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1 Introduction

The preferred feature extractors for computer vision tasks have been for a long time,
and are still, edge and corner detectors, based on linear correlation and convolution
operations. These, although holding many benefits in terms of speed and convenience
of processing, present difficulties to vision systems in their relative insensitivity to the
varieties of image structure, and the narrow catchment area from the image on which
their output is based.

While it would be desirable to make use of information from images gathered
from wider regions, allowing for the application of more powerful statistical models
and constraints, current region—based schemes suffer from drawbacks that make them
unattractive for general use.

Among these are:

Inflexibility : these schemes are often tied to a particular region modelling frame-
work (MRF, piecewise polynomial, wavelet, etc.), which makes it difficult to
adapt them for general use, or as new models arise. Schemes also frequently
[11, 3, 9] rely on an ordering on image intensities, restricting them to a 1-
dimensional intensity space.

Inefficiency : either through the performance of unnecessary extensive search through
small scales of the image, or due to non-deterministic elements of the optimi-
sation [1], region—based schemes traditionally take many orders of magnitude
longer to run than localised feature detectors.

Non-regularisation : a great challenge facing region optimisation is the regular-

isation of parameters, e.g. the boundaries, size and number of regions. Cur-



rent schemes have difficulty accommodating regions with greatly varying size
[17, 20], and often include explicit penalties for increasing the length of bound-
aries (a ‘smoothing’ regularisation) or increasing the number of regions. These
introduce arbitrary parameters without supplying satisfactory algorithms to
compute them for different situations. In addition, these ‘ad hoc’ penalties pro-
duce statistical bias (fewer regions, rounded corners, biased boundary locations,
etc.) in the output of the system, leading to difficulties when applying further

quantitative algorithms.

The scheme we present here is flexible, efficient, and intrinsically regularises the nec-
essary parameters in a dynamic manner during the course of optimisation; it thus

requires no manual adjustments if correctly applied.

1.1 Motivation

A popular region-based segmentation paradigm (the “snakes/balloons” framework
put forward in [13, 6], and generalised in [21]) idealises the image as a continuous
field, and region boundaries as differentiable contours; optimisation then proceeds
by steepest descent deformation of the contours with respect to some global energy
criterion.

Another paradigm (split-and—merge/link, presented in [16, 2]) subdivides the im-
age into discrete nested (square) cells, which are then recursively connected/split
apart according to some homogeneity predicate [19].

The current scheme is designed to avoid the problems associated with these sys-
tems. Contour frameworks suffer from excessive locality (there is only provision to
examine the image in a curve neighbourhood), troublesome discretisation (image
‘forces’ often involve curvature and gradient terms that are sensitive to quantisation
artifacts), and topological difficulties which all require curves to be deformed by only
small distances at each step.

Splitting frameworks bring problems of robustness. Since these algorithms progress
in a fixed number of recursive passes through the image, it is easy for them to over-
look important minima in their energy functions. In addition, a mistake made at an
earlier stage of processing can never be corrected in the light of later knowledge.

The framework we present here may either be viewed as an explicit discretisation
of a contour—based system, or as an iterative enhancement to region splitting methods

— it shares in the good properties of both.



2 Foundations

2.1 Framework and Assumptions

We present the modelling framework in general terms — we assume the image consists
of a collection of non-intersecting connected regions { R;}, which completely cover it.
Each region contains data D; with some size measure N; = N;(D;), which is drawn
from a(D;), one of a collection of models indexed by parameter vector a.

We must here place important restrictions on the forms of the models, which
will strongly shape the development and exposition of the algorithm. The possible
relevance of these assumptions to computer vision will be discussed in section 7.

However, we should note that the first assumption is often overlooked, in that its

adoption or otherwise usually passes without comment.

1. The models must be statistical, i.e. they must ascribe to each configuration of the
region they model a definite probability.

2. The models must be stationary, or quasi-stationary, i.e. the data elements thus
modelled must either be completely stochastic — independent, identically dis-
tributed (i.i.d.) random variables, or a combination of such variables with deter-
ministic functions of a prescribed form (e.g. linear ramps, polynomial patches,

etc.)

These assumptions underlie the entire development. In fact, mostly we assume
actual stationarity — for quasi—stationarity we need to modify the discussion at the
point in the development mentioned in section 2.4.

There is assumed to be a default (Euclidean) metric upon the parameter space,
but the system is intended to be insensitive to non—singular (or at least linear) repa-
rameterisations of it.

We assume the existence of an estimator £(D;) which determines, given a set of

data, a ‘best’ model with vector ¢; from the collection.

2.2 Principles and Requirements

One of our central principles is that optimisation must proceed by deterministic,
minimal statistically significant discrete perturbations of the configuration, which at
all times conforms with the description given above.

Which perturbations are, or are not, statistically significant, will vary during

the course of the algorithm, and different sizes of perturbation will be appropriate



according to the contents of the regions.

The algorithm will be deemed to have converged when

1. No significant perturbations of a boundary between two regions will improve its

discriminability.

2. Each boundary considered as a whole is significant.

These two conditions provide the entire regularisation framework for the algorithm
— considered together they do away with the need for smoothing regularisations,
“small region” penalties or arbitrary thresholds, replacing them all by a condition of
significance, which as we will see in section 3.4 can be satisfactorily defined.

We will wish to define these significances (and in fact all other statistical quantities
used in the system) in terms of a function §(D;, D;), the discriminability of two sets
of region contents.

We require some properties of §:

1. 4 is to have the dimensions of a log probability.

2. As Ny, Ny — 0,6 — 0.

3. As oy — Az, 6 =& —.

4. For fixed Ny, as Ny — 00, 6 — (3, some (3 # 0, —oo.
5

.ASNl,N2—>OO,6—>—OO.

Properties (3) and (5) may be violated without fatal consequences to the function-
ing of the algorithm, since (5) is a condition impossible to achieve in actual images,
and —oo in (3) may be replaced by a suitably large number that may not be achieved
under other conditions.

However, property (4) is essential - it implies that if one region size becomes
infinite, the discriminability stays finite. This can be seen as although the likelihood
function of a tends to a delta function, this does not give us the ability to make
perfect decisions as to the membership of data from R; to this model, if a; has a
distribution with finite spread.

These properties suggest various possibilities for §, which we briefly consider here.
The log probability of misclassification of data between the two estimated models is
one such; however, any direct use of overlap integrals, either in parameter space or
likelihood space, will violate condition 4 (or if N; are ignored, condition 1) which is
unacceptable for our purposes.

Others involve various metrics (e.g. the Bhattacharyya or Chernoff metric) applied

to the distributions of P(«|D), which also violate one or other criterion.



The required quantity ¢ in fact arises through testing of the hypothesis of ho-
mogeneity of the statistics of the two regions, i.e. H, : a(D;s) = &2, against the
alternative hypothesis H, : a(D;) = &; and a(Ds) = &2, where Rys with data D is
the region formed by considering R; and R, as one region. We choose ¢ to be the log
level of confidence at which the null hypothesis H, of homogeneity would be rejected,
if in fact we were required to make the decision.

Note that this choice now constrains the form of all our estimators E to be the
mazimum likelihood estimators (m.l.e.s) of the parameters under the required hypoth-
esis.

We now present the derivation of § for a simple case; our parameters will be
the means p; and standard deviations o; of univariate Gaussians G(z; y;, 0;), and
so &; = (my,s;), where m; and s; are the standard (biased) maximum likelihood
estimates of the parameters. In fact, the derivation presented below can be generalised

straightforwardly to other cases - we present a few examples later 1.

2.3 Univariate GGaussians

The log likelihood, log A, of data of size N drawn from a population G(u, o) under a
hypothesis specifying u = m, 0 = s is
2

log (A(,0,m,s)) = —% <log(27ra2) - % - M) . (1)

g

Now, given two such regions, the m.l.e.s of m; under H, are N%Zze g, Di(z), and those
of s? are N%erRi(Di(a:) — m;)%. Under the hypothesis H,,, they are denoted by m¢
and are given by

(N1m1 + szz) (2)

and
N1 N,

o m—m)). )

Therefore, the likelihood ratio test (LRT) statistic for testing of hypothesis H,,

1
(7 = (57 = (5)° =  (Nist + Nosh +

against H, is obtained by summation of three terms of the form of equation (1), and
is given by

—log A* = Nlog(s*)*> — Ny log s — Nylog s3. (4)

Note that this quantity is similar to the right hand term of equation (12) in the
work of Yuille and Zhu [22], the region merging criterion. However, our derivation
is slightly different, not involving energy considerations, and being extendable to the

case where the members of & are not sufficient statistics for the distributions, for



Description Parameters | Criterion Distribution
1-d, Mean and Variance | u;, o; Nlog(s*)?* — Ny log s? — Ny log s3 x2(2)

1-d, Mean, equal Variance | y;, o; N(log(s*)? —log((Nys? + Nos3)/N) | x*(1)

n-d, Mean and Variance | p;, S; Nlog|S®| — Nylog|S:i| — Nalog|Sa| | x2(

n-d, Mean, equal Variance | pu;, S; (log | S| — log|(N1S1 + N2S2)/N|) | x2(n)

Figure 1: Table of Discriminabilities for Gaussian statistics

example where we are just testing for differences in means. In addition, this quantity
is used for many other purposes in our formulation.

This quantity arises through the testing of a hypothesis allowing 2 degrees of
freedom (the parameters m® and s) as against a null hypothesis with 4. Thus, this
statistic has an asymptotic (as both N; and N, become large) x? distribution with
2 degrees of freedom. The reader is referred to Silvey [18], p. 114 for details of the
argument, which is general for all tests of this sort.

Although this result is only applicable asymptotically, our requirements here (as
suggested in 2.2) are not stringent as regards statistical precision; monotonicity of this
function relative to the correct one will usually be sufficient. In addition, numerical
experiments show that this result surprisingly gives exact results for 1-dimensional
Gaussians where N; = N,, even for sample sizes as low as 2.

Thus, the discriminability ¢ is defined as

(5)

log Aa(Di,Dj)
s(0 D) =g (1= [ 2.0) )
0
i.e. the log level of confidence under which the data D;, D; would give rise to the
rejection of H,. Note this quantity is negative, and we are always seeking to minimise
it. Borders with lower values of § are said to be stronger borders.

A generalised derivation for multivariate Gaussians may be found in [14], p. 140.

2.4 Configuration and Borders

The boundary I;; between regions R; and R; is the set of points neighbouring both
regions. Associated with a boundary I;; are two sets {L"};; and {L"};; of border
elements; these are (not necessarily non-overlapping) subregions of R; and R, re-
spectively, which are considered by the algorithm as suitable candidates for exchange
with the opposite region; i.e. these are the minimum perturbations required in section
2.2. These elements are all neighbouring the boundary, and completely cover it. The

collection of border elements {L"};; forms the border B;;.



As outlined above, there is a minimum size of subregion below which the mem-
bership of R; or R; cannot significantly be determined — therefore all the members of
B;; must be larger than this size N*(D;, D;), the magic number for the border B;;.

We consider hypothetical subregions SV of R; with size N, which are assumed to

give rise to the same model vector &;. We define
N*(D;, D;) = max N such that §(D;", D;) < t. (6)

where %, is the level of confidence we will define in section 3.4.

This is the point at which the derivations for stationary and quasi—stationary
statistics diverge, mentioned in section 2.1. In the case of stationary statistics,
N*(D;, Dj) is a constant over elements of both B;; and Bj;. For quasi-stationary
statistics, this will be a function of the position of the element L7; within its region;
i.e. we must insist that the hypothetical subregions Sjv have the same position within
R; as the border element L7, which we are computing the size of would be placed.
For example, two linear ramp models which slope to the same intensity level at their
mutual boundary will be locally indiscriminable, leading to very large border elements

at the boundary. Such a system has not yet been implemented.

3 Top—level Procedures and Definitions

The top-level structure of the algorithm comprises the following three phases:

Phase A — Seeding — the region configuration must be initialised in a suitable form
maximising the chance of avoiding convergence to local minima of discriminabil-

ity, but minimising optimisation cost (number of regions).

Phase B — Creeping — estimated regions are repeatedly deformed until no further

significant deformation is possible.

Phase C — Merging — regions with weak (to be defined in section 3.4) boundaries

are merged with the regions on the other side of the weak boundary.

Phase A is executed once, and alternating passes of Phases B and C are applied

until both produce no further change.

3.1 Phase A

No prior information is available to Phase A, so it must necessarily proceed by local

operations. It determines regions of maximum local discriminability from a selection



of neighbours, where the maximum is taken both within scales and between scales of

the image. This is intended to satisfy as far as possible the following criteria:

1. Each final region that actually lies in the image must have at least one seed

region lying wholly within it, and this seed must be as large as possible.

2. Seed regions that straddle the boundaries of final regions must be avoided, or

made as small as possible.

3. There must certainly be at least as many seed regions as final regions, but

preferably not more than a small factor more.

3.2 Phase B

Phase B is the phase analogous to the region deformation procedures of region grow-
ing/snake/balloon systems, generalised in [22] — however, in our system it can be seen
that this procedure has been yet further generalised to encompass another major class
of system, split-and—-merge/link. Since deformations are discrete and significant, we

could decompose the deformation step as follows:

Choose a border element L7; from some border Bi;;
Form new regions R; and R’ by exchanging it with R;
Evaluate the discriminability 4(D;, Dj)

If it has increased, return Lj; to R;; else leave with R;.

Thus, although at a high level, the regions appear to be bounded by deformable
contours, at a low level, the system is proceeding by deterministic split—-and-merge.

If the (locally) desired perturbation from R; to R, disconnects region R;, this
will in general cause a considerable reduction in local discriminability, due to the
sudden decrease in region size. However, such operations are occasionally necessary
to correctly match the topology of the image regions. Thus the system does not even
always proceed by minimisation of a local energy function, let alone a global one.

This featurewill be discussed in more detail in section 5.2.

3.3 Phase C

The algorithm is formulated so that region creeping and region merging proceed from
a consistent and unified viewpoint. Creeping is a modification of the boundary con-

figuration variables by significant increments (i.e. border elements). Merging occurs



when these configuration variables as a whole are not significant, and all possible
efforts have been made to improve their significance.

There are thus two criteria for considering boundaries to be insignificant variables:

1. The discriminability §(D;, D) associated with the boundary as a whole is below

the confidence threshold ¢..
OR

2. Due to the geometry of the region, NO border elements L";; of the requisite size

as defined by equation (6) can be formed.

Where such regions occur, we merge them and destroy region D;. After reforming
or destroying borders, we mark all border elements as unexamined, ready to return

to phase B.

3.4 Confidence Limits

At various points in the previous discussion, we have referred to the condition §(D;, D;) <
t.. We will now make precise and justify this statement.

The algorithm constantly makes decisions; the nature of this decision—making
process will guide our choice of confidence limit. The important principle is that of
uniformity of error: we wish the system’s liability to make an error to be uniform
over each different class where it makes decisions. More specifically, we note that
there are many smaller regions (cells) in the image than there are larger ones. In
a 2—-dimensional image of size N, there are 2N/k pairs of adjacent cells of area k.
To normalise our chance of error, we thus require that exp(t.) « k/2N, or that
te = to + log(k/N) — log(2). In practice, we fix the image size coefficient N around
a few thousand pixels (e”) to ensure the results are independent of the actual image
size, and choose ¢y to be -5; this corresponds to a confidence level of 99.4%, or 1 error
expected per 150 regions tested.

The dimensional penalty log(2), however, is insufficient by various considerations,
which are difficult to analyse rigorously. Higher dimensional spaces allow a very
much greater number of region configurations (composed of cubical cells) of a given
volume (area) than lower ones; this increases the potential for spurious construction
of discriminable regions of various twisted shapes which merely seek out the pixels
from a compact distribution, while leaving others behind. Experiment recommends
very much sterner penalties (proportional to 1/k) for increasing dimensions of the

image.



Therefore, for §(D;, D;) < t. we read
§(D;, Dj) < —5 — 3(7 — max(7, log(min(N;, N;))) (7)

in the 2-dimensional image case; i.e. when the region size increases beyond the nor-
malised image size, we simply use the base value -5. We take the minimum of the
two region sizes as a simple way of expressing that the confidence penalty grows ex-
ponentially with increasing region size; the minimum is a reasonable approximation
to the weighted combination that would result from more rigorous analysis. For 1-
dimensional images, we use this formula with the factor 3 replaced with 1, as directed
by the original argument.

We might consider special (much smaller) values of ¢ in region merging for differ-
ent applications, for example when the fit to the models is expected to be particularly
poor. We consider this possibility further in section 7. In fact, however, the algorithm

is designed to function without image—specific thresholds, and should be left that way.

4 Specific Implementation, Mid-Level Procedures

The presentation of the algorithm to this point has been deliberately general - it is
designed to be a general prescription for an algorithm, very loosely coupled to both its
representation and its statistical engine. This generality is borne out by the fact that
both 1-dimensional (over vectors or time series) and 2-dimensional (images) versions
of the algorithm have been successfully implemented and tested, and a 3-dimensional
(volume) implementation is planned, for the segmentation of medical scanned images,
in particular multiple Ultrasound scans [15].

In this section we will describe a 2-dimensional implementation upon an image
quadtree of rectangular cells. Other choices are possible — for example a system based
upon B-spline or polygonal boundaries, or the Delaunay triangulation framework of
[7].

However, Phase A as described is dependent on a hierarchical partition of the
image into cells, and a quadtree framework is a very efficient environment in which to
handle the rapid changes in region connectivity and adjacency that occur in phases
B and C. In addition, the bottom level of any hierarchical decomposition must be

individual pixels, which further advises towards square cells.

10



4.1 Phase A in more detail

We may now formalise the function of seeding Phase A, as described in section 3.1. For
each quadtree cell C; we compute b; = max;(6(D;, D;)) for each cell C; on the same
scale neighbouring C;. We seed those cells which have a locally maximal b;; i.e. we
pass these square cells forward to phase B to form the initial regions. This maximum
is illustrated in Figure 2, where darker arrows represent stronger discriminabilities; it

is taken over

1. All cells of the same scale neighbouring Cj,
2. The cell on the scale above enclosing Cj,

3. All cells on the scale below enclosed by Cj.

We then add each remaining connected component of the unseeded area of the

image as a seed, satisfying the terms laid out at the beginning of section 2.1.

Maximum Maximum
Within Bet\glleen
Scale Scales

/ rd 1 !
YAED ey /
/ T -] J/
/ - /
/ ' /
/ /

Figure 2: Illustration of seeding mechanism

The current system errs significantly on the side of generosity in seeding regions, as
can be seen in Figure 3(b), a seeding of Figure 3(a). There is scope for a more sophis-
ticated method to increase overall efficiency by seeding fewer, more well-positioned
regions; however, the first two objectives of section 3.1 are sufficiently satisfied by the

proposed scheme.

4.2 Configuration in more detail

At the beginning of phase B, each seed is converted into a region R;, and the border

configurations B;; described in section 2.4 must be initialised. We now describe their

11



(a)

Figure 3: (a) Original image; the regions differ in means by 15 units, and have common
deviation 9. (b) Configuration after seeding; (c) After one phase of creeping; (d) After one
phase of merging. The white boundaries represent regions R;, black squares are border

elements L;;.

representation in more detail. The important data structures are inferrable from the

description given there; here we shall only make a few remarks on border elements.

4.2.1 Border Elements

A border element consists of three parts, (i) a reference to a cell in the quadtree,
(ii) a reference to an owning border, and (iii) an orientation, which together form its
unique identity; it is possible for elements to differ in any one of these, and so be
considered distinct. For example, at the top of the central image of Figure 4, we can
see one quadtree cell which is a member of border elements to two different regions,

with three different orientations.

BlZ BZl
= =
> k| Y| B,
. o . B, By
Earlier Configuration After One Creep Final Configuration

Figure 4: Tllustration of creeping mechanism

The representation, in addition to storing border elements as members of a list for
each border, must also store them as members of a list for each cell in the quadtree.

The algorithm makes such extensive use of indexing elements by location as well as

12



by ownership that efficiency requires this. Care must then be taken in keeping these

entries consistent.

4.3 Phases B and C in more detalil

Figure 4 shows the effects of individual creeps required by phase B on the config-
uration. White lines represent boundaries, black squares are border elements; the
arrows represent the orientation of border elements, i.e. the direction in which they
face their boundary. This shows how multiple border elements of varying resolutions
coexist within the same cell, and also how they are manipulated according to these
requirements. Note that the second creep of border Bs; forces the subsampling of a
border element of B3, under step (1) of the diagram “Perform the Creep”.

The only complications arising in phase C are amalgamation and resampling of
borders following merging, and mutual exclusion, covered in the next section.

The flow of operations in these phases is illustrated in Figure 5.

5 Special Topics

This section describes some of the special actions required by the system, not all of

which are illustrated in the diagrams of the previous section.

5.1 Mutual Exclusion

This is an important principle of the system, operating during phases B and C. Since
this is a deterministic system, special care must be taken when performing actions
which remove available choices. The most important example of this is merging,
which is a completely irreversible operation, but creeping to a lesser extent must be
performed with care.

To any action A, there is a set of mutually exclusive actions M(A), consisting of
those actions which are no longer available to be performed after A. We cannot have
Adg M(A).

Each action is ascribed a desirability (in this case a change in local discriminabil-
ity) D(A) which is a real number. Increasingly desirable values are more negative,
undesirable actions have D(A) > 0. Actions are presented to the system for con-
sideration in as far as possible a uniform manner over the image - any action found

at all desirable should in principle be performed straight away, were it not for the

13
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Figure 5: Flow of activities during phases B and C



possibility that it might prevent other, more desirable actions being performed that
have not yet been presented to the system.

Therefore, upon finding any action with D(A) < 0, before being performed the
set M(A) is checked to see if it contains any elements with a lower value of D. If any
are found, the element with the lowest value replaces A as the required action.

For creeping, the border elements mutually exclusive to A € B;; are

1. Any elements whose cells enclose A’s cell.
2. Any elements whose intersection with I;; is completely enclosed by A’s intersection
with it; i.e. those whose validity as border elements will be completely destroyed

by creeping A.

For merging, the borders mutually exclusive to B;; are all of the borders of R;
and R;.

We must note that sets of actions are rarely closed under the operation M of
taking mutual exclusivities. Consistency would require us, having picked the best
action in M (A), to then compute M (M (A)) etc. until we find a local maximum of D
in a set of M(A)s. However, this is likely to involve a lot of computation, and may
often require us to find the global maximum over all actions. In practice, one level of

exclusivity has been found sufficient to avoid dangerous errors.

5.2 Topology Smashing

Detecting and managing the topology of regions is a potentially expensive and in-
volved operation - due to our constraint placed in section 2.1 that all regions R;
remain connected, we must avoid performing operations that leave disconnected areas
of the image modelled by the same region.

This problem is complicated by the distinction (in dimensions greater than 1)
between actions which locally disconnect regions, and those which globally disconnect
them. This distinction is shown in Figure 6 — the mid—grey region in the second
image was not simply connected, but it was connected (in fact it was 2-connected).
However, the situations are indistinguishable by local operations on the quadtree —
in order to detect whether the the region has become truly disconnected, we require
a (potentially very expensive) global operation on the quadtree.

The other complication, referred to in section 3.2, is that such operations are (al-
most invariably) destructive of discriminability. That is, although the operation was

locally desirable when first selected, the configuration resulting once all the extrane-
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Figure 6: Creep causes local disconnection without global disconnection

ous borders and regions generated have been cleaned up is almost everywhere worse
in terms of discriminability than the original configuration.

Furthermore, no useful constraints in terms of resulting discriminabilities, can be
placed upon which divisive creeps (as these are called) are correct or not in terms of
the image. The plain fact is, locally desirable operations must be performed, even
at the expense of violating global constraints. This issue will be considered again in
section 5.3.

Before we commit ourselves to the cost of dealing with this problem, we should

re-examine our constraint of connectedness to ensure that it is well-motivated.

5.2.1 Connectedness

Why did we insist our regions remain connected? This was for both pragmatic as
well as perceptual reasons.

We should examine the reasons why we might consider many disconnected things
to be part of a single entity; in vision, the reason is most often occlusion — a railing,
for example, divides the image of occluded objects into many disconnected parts.
Another source of disconnection is texture — for example, text is composed of discrete
characters, yet “a line of text” is a single perceptual entity. In other paradigms, such
as 1d or 3d, the need for disconnectedness is even less strong. A 1d-signal is much
more clearly composed of ‘segments’ of one type followed by another; organs of the
body are necessarily connected.

The general pattern we draw, is that the process of drawing disconnected entities
together into one is a high-level one; one which we therefore consider outside the

scope of this algorithm, which is positioned as a low-level feature detector.
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The pragmatic aspects of allowing disconnection in the absence of higher-level
knowledge are also troublesome. We observed in development of the system that if
no limits are placed on disconnection, one “region” of the image degenerates into
a “dumping ground” for undesirable statistics — the final result is composed of a
number of reasonably large, good regions, separated by thin “seams” and “blobs”
of the dump region, which has an enormous variance justified by its large apparent
“size” in terms of pixels modelled.

Thus on various strong grounds, not least those that the system produces useless
results without it, we must stick with our condition of connectedness in spite of its

apparent orthogonality to the other invariants of the algorithm.

5.2.2 The Solution

Having accepted the problem, we observe that it is composed of two parts; firstly, the
computational costs, and secondly, the risks of non—convergence of the algorithm due
to the lack of even a locally consistent function we are descending.

We address the first part by making use of the local/global divide mentioned in
section 5.2 — the test for local disconnection is cheap, and only involves examining
the perimeter of a single cell. Therefore, we gain a useful ‘first line of defence’ against
the cost of checking for global disconnection.

The second part is addressed by observing that the operations that allow topol-
ogy smashing (cause disconnection) must be confined in some way — if they can
follow each other arbitrarily, the algorithm will almost certainly never converge, as
discriminability—increasing and discriminability—reducing mechanisms fight one an-
other. Thus, we have the concept of topology smashing passes; we decide for each
instance of Phase B whether these operations will be allowed. A sensible decision
has proved to designate every third creeping pass a topology smashing pass, and to
impose a maximum number on these. If the algorithm has still not converged after
three such passes, no further ones will be allowed.

We combine solutions to these two parts of the problem by, on non-topology
smashing passes, disallowing any operation which even violates local connectedness,
as shown in Figure 5. This further increases the speed of these passes — and ensures
that all required operations will still be performed eventually.

Without any topology smashing, regions become connected by narrow ‘tendrils’
that cannot be broken. Also topology smashing allows adaptation, from the original

(usually) 1-connected seeding to shapes with multiple holes, etc. that otherwise would
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be impossible.

5.2.3 Divisive Creeps

It should be noted that the number of portions a region can be divided into at a single
creep can be much larger than two — it in fact cannot be bounded. Figure 7 shows
disconnection into 4 regions; great care must be taken in this situation to correctly

assign the border elements among the new regions.
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Figure 7: Divisive creep causes global disconnection into 4 regions

5.3 Why is there no global energy?

We will here present reasoning aimed at justifying the lack of a global energy criterion.
Many considerations combine to indicate that, for our purposes, this popular idea in
the field of image segmentation is inapplicable.

The most obvious problem is that addressed in section 5.2 — the topological con-
straint, applied apparently perpendicularly to the statistical ones, interferes with a
possibly otherwise orderly progress to lower configuration energies.

We will attempt to show here, though, that the real reason behind the lack of a
global energy is less straightforward. We could, for example, adopt the energy crite-
rion of Yuille and Zhu[22], and ascribe to each configuration the total log likelihood
ascribed to the pixels under the models. Our topological difficulties would then vanish
— seemingly.

In fact, the lack of global energy is the price we pay for the superior regularisation
of our system. The Y+Z system, and many similar energy—based schemes, suffer

from a profusion of arbitrary thresholds and constants that attempt to shoe—horn
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the multiple conflicting requirements (boundary smoothness, not too many/too few
regions, accuracy/unbiasedness of boundaries, etc.) on a segmentation system into a
single number, the energy, which can then be optimised classically.

Our system, on the other hand, tries to model the structure of the problem in the

structure of the algorithm. The reasons are as follows:

1. The discriminabilities used as region merging criteria are the only quantities that
can be regularised satisfactorily over scales/statistics (see section 3.4).

2. The action of creeping should be precisely antagonistic towards merging, i.e. no
normal creeping operation should cause regions to be more likely to merge.

3. Therefore, the condition optimised by creeping should be the same as that for
merging.

4. A quantity formed by sums of discriminabilities is intrinsically a wrong measure
of the goodness of a segmentation. A 1-d example of this mistake is shown in
Figure 8. The segmentation with two regions has vastly higher energy than the
one with three, but is incorrect.

5. Therefore, each discriminability should be optimised individually, until such time
as it is no longer a significant variable.

6. The only consistent approach to deciding whether variables are significant is to
use the discriminabilities themselves, hence the definition of magic number in
section 2.4.

7. This path also ensures modularity, by insisting the only communication between
the statistical system and the configuration system is via discriminabilities.

8. The topological criterion appears even in the problem statement of section 2.1
as an extra, externally imposed condition, so we should not expect to have it
interact naturally with the statistical criteria.

9. Therefore, the topology smashing operations of section 5.2 should be allowed to
occur wherever they are locally indicated, and any effects they have on non—
convergence of the algorithm should be treated by symptoms only; they do not

indicate a disease!

5.4 The Deflation Apparatus

On certain types of images (those with extremely strong boundaries, i.e. very low
noise images, and those with extremely thin regions, such as that in Figure 14),

additional problems occur related to the on—line nature of the scale estimate N*. In
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Figure 8: Left: Three-region configuration with two weaker borders. Right: Two—

region configuration with one very strong border. Left image is correct.

these two cases, the configuration can get “trapped” in incorrect positions; if the
border elements are much larger than a structure in the image, the discriminability
will be low, owing to the small difference in statistics. This low discriminability will
in turn recommend a large border element size, which will then fail to prevent the
correct detection of the structure.

A mechanism called “deflation”, where the scale estimate of a boundary is per-
turbed downwards in an exploratory manner, is employed to resolve this problem —

however, space does not permit treatment here.

6 Experimental Evaluation

We here demonstrate the power of the algorithm to adapt automatically to the ex-
tremes of scales/topologies present in images. Figure 11 shows the final segmentation
of Figure 3(d) - the system has correctly descended to the lowest appropriate scale,

and the circle is accurately localised, after 3 iterations of phases B and C.

6.1 Noise robustness

A severe test of the algorithm is shown in Figure 10, which shows the successful seg-
mentation of a dark circle drawn from distribution G(124, 32%), against a background
of G(128,32?), shown in Figure 9. In this image, we have artificially lowered the
magic number by one scale for illustration, which leads to the irregular boundary; in
its natural form the algorithm finds a large square. This level of noise is too severe

for any contour—based technique, and indeed is too severe for segmentation by the
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Figure 9: Original 4/32 image Figure 10: 4/32 result

human visual system. The system continues to detect the circle until the difference
in means drops below 2.

A split-and—merge system, however, only succeeds on an image where the differ-
ence in means is 5, although at a much coarser resolution. Thus the system takes
on the benefits of these other systems, and gives further improvement. The run time
on 128x128 images of this sort is around 1 second, a factor of 2-3 slower than split—
and—merge, which has been shown in [12] to be the fastest of region segmentation

schemes.

Figure 11: Final result from Fig. 3 Figure 12: Typical image from [12]

We should emphasise here that the selection of a scale by the system indicates that
the form of the boundary below that scale is essentially indeterminate — i.e. we are
free to interpolate any boundary that does not extend past half a square’s distance
from the one given, and they will all be equally valid. In practice, if we required
best results, this process should be marginally statistics—driven. If necessary, this

configuration could be used to initialise a polygon—based version of the algorithm

21



that would be slightly more free to construct boundaries of differing orientations, but
the great majority of statistics—based shape information extractable from the image
is already present in these segmentations.

We here present a systematic performance evaluation of the algorithm’s breakdown
under noise, using an evaluation criterion and results taken from [12]. The criterion is
a weighted sum of terms involving region size and boundary length. Figure 13 shows
the variation of this criterion for our system (the dark line) against five competing
region— and edge—based systems. The images segmented are similar to that in Figure
12, with differing signal-to—noise ratios (SNR). Our definition of SNR is also taken
from [12]: Let p; be the mean grey level of region R;, and o be the standard deviation
of their common noise. This definition then gives (1/0?) (Zi > Pij(pi — uj)2) as the
SNR, where P;; is the proportion of the boundary of region R; neighbouring R;.
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Figure 13: Performance evaluation

The figure shows the considerable superiority of our method in noisy images,
despite this series of images being chosen by the authors of [12] to be particularly
hostile to quadtree—based systems. The system also performs very well in low—noise
images — since it has no smoothness regularisation, it misclassifies a few pixels in

moderate noise, leading to less than a perfect score. If it is considered desirable, such
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a term could be added as post-processing to the system; however, it would degrade
the score on images without smooth boundaries.

It should also be noted that the results presented for the other five systems are
the result of optimising the criterion with respect to their adjustable parameters, over
several dozen runs. Our system also scores heavily over the others in that it has no

such parameters.

6.2 Scale adaptation

In the other direction, we show the successful segmentation of Figure 14(a), taken
from [20]; although the current implementation cannot always descend to the pixel
level, it correctly identifies the thin lines and blocks until quite narrow spacings at
the left; the left—hand strip is seen to be a single, high—variance region. The noisy
boundary of the fifth bar from the right is due to the sampling problems mentioned
in section 7.3; over this bar, the minimum block-size is three pixels wide, leading to
classification problems. It should be noted that contrary to the claim made in [22],
this success has been made in a unified framework without the addition of any form

of edge term.
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Figure 14: (a) Original degenerate image; (b) Result from Yuille+Zhu system[20]; (c)

Split and merge result; (d) Proposed system.

In order to segment the strip with closely-spaced lines, it will be necessary firstly
alter the implementation in the manner described in section 7.3 to allow individual
pixels to be handled successfully, and possibly also to alter Phase A to make more
efforts to discover extremely thin regions. The run time on this 200x200 image without
deflation is 5.1 seconds using a Sun UltraSparc 1 Workstation. The deflating phase,
which is not yet optimised, takes a further 15 seconds.

Both split-and—merge, and the system of [22], which claims to generalise and

improve all contour—based methods, fail to segment this image.
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6.3 Testing on Real Images

We present three real images segmented by the algorithm, one using pure gray-level
information (Figure 15), one using colour (Figure 17), and one using a simple texture

measure (Figure 19). The first image used 1-dimensional Gaussian models, and the

second two used 2 dimensions, with 5 parameters.

Figure 15: Original greyscale image Figure 16: Segmented result

6.3.1 Gray-level image

All the visible region boundaries are correctly picked out; the exceptions are

e At the bottom right of the face, and at the left of the ear — these boundaries
are to regions with indistinguishable grey-level statistics, and are incorrectly
merged with the background as one region. Splitting these will be perfomed by
a separate line detector (in both cases, a faint thin linear structure is perceptible

at the boundary), in conjunction with geometric constraints.

e Along the contours of the cheeks — the system’s assumptions about the image
are violated here (as well as almost everywhere else in the image!). The system
is seeking regions with stationary Gaussian statistics, and is confused by the
shallow gradient in this area. It effectively generates regions along the contours
of equal intensity, spaced so far apart that the resulting regions are maximally
significant. In general this is undesirable behaviour, and will be solved by
adding gradient models explicitly into the model library, or alternatively by an
extra merging phase that destroys regions that have no discernable edge—based

support.

However, the features (eyebrows, eyes, hair, line of chin) are quite clearly picked

out, and the linear structures in the background (monitor, planks of wood) are clearly
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present as separate entities. The advantage of this output over the corresponding edge
map is that the boundaries (a) have considerably fewer drop—outs due to local dis-
turbances, (b) always join at corners, and (c) are assigned to the borders of definite
regions. These powerful conditions will be combined to drive the first higher-level
process run over this feature detector, described in section 7.4. Such segmentations
offer significant benefits to many vision tasks, owing to (i) the increased robustness
of image-to-image correspondences possible by using region information, and provid-
ing better performance in numerical and geometric work owing to (ii) the increased
unbiasedness of the contours relative to those obtained by snake or edge-based sys-
tem, which are often confused by varying boundary intensities, and sudden changes

in geometry.

6.3.2 Colour image

This image, taken from [22] is segmented well by the algorithm, owing to its simple
colour structure. We use a simple colour model, which is designed primarily to remove
problems due to gradients mentioned with respect to the gray-level image; the three-
dimensional RGB space is normalised by luminosity (with care at low intensity levels)
into a two—dimensional chromaticity space. This procedure is similar to that of the
colour constancy work of Funt and Finlayson [10], or the colour model of [22] — the
second version differs in that the authors treat the luminosity direction as a parameter
of the model, and allow it to rotate in order to segment out highlights due to different
coloured illuminants.

Our segmentation differs from that in [22] in two important respects, that (i) the
highlight regions on the right of the face and arm appear as separate regions, as do
(ii) the eyes. The first is due to our inferior model, that does not explicitly deal with
this situation, and the second is due to our superior optimisation technique, which
appropriately generates small regions when required.

We should note, however, that given this segmentation it would be relatively easy
for a later level of processing to detect the highlight nature of the two extra regions,

since the only decision required is a binary merging one.

6.3.3 Texture image

We use a crude texture model, filtering by perpendicular 2x1 derivative kernels; this
image demonstrates our ability to detect orientation differences in otherwise identical

textures. Smoothing is effectively performed by specifying a minimum scale for the
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Figure 17: Figure 18: Figure 19: Figure 20:
Colour image [21] Segmented result Texture image Segmented result

algorithm to work to.

In the absence of explicit prior instructions, the system descends to the minimum
available scale, and finds the boundaries of the smallest inhomogeneities in the image.
Although providing (essentially) smoothing information prior to segmentation will
improve the results if the scale chosen does indeed match the natural scale of the
texture, if it does not, the results will generally be even worse. In the light of these

results, we will now consider the matter of our stationary assumption.

7 Stationarity

Why did we make this assumption? Firstly, we should mention that this assumption is
standard in the literature — in particular, it underlies the majority of region—based
approaches described in the introduction. Before considering the problem further,
we should also state two pragmatic reasons for this assumption, namely that (a) A
solution to the segmentation of stationary statistics is useful in its own right, when
applied to contexts (signal/image processing) where its assumptions are more likely
to hold, and (b) This assumption allows us more easily to characterise and quantify
the performance of our system, once constructed (section 6.1).
However, why is stationarity useful to computer vision?

It is because, at a suitably high level, the assumption is appropriate; that is, the
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output of the highest possible level of segmentation is a piecewise constant function
over the image, mapping each pixel to the identity of the object under it — a function
which, for example, maps pixels to chairs, trees, cars. This function exhibits the
piecewise stationarity we require, which arises by the occlusive nature of the image
formation process, and our conceptual division of the world into discrete objects.
On our way to this highest level of stationarity, we must make use of weaker, more

low-level forms of it. Our first stopping point is likely to be texture.

7.1 Texture

A texture is by definition something which has some form of stationarity, but this
stationarity is not expressed directly in terms of the intensity levels of its pixels.
Instead, it arises through the repeated occurence of “texture elements” — it is this
occurence phenomenon which is stationary. This stationarity has a natural scale
over which the repetition occurs, expressed in terms of the separation and size of the
elements. This differs from the detectable scale which our system uses to determine the
discriminability of statistics; therefore these two scales act as independent thresholds
below which scale the specification of a textured region has no meaning.

There are many ways to uncover the necessary natural scale, and thus convert
texture into stationary values — Dunn et.al. [8] for example, explore ways to make
the output of Gabor filters more stationary over textured regions. Once this has been
done, systems such as this one may be applied at a higher level.

Ignoring this problem usually leads to difficulties. A common approach is merely
to relax our tolerances for stationarity, in the hope of naturally “segmenting out” the
lowest scale of inhomogeneity in the image. In our framework, this would correspond
to lowering of the confidence threshold ¢. mentioned in section 3.4, which was the
method employed in figures 17 and 19. The results, although acceptable, occur at a

heavy price. The beneficial formal properties of the algorithm are destroyed:

1. We have introduced unsettable parameters into our system.
2. The positions of the detected boundaries are no longer guaranteed to be unbiased,
and

3. They no longer depend continuously on the contents of the image.

We only therefore advocate the use of this system in its natural form. In section

7.4, we show a first appropriate application to a non—stationary problem.

27



7.2 Scalarity and Unbiasedness

The problems mentioned in the previous section must occur if we adopt an energy
minimisation framework, and require geometric and statistical-based forces to “fight
it out” in a scalar context. Setting a “sloppiness” threshold for stationarity effectively
assigns a relative weighting between these two types of force, whereas in truth is there
is no “correct” weighting — whatever choice we make, we can always find images that
cause us either to find too smooth boundaries, or too noisy ones. This system avoids
these problems, by modelling independent constraints as independent mechanisms

within a decision—-making framework.

7.3 Comments on Performance and Efficiency

The current implementation is deficient in a number of respects — the first related
to its quantisation scheme. It will be noticed that many of the above images have
“block artifacts” at boundaries at scales higher than indicated by the original images.
This results from the fact that the system recursively divides the image (as exactly as
possible) into quarters at each level of the quadtree — problems arise for images with
side not equal powers of two, since at the bottom level of the quadtree, it is impossible
to get leaf nodes consisting of single pixels (particularly noticeable in the long thin
image 17). This can be addressed relatively easily in future implementations.
Secondly, although the algorithm is extremely rapid (under 10 seconds) on rela-
tively small images, the effects are apparent of the insertion at early stages of devel-
opment of rarely used procedures with poor computational complexity (O(V*) in the
number of pixels in the image); the system takes several minutes on 512x512 images.
For larger image sizes, and higher resolutions, these dominate the cost of computa-
tion. These operations will also be replaced with more efficient ones, however at some

cost to the complexity of the implementation code.

7.4 First “Tram—Line” Segmentation

Ultrasound images exhibit at least two major forms of non—stationarity. The first,
“speckle”, due to interference of reflecting soundwaves, is outside the scope of this
paper, requiring the detection of “natural scale” mentioned in section 7. The second,
dropouts and shadows caused by blockage of the beam, and gradients caused by
reflections of a finite—width beam by nearby structures can be handled quite effectively

by a two—tier architecture. Another possible problem, their extremely noisy nature, is
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already well handled by our algorithm’s robustness. We avoid speckle by setting our
minimum scale of working above the speckle scale; 8x8 or 4x4 are the only plausible

choices.

7.5 Tram-lines

We make central use here of several beneficial properties of our region—based system.

1. The resulting boundary map contains (almost) all locally detectable boundaries
in the image (as well as other spurious boundaries due to gradients).
2. The boundary positions are unbiased.

3. The boundaries are continuous, and join at corners (nodes).

We apply an approach called “tram-line segmentation”, which exploits these proper-
ties to walk along the tree of boundaries, and select from them a closed contour
maximising a simple evalutation criterion. Effectively, we have transformed the
continuous—domain segmentation problem into a simple combinatorial optimisation
problem — simple, because the number of regions to be handled is likely to be three or
four orders of magnitude lower than the original number of pixels in the image, and

because yet more simplification of algorithms can be achieved due to the independence

of far—apart regions.

"Ef,'-’-'" |
iﬁq%

HI._

tﬁ%

Figure 21: Figure 22: Figure 23:

Original ultrasound image Raw segmentation Tram-line result

In Figure 22, which is a segmentation of Figure 21, we use a simple greedy optimi-
sation algorithm with lookahead 1 to aggregate the detected regions to form the final

segmentation in Figure 23. The extremely crude geometric criterion we use, being the
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ratio of the square of the circumference of the region to its area, produces excellent
results on this difficult image, because of the effect of the tram—line phenomenon.

The problem is still one of the same nature — the top-level algorithm is effec-
tively similar to some region—based snake systems [5]. However, in this new, “custom—
discretised” space, the minimum of whatever evaluation criteria we use will be over-
whelmingly more obvious and robust to disturbances than that in the original space,
since an overwhelming number of insupportable segmentations have been implicitly
weeded out before we begin to segment. There are left only a small handful (in
this case just one) of alternatives that respond to extremely lightweight optimisation
techniques.

The second image (Figure 24) shows a region with a pronounced shadow — there
is nothing that can be done to stop edge-, threshold— or snake-based schemes from
locking onto the first, internal edge, which is much more pronounced. However, our

simple geometric criterion along the tram-lines easily picks up the correct external

boundary in Figure 25.

Figure 24: Figure 25:

Original ultrasound image Tram-line segmentation

We propose to employ a system similar to this as the lower level of a general texture
segmentation/detection scheme; we will uncover the natural scale by application of
similar evaluation criteria to the features detected by this algorithm at the lowest
scale; once this is established, the higher level problem will be rendered sufficiently

stationary for a further application of the algorithm to find texture boundaries.
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8 Conclusions and Further Work

The design of the optimisation procedure presented here has been shown to give supe-
rior results as applied to the general problem of segmentation of stationary statisitcs,

in particular resolving the following problems:

Small Regions — Many systems (as identified in [4]) suffer from the generation of
unwanted ‘small regions’ at the end of segmentation, which are usually dealt
with in an ad hoc manner. The proposed algorithm does not generate small

regions unless they are statistically justifiable.

Noise Robustness — This system has been demonstrated to be thoroughly resis-
tant to image noise, and capable of performing close to the limits of statistical
detectability.

Boundary Bias — Contour—based schemes do not usually provide unbiased esti-
mates of the boundary owing either to regularisation terms, such as those
proportional to boundary length, or to the use of sampling windows at the
boundaries of regions.

Automation — This system, if used on images conforming to the model set, contains
no adjustable parameters.

Model Inflexibility — The derivation of section 2.2 is general, and may be applied
to a large class of modelling frameworks.

Computational Efficiency — Since the algorithm does not perform wasteful (e.g.
statistically meaningless, or randomly chosen) operations, it enjoys significant

speed advantages over competing systems.

We have also shown the limitations of the assumption of stationarity when applied
to most real images, but have demonstrated results showing the considerable benefits
this scheme offers as part of a multi-stage segmentation apparatus. Work will now
explore the possibilities of using multiple instances this same system as separate
levels of such a scheme, as applied to real-world problems such as the classification

and segmentation of texture, and robust matching of features across images.
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