic), less desirable. A single measure tends to suggest the selection of a single superior
classification system. Indeed, the ��� ����� is widely used to select classification systems in
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Figure 5.1: The problem of selecting a single “best” classifier. System � has a larger area than
system

�
, and might be chosen as the “best” system using the � � ����� as a selection criteria.

The problem is illustrated by imposing two Neyman Pearson criteria, � �
and ��� . � �

allows
for a maximum false positive rate of

�������
, and ��� a rate of

��� � � . It can be seen that under ��� ,
a classifier should indeed be chosen from system � . However, under � �

, a classifier should
be chosen from system

�
, as it would significantly outperform a corresponding classifier from

system � .

practical applications. Often the implication is that the chosen system is superior, over all op-
erating conditions, when compared to the available alternatives. However, if the

��� �
curves

cross, a judgement regarding the overall superiority of one system should be qualified with
this information. This qualification could prove crucial, as at some point a Neyman Pearson
criterion might be imposed for which the chosen system is not the best available.

In the experiments of the previous chapter, we saw the
��� �

curves of multiple classification
systems crossing. One system was chosen as superior to the others by the wrapper algorithm,
but no qualification was given indicating the operating conditions (Neyman Pearson criteria)
for which the chosen system was superior. In real world problem domains, such as medical
diagnosis, small improvements in true positive rate can, literally, be the difference between life
and death. The task then, will be to build into the design process a method by which the best
true positive rates are always obtained for each false positive rate.

There exists a simple solution to the above problem: during design, locate the points at which
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Figure 5.2: The bumpy
�����

curve formed by taking the dominant sections of the existing
curves and forming a composite system with them.

curves cross, and, when operating between two such points, select a classifier from the sys-
tem that produces the uppermost (i.e. higher true positive rate) curve. This would, in effect,
produce a composite classification system. This composite system would have a bumpy

�����

curve, composed of sections of curve from different systems (see Figure 5.2).

Using Neyman Pearson criteria, classifiers could now be selected from this composite curve.
In this Chapter, we propose a more sophisticated solution that will guarantee to be at least as
good as, if not better than the bumpy composite solution. In the next section, a novel technique
for combining classifiers using randomised decision rules is proposed. This will lead to a clas-
sification system whose

��� �
curve is the convex hull over all the existing

�����
curves. Given

the available systems, this curve, called the maximum realisable
�����

(
� ����� �

), represents a
system that is equal to, or better than, all the existing systems, for all Neyman Pearson criteria.

5.3 Classifier combination

In this section a novel technique for combining classifiers is proposed, and a related theorem
proved. This technique will allow the construct of composite classification systems, leading to
the
���������

.
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We think of an
�����

curve as representing a set of points in a
�����

space. A point � ����� � � ��� �
represents an existing classifier � , that classifier producing a false positive with a probability
� � �����	��

� ����� 

���
���	��� � ��� � , and a true positive with probability � � ��������� ����� 

���
���	� � � � � � .
Take two classifiers, ��� and ��
 , each with distinct false positive and true positive rates. These
two classifiers are the end points of a straight line in

�����
space, � � 
 . The line � � 
 defines a

set of classifiers, i.e. point � ��� ��� � � � ��� � ��� � 
 represents the classifier that would produce those
true-positive and false-positive rates.

We observe in this chapter, that, given only ��� and ��
 , one may realise the output of classifier ���
by randomly choosing between the output of ��� and ��
 . The probability of choosing the output
of ��� over that of ��
 is determined by the distance along � � 
 between � � and ��� .

This technique has parallels in classical statistics.1 When estimating the power of a hypothesis
test, the sample space of which has discrete probabilities, randomised decision rules could be
employed. This allowed the estimation of specific power2 values, even when an observed es-
timate was unavailable [37, 101] The use of randomised decision rules had been adapted from
statistical game theory, where it was known that, given a number of discrete outcomes in a loss
space, all the points in the convex hull over the existing loss points could be achieved via ran-
dom decision strategies. To apply these methods, the hypothesis test was cast as a two player
game. As power values are now easily computable to high precision, estimation techniques
involving randomised decision rules are all but defunct, and are seldom even mentioned in
modern statistical texts.

Theorem 1 The realisable classifier. Two existing classifiers, � � and ��
 , produce true positive and false
positive rates � � � � � ��� � � and � � � 
 � ��� 
 � respectively for a series of � inputs � � � � � � . In a � dimensional
plot of false positive rate against true positive (

�����
space), call the straight line linking � ��� � � � � � � and

� ��� 
 � � � 
 ��� � 
 .
Any point � ��� ��� � � � � on � � 
 corresponds to the point that would be produced by a classifier ��� . Call the
set of classifiers corresponding to 
 points on � � 
 , � � � � �
	 � � � � � � �
	 
 � .
Given ��� and ��
 , the output of a realisable classifier, ���
	 � � � , for any input � % , is a random variable that
assumes the output of one or other of � � and ��
 with probability

� � � � �
	 ����� ��� ��
 ��� ��� �
��� � ��! " � ��� ���� 
 � ��� �

� � � � �
	 ����� ��� ������� ��� � � � � � � � �
	 � ��� � � ��
 ��� ��� �

where
��� � �#! "

is the false positive rate of ���
	 � .

1The author would like to thank Dr. David Spiegelhalter for first indicating this parallel.
2The power of a statistical hypothesis test is the probability of rejecting the null hypothesis when it is false.

In terms of a medical test, the null hypothesis states that the patient is healthy, therefore the power of a test is
equivalent to the true-positive rate.
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Figure 5.3: An example of a realisable classifier. The point � �
	 � on the line joining � � and ��
 may
be realised by the application of Theorem 1

The proof of Theorem 1 is straightforward. To construct the output of a realisable classifier � �
	 �
with false positive rate

��� � �#! "
, randomly select between the outputs of ��� and ��
 with the given

probability. The expected false positive rate produced by doing so is

��� ����� � � � � � �
	 � ��� ��� � 
 ��� ����� ��� 
 � � � � � �
	 � ��� ��� ������� ����� ��� �
�

��� � ��! " � ��� ���� 
 � ��� � � ��� 
�� � � �
��� � �#! " � ��� ���� 
 � ��� � ��� ��� �

�
��� 
 � ��� � ��! " � ��� � ��� ��� � � ��� � " � ��� � � � ��� � � ��� 
 � ��� � ���� 
 � ��� �

� � ��� 
 � ��� � � � ����� �#! " � ��� � � � ��� � � ��� 
 � ��� � ���� 
 � ��� �
� ��� � ��! "	� � � � � �

And similarly for the true positive rate.

Figure 5.3 illustrates an example of a realisable classifier. The realisable classifier � �
	 � , with false
positive rate

��� � �#! " � ��� � , lies on the line between classifiers ��� and ��
 , with false positive rates��� � � ��� �
, and

��� 
 � ��� �
respectively. To realise the output of ���
	 � , calculate the probabilities for
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selecting the outputs of the existing classifiers using Theorem 1,

� � � � �
	 ����� ��� ��
 ��� ��� �
��� � �#! " � ��� ���� 
 � ��� �

�
��� � � ��� �
��� � � ��� �

� ��� �
� � � � �
	 ����� ��� ��� ��� ��� � � � � � � � �
	 ����� ��� ��
 ��� ���

� ��� � �

To obtain the classification output of � �
	 � on a set of unseen cases, � � ��� � � � � ��� 
 � , the classifica-
tions of ��� and ��
 would be calculated

������� ��� ����� � � ��� �	� � 
�� � ������� � ��� �	� � 
�� � ������	 ��
 �
� ����� � � � � ����� 
 � ��� �	� ��

� ���
� 
 ��� ��� ����� � ��
 �
� ����� � ������� � ��� �	� ��
�� � ������	 � ��� �	� ��
�� � � � � ����� 
 ��
 �
� ����� ��� �

Using the probabilities calculated above, the output of ���
	 � is then determined by randomly
selecting one of the outputs, like so:

� �
	 ����� ��� ��� ��� ��� � ��� ��� �	� ��

� � ��� � 
 ������� � ��� �	� ��
�� � ��� � � ����	�� ��
 �
� ����� � � � � ��� ��
���� 
 � ��
 �
� ����� ���

5.4 The maximum realisable
�����

We can now realise all classifiers that lie on straight line segments with end points formed
by existing classifiers. What advantage can be gained by this? Take the example3 illustrated
in Figure 5.4. The

��� �
is produced using a linear model on the

�
dimensional classification

problem shown. The steps in the
�����

occur because the linear model cannot capture the multi
modal nature of the data.

We currently have a set of classifiers provided by the linear model. The current
��� �

curve
is produced by this set, and can be used to select the best available classifier for a particular
false positive rate. It is possible, however, to obtain a new set of classifiers that will give better
performance, in terms of true positive rates, than those provided by the linear model.

Calculate a convex hull [85] such that it contains all the points on the current
��� �

. The vertex
points of the convex hull will be points corresponding to existing classifiers generated by the
linear model. We know from Theorem 1 that all the points on a facet of the hull (i.e. on a
straight line between two vertices) represent realisable classifiers.

The convex hull represents a set of realisable classifiers that will at all times be either equal or
superior to those of the linear model (with respect to Neyman Pearson criteria), and that are
generated by a subset of the original classifiers. The convex hull is the maximum realisable
�����

(
� ����� �

) given the available existing classifiers.
3The example given in Figure 5.4 is a deliberately extreme one, designed to illustrate clearly the effects of the

realisable classifier theorem.
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Figure 5.4: An example of � class multi modal data. Due to the nature of the data, accurate
classification with a linear classification system will be difficult.

5.5 Empirical results

The results of two experiments are presented here. The first experiment was carried out to
demonstrate estimation of the

���������
in practice. The experiment had two parts; one dealing

with artificial data, the other with a real world medical dataset. The results show that, not only
is the estimation of the

���������
a valuable tool in the design of a classification system, but

that it is also easily achievable. The second experiment looks at the results of the the wrapper
algorithm presented in Chapter 4. Taking the logical step of applying the realisable classifier
theorem to these results achieves a

���������
that is larger than any of the constituent curves,

and reproducible on an unseen data set.

5.5.1 Experiment 1

5.5.1.1 Objectives

The objective of this experiment was to verify empirically that application of the realisable clas-
sifier theorem could lead to achievable

� ����� �
curves on novel data. In the first part of the
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Figure 5.5: The
��� �

curve produced by varying the threshold on the output of a linear model
of the multi modal data shown. The

�����
has a step like appearance because the linear model

fails to capture the nature of the data.

experiment, an artificial data set is used with a linear classifier. This data is designed to exhibit
clearly the non-convexity required for the realisable classifier theorem to be appropriate. In the
second part of the experiment, two linear classifiers are applied to a real world medical data
set. The

�����
curves of both systems cross, indicating that neither is superior for all costs.

This data set was used to demonstrate that an
���������

curve predicted on a real dataset was
achievable on novel data.

5.5.1.2 Part 1: Artificial data

Data Multi modal data was generated for the one dimensional, two class classification prob-
lem of Figure 5.3. A linear model was trained using

�������
training examples. By varying the

threshold used on the output of the model when presented with
�������

validation cases, the
�����

curve of Figure 5.3 was obtained. The true-positive rate was the rate of correct classifications
of class

�
, the false-positive rate was the rate of cases of class � being incorrectly classified as

belonging to class
�
.
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Figure 5.6: The convex hull containing the
�����

of a linear model is found. This hull is the
���������

of the set of realisable classifiers produced from the set of existing linear classifiers.

Results Using the quickhull algorithm [8], the convex hull containing all the points in the
��� �

was obtained. Each vertex in the hull represented an existing classifier. Each of these
existing classifiers was defined by the threshold used, on the output of the linear model, to
yield a final classification for each validation case. It was required to show that all the points
on the facets of the convex hull, corresponding to classifiers that were not currently available,
could be realised by application of Theorem 1 of this paper to the set of vertex classifiers. The
���������

indicates the expected performance, over the complete range of false positive rates,
that one might hope to achieve using this approach.

Figure 5.4 plots the
���������

over the
�����

of the linear model on the validation data.

To show empirically that the characteristic curve indicated by the
���������

could actually be
obtained, a third data set of

�������
hold-out cases was generated. This hold-out data was pro-

cessed by the linear model. The thresholds corresponding to the existing classifiers in the con-
vex hull were each applied to the outputs of the linear model, producing a number of sets of
classifications. For any point on a facet of the hull, a classification for an individual hold-out
case could be obtained by randomly selecting one of the classifications made by the two exist-
ing classifiers at the end points of the facet. As described above, this methodology leads to the
realisation of the set of classifiers on the facets of the hull.
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Figure 5.7: The
���������

plotted for the hold-out data set. The
���������

is consistent with that
predicted.

Figure 5.5 plots, for the hold-out data set, the
��� �

of the
� ����� �

realisable classifiers against
the
�����

of the linear model. It can be seen that the set of realisable classifiers produce an
��� �

consistent with the
���������

, and superior to the
�����

of the linear model. The
� ����� �

appears slightly jagged. This is entirely consistent with the nature of the classifiers used to form
it. The classifiers are random variables, whose central tendency will be to lie on the

���������
.

5.5.1.3 Part 2: Thyroid data

Data A medical data set describing patients with abnormal thyroid conditions was obtained
from the UCI machine learning repository [72] (see Thyroid classification problem, Chapter 2).
The data originally contained + � ��� instances, with

�
possible classes, hyperthyroid, hypothyroid,

and normal, and � � features. In this experiment, the classes were merged to form � : Adverse
and Benign. The data was randomly split into

�
data sets; a training set with

�������
instances, a

validation set with
� + ��� instances, and a hold-out with

� + ��� instances.

Results Two classification systems were made, System 1 and System 2, using a simple linear
model trained with a single feature to describe the data. The plot in Figure 5.8 shows the

�����
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curves for both classification systems using the validation data set to calculate the true and
false positive rates (note that the curves cross). The plot in Figure 5.9 shows the

� ����� �

predicted by the convex hull containing the Validation
��� �

curves. The vertex points on
the hull corresponded to existing classifiers. It was required to show that all the points on
the convex hull were realisable classifiers (by Theorem 1) and could be achieved in practice,
resulting in the

� ����� �
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

system 1
system 2

Figure 5.8: The
��� �

curves of two abnormal thyroid classification systems cross.

The
��� �

curves for both of the original systems, and for the set of realisable classifiers on the
hull are plotted for the hold-out data in Figure 5.10. The

� ����� �
produced by application

of Theorem 1 is consistent with that predicted, indicating that the
���������

is achievable in
practice.

5.5.2 Experiment 2

5.5.2.1 Objectives

The Grey classification problem is revisited. It was the objective of this experiment to show
the utility of applying the realisable classifier theorem in a feature selection problem, using a real
world dataset.
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Figure 5.9: The convex hull over both original
��� �

curves. This is the predicted
� ����� �

.

In Chapter 4 an experiment using the Grey data was carried out. It was shown that the clas-
sification system produced using a feature subset selected by a wrapper algorithm was not
superior over all Neyman Pearson criteria to those subsets that had been rejected on the ba-
sis of performance at

� � �
loss. In this experiment, the logical step of applying the realisable

classifier theorem to the results of the ������� wrapper algorithm was taken. The goal is to keep
the best operating points produced by each of the five feature sets considered by the wrapper
(see Chapter 5.4), and then create a

� ����� �
. It is required to show that the system produced

using the
���������

is superior or, at worst, equal in performance, across all Neyman Pearson
criteria, to the system produced by the wrapper.

5.5.2.2 Data

The data used for this experiment was the Grey classification data, described in Chapter 2, and
used in the experiments of Chapters 4.
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Figure 5.10: The
� ����� �

plotted for the hold-out data set. The
� ����� �

is consistent with
that predicated by the convex hull over the validation data

�����
curves. The

�����
curves for

System 1 and System 2 using the hold-out data are plotted for comparison with the
���������

.

5.5.2.3 Results

Using the training and validation data sets, the
�����

curves for the classification systems corre-
sponding to each of the

�
feature subsets were evaluated, Figure 5.11. It can be seen that when

the costs vary from error rate, no single feature set produces a superior classification system.
The

���������
was predicted by fitting the convex hull over the

�
curves. The classifiers at each

vertex were saved.

In Figure 5.12 the
��� �

curves for the five classification systems and the
���������

on the hold-
out data set are presented. The

� ����� �
obtained by application of the realisable classifier the-

orem on the hold-out data is consistent with that predicted by the
���������

on the validation
data, and is the dominant curve when compared to any of the individual systems.
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5.6 Conclusions

This technique for realising novel operating points given a set of existing classifiers and the
�����

formed by them has implications for designers of classification systems in domains where
Neyman Pearson operating criteria may vary or not be known a priori. It has been shown
theoretically that an enhanced

�����
curve, the

���������
, can be achieved by application of the

realisable classifier theorem, and empirical results provided, on both artificial and real world data,
to show the effect in practice. Given two

�����
curves that cross, the

� ����� �
produced using

both will be superior to either alone, and may realise operating points that were previously
unavailable.

In Experiment 1 (Section 5.5.1), on multi modal artificial data, the realisable classifiers lying
on the facets of the convex hull represent classifiers that are not possible to obtain with the
original linear classification system. The increased range of possible classifiers is not obtained
at the expense of clarity or simplicity, nor does it require some degree of expert knowledge to
be teased out of the system. The gain is obtained by a clear and simple analysis of the currently
available system (via the

�����
), and the utilisation of the information acquired by that analysis.

The realisable classifier theorem essentially constructs randomised decision rules based on infor-
mation obtained from the

��� �
. Randomised decision rules have not been widely used in

problem domains such as medical decision making. We are proposing the application of such
rules under the operating constraints faced in many real world domains: given a maximum
allowable false positive rate, what is the best possible true positive rate attainable? For ran-
domised decision rules in general, Berger [11] notes:

There are reasons for studying randomised decision rules other than their useful-
ness in situations involving intelligent opponents. If it is desired to use a classical
procedure with certain fixed error probabilities (say to fulfill contractual obliga-
tions), randomised rules may be necessary.

Experiments on the Thyroid and Grey classification problems indicate that this method is both
applicable and feasible in real world applications such as feature selection. We are therefore
able to provide an answer to

Question 6 If we cannot find a suitable single feature subset for designing a particular classification
system, what might we do about this?

The realisable classifier theorem will allow us to modify the results of existing feature selection
algorithms, combining multiple feature sets to produce classification systems that are robust in
problem domains for which operating constraints may vary. However, in the next chapter we
will see that this is not the end of the story. We will show how the realisable classifier theorem,
and the

���������
systems it can produce, can be used to form an objective function for a novel

feature subset selection algorithm Parcel. Parcel is designed to selects multiple feature subsets,
rather than just one, with the goal of producing classification systems that have the highest
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possible true-positive rates for all Neyman Pearson criteria. Empirical results will show that
Parcel produces systems superior to those produced by a ������� wrapper in five of the seven
real world problems examined.
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Figure 5.11: Top: the
�����

curves for the five feature subsets produced using the validation
data. Bottom: the

� ����� �
obtained using the validation

��� �
s
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curves for the five feature subsets produced using the hold-out
data. Bottom: the
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obtained on the hold-out data, by application of Theorem 1 to the

existing classifiers found at the vertices of the validation data
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.
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Chapter 6

Parcel

6.1 Introduction

Question 6 If we cannot find a suitable single feature subset for designing a particular classification
system, what might we do about this?

In Chapter 4 we saw the effect on the feature selection process of varying misclassification costs:
the single feature set selected by a ������� wrapper did not produce a superior system across all
costs. Empirical results suggested that, in cases where costs might vary, one would require a
classification system that employed multiple feature sets. Chapter 5 saw the introduction of the
realisable classifier theorem, which allowed classifiers using distinct feature sets to be combined,
hence the maximum realisable

��� �
(
� ����� �

) was obtained. A real world example showed
that the results of a ��� ��� algorithm could be adapted with the realisable classifier theorem, re-
taining more than one feature set, and so produce a classification system that was robust to
variable operating conditions. By adapting the ����� � wrapper in this manner, a solution for
Question 6was provided. However, this did not seem very satisfactory: intuitively it was felt
that a more elegant solution could be engineered by considering variable cost criteria when de-
signing the actual feature selection algorithm, rather than attempting an a posteriori adaptation
of an existing algorithm.

In this chapter, we go beyond the modification of existing algorithms, rendering them suit-
able for variable operating conditions. A novel feature selection algorithm is presented, Parcel,
which specifically caters for the design of classification systems in variable cost domains; i.e.
those for which variable Neyman Pearson criteria1 will be used to select an operating classifier.
Rather than selecting one feature set, with reference to one set of costs, Parcel may select mul-
tiple feature sets with the aim of providing the best available true-positive rate for all possible
Neyman Pearson criteria.

In the next section, an objective function is defined for feature selection in variable cost do-
1Where the Neyman Pearson criteria will specify the highest allowable false-positive rate.
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mains. The Parcel algorithm, which attempts to satisfy this function, is then described. A de-
scription of an implementation of Parcel is given, and the results of its application to the Grey
classification task are presented in detail, illustrating clearly the operation of the algorithm.
Subsequently, Parcel is applied to the seven classification tasks described in Chapter 2, and
the results produced by Parcel are compared to those produced by a SFFS wrapper. The em-
pirical results suggest that the classification systems produced by Parcel are superior to those
produced by � ����� . Given that Parcel selects multiple subsets, it is logical to consider what
would happen were these subsets simply combined. A further set of empirical results suggest
that, although the systems produced by such combinations are at times similar in performance
to the Parcel systems, they are more complex, using larger feature sets. Therefore, in terms of
feature selection, these combined systems are less desirable.

6.2 A novel feature selection objective criterion

We saw in the previous chapter that the
���������

is achieved by taking the convex hull over
all existing

��� �
s for a given classification problem. By retaining the classifiers found at each

vertex and applying the realisable classifier theorem, all points on the hull can be obtained in
practice. All the operating points on the facets of the hull, i.e. the points on the

���������
, are

achievable by application of the realisable classifier theorem (see also Scott et al[99]).

A
� ����� �

is defined by a set of vertices, or points in
�����

space. A vertex is defined by the
classifiers and associated parameters producing it:

� ����� � � ����� ��� � � � � � � ��� � ��� � � � � � � � � � ��� � ��� � 
 � � 
 ��� �

A classifier, ��� ��� � � � � , produces a point in
�����

space, i.e. a false- and true-positive rate � ��� � � � � .
Three elements are required: a labelled dataset � , which contains both a training and validation
set, a binary feature mask

�
, defining which features in � to use, and a threshold � , to use for

making classifications. The algorithm employs the training data in � to train a classification
system. Only the features in � that have a ’

�
’ in the corresponding bit of the feature mask are

used.

Once a system has been trained, the examples in the validation data of � are mapped by the
classification system to various real numbers in some interval. Hard classifications are made
on each validation example by using the threshold � on the output of the classification system.

As � is a labelled dataset, the true and false positive rate of the classification algorithm on the
validation data can be calculated. A

��� �
curve can be generated for a particular classification

paradigm (for example, a neural network), and a given feature set, by estimating the true- and
false-positive rates for all � (or some reasonable set of values, that results in both rates ranging
between zero and one).

By definition, the
� ����� �

has the largest area of all
�����

s considered, as it wholly contains
all the

��� �
s considered. The Scott-Niranjan-Prager ( � � � )2 objective criterion can now be

2For want of a meaningless three letter acronym ( ����	 ), author names were used.
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stated for any system seeking to maximise true-positive rates across all false-positive rates, or
Neyman Pearson criteria:

Objective 1 Scott-Niranjan-Prager objective criterion. Seek individual classifiers that create points
outside the known

� ����� �
. Incorporating these points into the

���������
will increase the Wilcoxon

statistic, or area under the curve, for the system as a whole. It is guaranteed that, for any false-positive
rate, the true-positive rate of the updated system is equal to, or greater than, that of the previous system.

A feature selection algorithm can be driven using this objective criterion. Feature subsets that
produce classifiers that lie outside the currently known

���������
are saved (along with the

classifier and threshold used to produce the new point). Such a system preserves the intuitive
properties of using the � � ��� � , although the simplicity of selecting a single best subset of
features is lost. This however, is not necessarily a failing, as in real world problems it may not
be possible to discover a single subset of features that will produce the best performance over
all costs. Seeking such a single subset may be an unrealistic goal, and may, as with the Grey
and BrodSat classification problems in Chapter 4, lead to poor results across the entire range of
operating costs. Parcel is described below, and provides a novel solution to Question 6

Question 6 If we cannot find a suitable single feature subset for designing a particular classification
system, what might we do about this?

6.3 Algorithm description

It is the objective of the Parcel algorithm to produce a
� ����� �

that has the largest possible area
underneath it, i.e. to maximise the Wilcoxon statistic associated with the classification system
defined by the

���������
.

This is achieved by searching for, and retaining, those classifiers that extend the convex hull
defined by the

���������
. It is not necessary to keep

�����
points (classifiers) that lie within the

hull, as these will at all times, and for all costs, be sub optimal to those that lie on the surface of
the hull. The Parcel algorithm has two components with which to achieve its objective:

1. a classification algorithm, ��� � � � ��� � � ��� , and

2. a search strategy,
� � ��� � ��� � � � ����� � �
	�� � � ����������
����

.

The classification algorithm is the set of rules or methods that produce classifiers for a given
set of parameters � ��� � � ��� .
The search strategy component,

� � ��� � ������� �����������
	��
), defines the manner in which classifiers

that improve the
� ����� �

are sought. As parameters it also takes the data � , and a feature
mask

�
. In addition, it takes a classification algorithm ��� , and a

���������
, which, during
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searching, is denoted
�����������
	��

. This is the best
� ����� �

currently known: it is the task of
the search strategy to improve upon it.

The search strategy is initialised with the feature mask
�

, and generates one or more new fea-
ture masks,

� � , derived from the original
�

. For each new feature mask
� � , a

�����
curve,

��� � � ,
with 
 points, is generated by creating 
 classifiers ��� ��� � ��� � % � , varying � % through a range of
thresholds, � % � � � � � � � � 
 � , as described above.

A point on
��� � � , � ��� � � � � � � , is defined by, and stored as, the classifier that produced it: ��� � � � � � � % � .

All the points from each
��� � � are combined together with the points in

� ����� � �
	��
, produc-

ing a large set of points,
�

, in
�����

space.

A convex hull is formed over
�

, and the points corresponding to the vertices of this hull are
saved. The hull is

� ����� � 
����
. If

��������� 
���� �� ��������� �
	�� �

then, by definition,

��������� �
	���� � ����� � 
���� �

This means that the convex hull,
��������� � 	��

, has been improved, and
� ����� � 
����

should be
returned as a superior curve to

��������� �
	��
. If the new

� ����� �
contains the old, then it has,

by definition, a larger area beneath it. As the area beneath the curve equates to the Wilcoxon
statistic, which we desire to maximise, and the curves do not cross, the new curve is superior
to the old. Searching should now continue, using the feature masks contained in the updated
��������� 
����

. If, on the other hand,

��������� 
���� � ��������� �
	�� �

then
� � ��� � ��� � � ��������� �
	�� � has failed to find any classifiers that lie outside

��������� �
	��
, and

searching stops. Thus the Parcel algorithm can be summarised as so:

1. � ��� ��� ��� � ��� ��� � � � � ��� ��� � � � ����� � �
	��
� � ��� ��� � ��� ��� ��� ��� �����������
	�� � � ��������� 
����

2. if
� ����� ���
	�� � ��������� 
���� stop Parcel

3.
� ����� ���
	��	� � ����� � 
����

4. goto
�
.

Figure 6.1 illustrates the operation of Parcel.
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Figure 6.1: Two cycles of the operation of Parcel. The objective is to find a
���������

for a prob-
lem with a data set described by the features � ������� ��� . I.The

��� �
curves produced using a

single feature. The
� ����� � �
	��

is the diagonal. II. The convex hull,
����������
����

, over the
curves has five vertices. Two use feature subset ����� , and three use � ��� . ��������� 
���� differs
from

�����������
	��
, indicating that the SNP objective criterion is satisfied, so the algorithm pro-

ceeds. III. The search algorithm takes the feature subsets from the vertices of
��������� �
	��

and
searches for new classifiers. Some of the

��� �
curves found by the search algorithm are plotted

over
��������� �
	��

. IV.
� ����� � 
����

containing the new curves and
��������� � 	��

has five vertices.
Two use feature subset � ��� ��� , the others using ����� , � ������� and ����� ��� . � ����� � 
���� differs from
� ����� � �
	��

, hence the SNP objective criterion is satisfied, and the algorithm continues.
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6.4 An implementation of Parcel

The pseudo code of the implementation of Parcel used in this chapter is given in Figure 6.2.
The naive Bayes classification algorithm is used in this chapter. In the pseudo code, the set of
thresholds to be used for classification is kept in thresholds.

The Parcel algorithm commences with a
� ����� �

consisting of a single “dumb” classifier (pro-
ducing the diagonal line in the

��� �
space). This classifier has the empty set of features, and

uses an arbitrary threshold of
� �

. This classifier represents the performance one would obtain
on the dataset data by guessing [45, 105].

�����������
	��	� ����� data � �
� � � ���

thresholds
� � � � � � � � � � �

WHILE( SNP )
FORALL vertex �

��������� � 	��
feat-mask

� �
vertex

FOR(i = 1 to number of features)
feat-mask[i]

�
not(feat-mask[i])

FOR(j = 1 to m)
roc

�
roc � � � data, feat-mask � � % �

ENDFOR
feat-mask[i]

�
not(feat-mask[i])

ENDFOR
ENDFORALL
roc

�
roc �

� ����� � � 	��
� ����� � 
���� �

ConvexHull(roc)
IF SigDiff(

� ����� ��
���� � ��������� �
	�� )
THEN

�����������
	��	� ��������� 
����
SNP

�
TRUE

ELSE SNP
�

FALSE
ENDIF

ENDWHILE

Figure 6.2: Pseudo code for the Parcel algorithm. The function ConvexHull(pts) returns the
points forming the convex hull over pts. The function SigDiff(a,b) tests to see whether
there exists a significant difference between a and b.

In the implementation given in Figure 6.2, the search strategy employed by
� � ��� � ������� � � � � � � � ����� � �
	�� �

is sequential forwards selection ( ����� ) [56]. Given a feature subset
�

, with 
 elements, add or
delete individual features from the subset to produce 
 new subsets. In pseudo code, this cor-
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responds to flipping the bit of the feature mask corresponding to the individual feature to be
added or deleted. A feature set obtained by flipping one bit of the feature mask is called a child
of
�

. If there are 
 features, there will be 
 children of
�

.

Within the WHILE loop of the code, the algorithm selects each feature set
�
vertex from the

classifier corresponding to each vertex in
��������� �
	��

. Using ��� � , the 
 children of
�
vertex

are found. For each, an
�����

is computed. The points of the 
 ����� curves are combined in
one large set, along with the points in

��������� �
	��
.

A convex hull,
� ����� ��
����

is formed over these points. If
����������
����

differs significantly
from

�����������
	��
, then the SNP objective has been increased.

� ����� ���
	��
is set to be equal to

� ����� � 
����
, and the loop repeats. The question of what, in practice, constitutes a significant

difference will be implementation dependent. The method used in this chapter is described in
Appendix A

If
��������� 
����

and
����������� 	��

do not significantly differ, this indicates that each vertex has
been visited, ����� has been carried out using the feature subsets at each vertex, and no classi-
fiers have been discovered that improve upon

��������� �
	��
. In this case, the SNP objective has

not been increased, so the loop, and thus the algorithm, terminates. At this point, the
� ����� �

given by
��������� �
	��

is the best possible to achieve using � ��� , data, and the naive Bayes
classification algorithm.

6.4.1 Parcel applied to the Grey problem

To illustrate the operation of Parcel, the implemented algorithm was applied to the Grey classi-
fication problem. The Parcel algorithm employed a naive Bayes classifier, and used a forwards
selection ( ��� ) search algorithm; i.e. candidate feature sets were generated by the addition of
single features to existing feature sets.

In Figure 6.3, it can be seen that the
� ����� �

produced by Parcel uses thirteen different feature
subsets, one at each vertex. In practice, any classifier on the

� ����� �
will require at most two

of these subsets to be used, i.e. one subset at each vertex on either side of the classifier.
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Figure 6.3: The
�����

produced by Parcel on the Grey validation data set. Each vertex label
indicates the feature subset used to produce that vertex.

6.5 Empirical results

We have seen in the previous chapter that classification systems employing multiple feature
subsets can, potentially, be more robust to variable Neyman Pearson criteria than those systems
that use just one feature subset. Furthermore, we have now developed a feature selection algo-
rithm, Parcel, that is able to select multiple subsets that are appropriate for such cost-variable
environments.

In this section, two questions are posed, and we seek empirical evidence upon which we might
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base answers. The questions are:

Question 7 How do classification systems designed using Parcel compare with those designed using a
������� wrapper?

Question 8 Given that a classification system designed using Parcel employs a number of feature sub-
sets, how does it compare with a system that uses a single subset, where that single subset is made up of
the union of all the Parcel subsets?

In presenting empirical results we required a means of comparing two systems. We have
already seen that comparison on the basis of � � ��� � alone can be misleading. However,
��� ����� is still a useful metric, especially in the case where the curves do not cross, in that we
may test for significance in the difference between two areas. We wished to achieve a balance
of interpretability and accurate representation of the results. Therefore, when presenting the
results of a comparison between two classification systems

� the comparison is made using hold-out data sets, and so is unbiased;

� the
��� �

curves for both systems are plotted together, so that any crossing or touching of
the curves can be seen;

� the � � ��� � s are compared, and any difference tested for statistical significance, to a

 ���

confidence interval.

The seven classification problems described in Chapter 2, were used here: Adult, BrodSat,
Cotton, Field, Grey, Thyroid, and Tree. Each problem had three data sets, training, validation
and hold-out.

Classification problem training set validation set hold-out set
Adult � � ����� ����� � � ���������
BrodSat

� � ��� ����� �����
Cotton � 
 ��� � � + � � �����
Field

������� ������� ����
 �
Grey � 
 ��� � � + � � �����
Thyroid � ��� � � � � + � � ���
Tree

������� ������� ����
 �

Table 6.1: The data sets used in the empirical evaluation of the Parcel algorithm. The number
of cases in each data set is given.
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Dataset � � ��� � � ����� � � ��� � Parcel increase � ratio significant?
Adult � ��� ����� � ��� � � � � � � � � � � 
 � ��� � � Yes
BrodSat

���	
���
 � ���	
�
���� � ��� ��� � � ��� ��� � � No
Cotton � ��� � 
 � � ��� � � � � � � � ��
�� � � � � � � Yes
Field � ��� � � � � ��� ��� � � � � � � � � � � � 
 ��
 Yes
Grey � ��� ��� � � ��� � � � � � � � ��
 
 
 � ��
 � � Yes
Thyroid

���	
�
���� ���	
�
���� � ��� ����� � ��� � � + � No
Tree � � ����� 
 � ��� ��� � � � � � ��� � � � � � � � Yes

Table 6.2: The � � ��� � for the classification systems produced by the � ����� wrapper and
Parcel; the

�����
curves were calculated on hold-out data sets, not available during training or

feature selection. The increase is the increase in � � ��� � one would get by using the Parcel.
A � ratio value greater than

���	��

indicates that the increase is statistically significant, to a


 ���
confidence interval. Rows in bold-face indicate a statistically significant improvement when
using Parcel.

6.5.1 A comparison of Parcel and a ���	�
� wrapper

This experiment will compare the results of a ������� wrapper with the Parcel algorithm. The
� ����� wrapper is the same as that used in Chapter 4, with an objective function based on the
accuracy of a naive Bayes classifier.

For each of the seven classification problems considered, feature selection was carried out us-
ing the training and validation sets. The � ����� wrapper selects a single feature set, based on
maximising the classification accuracy on the validation data set. Having trained a naive Bayes
classifier with this feature set and the training data, one can calculate an unbiased

�����
by

presenting the hold-out data to the trained system, and varying the threshold used for classifi-
cation, as described in detail in Chapter 4.

An unbiased
��� �

can be calculated for the system produced by Parcel, again by using the
hold-out data set. The classification system is defined by a number of classifiers with fixed
classification thresholds: these are the vertices of a convex hull, the area of which is maximised
by Parcel. The true- and false-positive rates of each of these classifiers is evaluated using the
hold-out data. This will yield a number of points in

�����
space; these points are unbiased

estimates of the locations of the vertices of the convex hull. Every other point in the Parcel
system will lie on the straight lines joining these points, and can be obtained using the realisable
classifier theorem (see Chapter 5).

For each classification problem, a single feature subset is selected by the wrapper and a series
of the feature sets selected by Parcel; these subsets are given in Appendix B. The

��� �
curves

of the classification systems produced by Parcel and the ������� wrapper are plotted together
for inspection. Table 6.2 gives value of the � � ��� � for each problem, the increase in � � ��� �

obtained by using Parcel rather than the wrapper, and the � value indicating whether this in-
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crease is statistically significant; ��� ���	��

indicates statistical significance to a


 ���
confidence

interval, as described in Appendix A.
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Figure 6.4: The Adult classification task. The
�����

curves produced by the Parcel and SFFS
wrapper algorithms on the unseen data set. As this data was not available during selection,
these results will be unbiased.

The classification system produced by Parcel has a significantly larger � � ��� � than the system
produced by the ������� wrapper in five of the seven problems examined; on the remaining
two there is no statistically significant difference between the � � ��� � s. In plotting the curves
we can see that, for each of the seven problems, the

�����
curve of the Parcel system is either

dominant (uppermost, and therefore superior) or approximately co-linear with the curve of the
system produced by the ������� wrapper.

Question 7 How do classification systems designed using Parcel compare with those designed using a
������� wrapper?

It would be incorrect to conclude that Parcel has produced systems that are at worst equivalent
to those of the ������� wrapper. In the two cases where no significant improvement was gained
in � � ����� , we could conclude that the ����� � wrapper was superior. The reason for this was
that, in these two cases, a smaller feature set produced the same results; in terms of the motiva-
tion for feature selection, this qualifies as an improvement. Despite this, we can conclude that,
overall, Parcel produced better systems with regard to the problems considered.
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Figure 6.5: Top: The BrodSat classification task. The
�����

curves produced by the Parcel and
SFFS wrapper algorithms on the unseen data set. As this data was not available during selec-
tion, these results will be unbiased. Bottom: The Cotton classification task.
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Figure 6.6: Top: The Field classification task. The
��� �

curves produced by the Parcel and SFFS
wrapper algorithms on the unseen data set. As this data was not available during selection,
these results will be unbiased. Bottom: The Grey classification task.
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Figure 6.7: Top: The Thyroid classification task. The
�����

curves produced by the Parcel and
SFFS wrapper algorithms on the unseen data set. As this data was not available during selec-
tion, these results will be unbiased. Bottom: The Tree classification task.
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Dataset Combined Parcel feature sets size
Adult � � � � � � � � � � � � � � � + � � � � � � ��� � � � � � �
BrodSat � � � � � � � � � � � 
 � ��� � �	� � � � � � � � ��� � ���
Cotton � � � � � � � 
 � ��� � � + � � � � � � � � � � ��� � ���
Field � � � � � � � � � � � � � 
 � ��� � ��� � � � � � � � ��� � ��� � � + � � �
Grey � � � � � � � + � ��� � � � � ��� � � ��� � � � � � � � + � � � � � 
 � � � � ��� � � � � � + � � � � � 
 � ��� � � � � � � � � �
Thyroid � � � � � � � � � + � � � � � + � ��� � �

Tree � � � � � � � � � � � � � � � 
 � � � � ��� � � � � � � � � + � ���

Table 6.3: For each classification problem, a single feature set is formed by combining the mul-
tiple sets found by Parcel.

6.5.2 Combination results

Examining the results of the Parcel algorithm, a logical question3 to ask is:

Question 8 Given that a classification system designed using Parcel employs a number of feature sub-
sets, how does it compare with a system that uses a single subset, where that single subset is made up of
the union of all the Parcel subsets?

To provide an answer for this question, the feature subsets, selected by Parcel for each of the
seven classification problems examined, were combined into seven single subsets, see Table 6.3.
For each classification problem, a naive Bayes algorithm was trained using the single combina-
tion feature set. An

�����
curve was then obtained using the hold-out data set for that problem.

These seven
�����

curves were then plotted and compared with the respective
�����

curves
from the Parcel systems. The ��� ����� for the combined feature set systems and the Parcel sys-
tems are given in Table 6.4. The increase obtained by using the Parcel system is also given, and
the � value indicating whether this is statistically significant.

On five of the seven problems, there was no significant difference between using the Parcel
system or the combined system. On the remaining two, the Parcel system was significantly bet-
ter. Although the � � ����� was improved on only two of the seven problems, there is another
motivation for using the Parcel systems. Recall our initial motivation for carrying out feature
selection

“General motivation. We are given the task of designing a classification system, for
which the available data have a large number of dimensions. We need to select an
appropriate subset of features, from the large number available. Furthermore, we
wish to select the smallest possible appropriate subset.”

As the combined system is made up of the various subsets used in the Parcel system, it will, by
definition, use at least the same number features, if not more. Any classifier chosen from the

3The author would like to thank Prof. David Hand for suggesting this question.
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Dataset � � ��� � Combined � � ��� � Parcel increase � ratio significant?
Adult

���	
�����
 ���	
���� � � ��� ��� � � ��� � � ��
 No
BrodSat � ��� � ��� � ����� ��� � � � ��� ��� � � ��� � � Yes
Cotton

���	
������ ���	
�� + � � ��� ��� ��� ����� � 
 � No
Field � � � � � � � ��� � � � � � � � ��� � � � � � 
 � Yes
Grey

���	
 + ��� ���	
���
 � � ��� ��� � + ��� ��� � + No
Thyroid

���	
�
 � � ���	
�
���� � ��� ������� ��� � ��
�

No

Tree
���	
�� � � ���	
������ � ��� � ��� � ��� ��
 ���

No

Table 6.4: The � � ��� � for the classification system produced by combining all the subsets
found by Parcel, and for the Parcel system itself; the

�����
curves were calculated on hold-out

data sets, not available during training or feature selection. The increase is the increase in
� � ��� � one would get by using the Parcel. A � ratio value greater than

���	��

indicates that the

increase is statistically significant, to a

 ���

confidence interval. Rows in bold-face indicate a
statistically significant improvement when using Parcel.

��� �
curve of the Parcel system will require at most two of the subsets to be used. Therefore,

in terms of lowering the cost of gathering features during operation, the Parcel system will be
superior to the combined system. This fact, combined with the ��� ����� results, lead to the
conclusion that using the Parcel system is preferable to using the combined system.

6.6 Conclusions

This chapter opened with the question

Question 6 If we cannot find a suitable single feature subset for designing a particular classification
system, what might we do about this?

A priori, a solution to this question was provided by the results obtained in Chapter 5: adapting
a � ����� wrapper using the realisable classifier theorem produced a multi-feature set classification
system, robust to variable operating criteria. However, it was felt that a better solution might be
found. It had been determined that a good solution to Question 6would probably involve the
use of multiple feature sets, and a new technique for combining classifiers built with distinct
feature sets had been developed. It seemed logical to use this technique to engineer an algo-
rithm that specifically catered for problems with variable Neyman Pearson criteria, rather than
simply attempting to “fix” the results of an algorithm that did not. The algorithm developed
in this way was named Parcel.

The � � � objective criterion provides the base upon which the Parcel algorithm is constructed:
maximisation of the

���������
, or convex hull over all currently known operating points. Parcel

was designed to allow for the selection of multiple feature sets, although not constrained to do
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Figure 6.8: The Adult classification task. The
�����

curves produced by the Parcel algorithm
and the system produced using all of the Parcel subsets combined. The unseen data used to
produce was not available during feature selection, hence these results will be unbiased.

this; if only a single subset was required to satisfy the � � � objective, then only that subset
would be used.

Rather than constructing artificial data sets, the seven real world sets examined in Chapter 4
were used to test Parcel. In Chapter 4, a ����� � wrapper was identified, on theoretical and
empirical grounds, as a good feature selection algorithm. It was decided to compare the results
of Parcel to the ��� ��� wrapper, on the basis of an unbiased estimate of � � ����� , and by plotting
the

�����
curves of each classification system together, to highlight any crossing points. On

five of the seven data sets examined, Parcel produced statistically significant improvements
over the wrapper in terms of � � ��� � ; on the remaining two they were equivalent in terms of
performance, but the ������� wrapper produced simpler systems. On all of the data sets, the
�����

curve of the Parcel system was either dominant (uppermost) or approximately co-linear
with that of the wrapper.

It was also decided to compare the systems produced by Parcel to the system one would obtain
by combining all of the subsets that Parcel found. In this instance, using the Parcel system
provided an improvement in two of the seven problems; and was equivalent in the remaining
five. When in operation, however, at any given time, the Parcel systems would be using fewer
features, and so, given the motivation for feature selection, they were considered superior.
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In this chapter, Parcel was implemented using a naive Bayes classification algorithm, and a
forwards selection ( ��� ) search heuristic. Theoretically, Parcel can be used with any type of
classification algorithm, and a logical progression of the work presented here would be to im-
plement and test Parcel with other algorithms, such as the

� � � � decision tree [93] or a neural
network algorithm, such as those detailed by Bishop[12] and Ripley[96]. It would be expected
that implementations of Parcel that use such classification algorithms could incur heavy compu-
tational overheads: a naive Bayes classifier can be trained very quickly, but a back propagation
neural network might take far longer.

The strategy or heuristic used to search for new subsets of features could also be investigated.
Examination of the results of different search heuristics might well indicate a heuristic superior
to the one used in this chapter, ��� . � � starts with an empty set, and performs a sub-optimal
search, so one might at least expect different, if not superior, results given a stepwise or floating
search. Perhaps the most interesting avenue of future research is to use not one classification
algorithm, but many. The realisable classifier theorem treats the classifiers to be combined as black
boxes, hence classifiers based on distinct algorithms can be combined. For example, a decision
tree using feature set � � and a neural network using feature set � � might be combined.

I believe that the results in this chapter indicate a novel direction for feature subset selection.
Seeking a single best subset is appropriate for problems with a fixed set of operating costs. In
many real world problems operating criteria can vary, and a classification system that makes
use of multiple feature sets may be more appropriate, as it might not be possible to find a single
best feature set. In such situations, the Parcel algorithm can produce useful results, that are not
only easily implemented, but will allow an end user to set dynamically the operating criteria
for the system.
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Figure 6.9: Top: The BrodSat classification task. The
��� �

curves produced by the Parcel algo-
rithm and the system produced using all of the Parcel subsets combined. The unseen data used
to produce was not available during feature selection, hence these results will be unbiased.
Bottom: The Cotton classification task.
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Figure 6.10: Top: The Field classification task. The
��� �

curves produced by the Parcel algo-
rithm and the system produced using all of the Parcel subsets combined. The unseen data used
to produce was not available during feature selection, hence these results will be unbiased.
Bottom: The Grey classification task.
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Figure 6.11: Top: The Thyroid classification task. The
�����

curves produced by the Parcel
algorithm and the system produced using all of the Parcel subsets combined. The unseen data
used to produce was not available during feature selection, hence these results will be unbiased.
Bottom: The Tree classification task.
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Chapter 7

Conclusions

The Parcel algorithm is a departure from the classical feature subset selection genre, in which
a single feature subset is sought to maximise the performance of a classification system. Al-
though theoretically it is possible to obtain such a single subset, in practice it has been shown
that the subset chosen will be highly dependent upon the classifier used [59].

It has been shown in this paper that, in addition to a dependence upon the classifier used,
the subset selected will also be effected by the misclassification costs assigned to the problem.
A subset that is picked to optimise the combined performance of a particular classifier for a
particular set of costs, may produce poor results if the costs are varied.

Many real world problems, such as medical diagnosis tasks, have variable or undefined (at the
time of system design) costs. Given this, and the subsequent effect of cost variation upon the
system produced, algorithms that produce systems which are designed for one set of costs may
be vulnerable to degradation in performance over a range of operating costs, when compared
to other available systems. In Chapter 4 a classification systems for two real world problems
were produced by selecting a single feature subset with a wrapper algorithm (optimising for��� �

loss), for use with a naive Bayes classifier. In both cases, the wrapper rejected a number of
candidate subsets during optimisation, and it was shown that some of these rejected subsets
produced superior naive Bayes classifiers given a subsequent change of misclassification costs.

The Parcel algorithm seeks not to select a single best feature subset, but rather to select as
many different subsets as are necessary to produce satisfactory performance across all costs.
Making novel use of

�����
analysis, and the realisable classifier theorem [98], the � � � objective

criterion of Parcel maximises the ��� ����� .1 Satisfying the � � � criterion also justifies the use
of the ��� ����� as a metric of system performance and comparison, which would otherwise
require qualification regarding crossing or touching

��� �
curves. Empirical results have been

presented to show that the classification systems produced using an implementation of Parcel
will be at least as good as, if not better, than those produced using the state of the art wrapper
algorithm, in terms of true-positive rates for all Neyman Pearson operating criteria.

1Also referred to as the Wilcoxon statistic
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The results presented here concern a single classification algorithm, naive Bayes, used in a
number of problem domains. The Parcel algorithm, however, requires no fixed classification
algorithm to be used, nor indeed does it require a single classification algorithm to be used.
As the realisable classifier theorem does not require the two existing classifiers to be of the same
type, it is possible to use multiple classification algorithms, say naive Bayes and a multi layered
perceptron, and to carry out the search for suitable classifiers to form the

� ����� �
by not only

varying the feature subset, but also the classification algorithm.

While there is no guarantee that a Parcel algorithm will produce a classification system superior
to that produced by a wrapper, it will be at least equivalent to that produced by a wrapper,
in terms of true-positive rate. In other words, there is no guarantee that the wrapper will be
adversely effected by a change of costs. If it is, however, then there is a strong possibility that a
Parcel system will be superior, as its objective function is sensitive to all costs. Empirical results
suggest that real world classification systems are adversely effected by shifting costs, due to
having been designed with reference to only one cost point, and the constraint of selecting a
single feature set.

Parcel represents a novel and interesting departure from the norm in feature selection algo-
rithms, allowing for systems, robust to cost variation, to be developed using combinations of
multiple feature subsets and classifiers. Current research includes incorporating Parcel as part
of a real world trial of classification systems for the prediction of organ rejection in liver trans-
plant patients, applying Parcel to a classification problem involving in vivo ultrasound scans of
abnormal breast masses, and examining novel search algorithms for use with Parcel.
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Appendix A

Significance tests

A.1 McNemars Test

Let two classifiers, trained with data � , be denoted � � ��� � and � ����� � , respectively, and the target
function that they are approximating be � ��� � .
McNemars Test examines the null hypothesis that, for a randomly drawn test set ��� , the accu-
racy of � � � � � � is the same as � ��� � � � , i.e.

� � � � � � � � � � � � � � � � � � � � � ��� � � ��� � � � � � � �

Using all the examples in the test set � � , a contingency table like that in Table A.1is calculated.
Under the null hypothesis, the error rate should be the same, hence 
 � � � 
 � � and the expected
contingency table should be that of Table A.2.

McNemars Test is a statistic based on these contingency tables, and is approximately � � dis-
tributed, with one degree of freedom:

� ( 
�� � � 
 � � ( � � � �

�� � ��
 � �

�
(A.1)

(The
� �

is included as a continuity correction to account for the discrete nature of the statistic,
while � � is continuous.). If the null hypothesis is true, then the probability

�
of this quantity


���� = number of examples misclassified by 
 � � = number of examples misclassified by
both � � ��� � and � ����� � � � ��� � but not by � ����� �


 � � = number of examples misclassified by 
 ��� = number of examples misclassified by
� ����� � but not by � � ��� � neither � � ��� � nor � ����� �

Table A.1: A contingency table based on the errors produced by both classifiers. 
 � ��
���� �

 ��� ��
 ��� � 
 ��� � , the number of examples in the test data set.
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����
� 
���� � 
������

�� 
	��� � 
����
�
� 
 ���

Table A.2: The expected contingency table based on the null hypothesis

being greater than
� � � � is less than

��� � �
, greater than

� �	���
,
��� ��� � �

, and greater than + � ��� ,�
� ��� ��� �
.

A.2 Critical ratio for the difference in two
��� ��� �

s

need to say that test is pessemistically biased - used for tests between regular ROCs and MR-
ROCs as well as between MRROCs in Parcel

To define a statistically significant difference between two
� ����� �

curves, one containing
the other, the areas beneath the curves can be compared. As previously stated, the area of
the
� ����� �

is equivalent to an estimate of the Wilcoxon statistic. To compare two Wilcoxon
statistics, the standard errors of both need to be calculated. As both statistics are estimated from
the same dataset, there will be correlation between the standard errors. The task of estimating,
and making statistical significance judgements on the difference between, the areas of multiple
correlated

��� �
curves has been examined in [28, 47, 46, 105].

A method for detecting a significant difference between two curves is to calculate the critical
ratio � ,

� � � �	� � � � � �	� � ��
� � �� � � � �� � � � � � � � � �

� (A.2)

where � � � refers to the standard error of the estimate of � ��� � � , and � represents the estimated
correlation between � ��� � � and � ��� � � . A value of � � ���	
��

indicates, with a

 ���

confidence
interval, that a difference exists.

When the areas are sufficiently large, say � � + , the standard error of the area � ��� � can be
estimated as [46]

� � � � �	� � ����� � �	� � � � � � ��� � � � � ( � � ( � � � � � � � � �	� � � ��� � ( � � ( � � � � � � � � �	� � � �
( � � ( ( � � (

where ( � � ( and ( � � ( are the number of examples of class
�

and class � respectively, and

� � � � �	� �
� � � � �	� � �

� � � � � ��� � �
� � � � �	� � �

�
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As the
� ����� �

hull is formed by combining the outputs of different classifiers at its vertices,
and not by varying a threshold over a continuous (or discrete ordinal) output function, existing
generalised non parametric methods [28, 47] for calculating the correlation between standard
errors are not applicable. Failure to subtract out the � � � � � � ��� statement from the denominator
in Equation A.2will result in conservative estimates of � , thereby making significant changes
more difficult to detect.

The motivation in this paper for significance testing is to terminate the Parcel algorithm when
the difference between

� ����� � �
	��
and

��������� 
����
is very small. As convex hulls, iteratively

formed one over the other, are being dealt with, there is no issue of hulls crossing, and what
should be discouraged is progressively refining vertices on the hull by tiny amounts.

This is a justification for allowing the use of a conservatively biased significance test. The
refinement of a vertex frequently means the replacement of a classifier with a small feature
subset by one with a larger feature subset. The performance of the classifier with the smaller
subset will tend to be more stable than that of the larger. Both have the same amount of data
with which to model the classification task. Hence there should be less variance associated
with estimated parameters from the classifier with a lower dimensioned feature space (as this
space will be more densely populated by the available data). If increasing the dimension of
the feature space results in a small estimated improvement in performance, this should be
discouraged. A conservatively biased significance test will be biased against detecting small
changes in the area of the

���������
, as desired.
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Appendix B

Subsets selected by Parcel

Algorithm Adult feature subset Algorithm Adult feature subset
wrapper � � � � � + � ��� �
Parcel

� � � � � � � � � ��� � ��� � Parcel
��� � � � � � � � � � ��� �

Parcel
�
� � � � � � � � ��� � ��� � Parcel

� � � � � � � � � � + � ��� �
Parcel

� 	 � � � � � � � + � ��� � Parcel
� ��� � � � � � + � ��� � ��� �

Parcel
� � � � � � � + � ��� � � � � Parcel

� � � � � � � � + � ��� � ��� �
Parcel

��� � � � � � + � ��� � � � � Parcel
� � 	 � � � � � � � ��� � ��� �

Parcel
��� � � � � � � � ��� � ��� � Parcel

� � � � � � � � + � ��� � ��� �
Parcel

� � � � � � � � � ��� � � � � Parcel
� � � � � � � � � � ��� � ��� �

Parcel
� � � � � � � ��� � ��� � � � � Parcel

� � � � � � � � � � ��� � ��� �

Algorithm BrodSat feature subset Algorithm Cotton feature subset
wrapper � � + � ��� � wrapper � � � ��� � � + �
Parcel

� � � � � � � � � � Parcel
� � � 
 � ��� � ��� �

Parcel
�
� � � � ��� � ��� � Parcel

�
� � � � 
 � � + �

Parcel
� 	 � � � ��� � ��� � Parcel

� 	 � 
 � ��� � � � �
Parcel

� � � � � 
 � ��� � Parcel
� � � 
 � � + � � � �

Parcel
��� � � � � � � � Parcel

��� � � � ��� � � + �
Parcel

��� � � � ��� � ��� � Parcel
��� � ��� � � + � � � �

Parcel
� � � 
 � � � � ��� � Parcel

� � � ��� � � � � � � �
Parcel

� � � ��� � � � � ��� � Parcel
� � � � � � � � � � �

Parcel
��� � � � ��� � ��� � Parcel

��� � 
 � � � � � � �

Table B.1: The feature subsets selected by both the ��� ��� wrapper and Parcel algorithms for
the Adult, BrodSat and Cotton classification problems.
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Algorithm Field feature subset Grey feature subset
wrapper � � � � � � + � � � � � � � � � �
Parcel

� � � � � � � � � ��� � � � � � � � �
Parcel

�
� � � � 
 � ��� � � � � � ��� � � � � � � �

Parcel
�
	 � � � � � ��� � � � � �#+ � � � � � 
 �

Parcel
��� � � � � � � + � � ��� � � � � ��� �

Parcel
� � � � � � � ��� � � � � � � � � � � �

Parcel
��� � � � � � � � � � + � � ��� � � � � � � �

Parcel
��� � � � ��� � � � + � � � � � 
 �

Parcel
� � � � � 
 � ��� � � � � � � � � + � � � �

Parcel
� � � � � � � ��� � � + � � � + � � + � � � �

Parcel
� � � � � � � � ��� � � ��� � � + � � � �

Parcel
� � � � � � � � � � � + � � � + � � � � ��� �

Parcel
� � 	 � 
 � ��� � � � � � + � � � � � � + � � � �

Parcel
� � � � � � ��� � � � � � � � � ��� � � � �

Parcel
� � � � � � ��� � � � � ��� �

Parcel
� � � � � � � � � � � ��� �

Parcel
� � � � � � � � � � + �

Parcel
� � � � � � 
 � ��� � � � �

Parcel
� � � � � � 
 � ��� � � � �

Parcel
�
��� � 
 � � � � � + �

Parcel
�
� � � � � � � � ��� � � + �

Parcel
� � � � ��� � ��� � � � �

Parcel
�
� 	 � � � � �

Parcel
�
�
� � ��� � ��� �

Parcel
�
�
� � � � ��� � � � � � � �

Parcel
�
�
� � ��� � � � � � � � ��� �

Table B.2: The feature subsets selected by both algorithms for the Field and Grey classification
problems.
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Algorithm Thyroid feature subset Tree feature subset
wrapper � � � � � � � � � � � �
Parcel

� � � � � � � � ��� � � � � � � � �
Parcel

�
� � � � � � � � � � � � � � � �

Parcel
�
	 � � � � � � � + � � � � � � �

Parcel
��� � � � + � � � � � � � ��� � � � �

Parcel
� � � � � � � � � � � � � � � � � �

Parcel
��� � � � ��� � � � �

Parcel
��� � � � � � � �

Parcel
� � � � � ��� � � � �

Parcel
� � � � � � � ��� �

Parcel
� � � � � � � + �

Parcel
� ��� � � � ��� �

Parcel
� � � � � � ��� � ��� �

Parcel
� � 	 � � � � � � �

Parcel
� � � � � � � � ��� �

Parcel
� � � � � � 
 �

Table B.3: The feature subsets selected by both algorithms for the Thyroid and Tree classifi-
cation problems. Parcel found five subset for the Thyroid problem, and fifteen for the Tree
problem.
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