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ABSTRACT

We describe a self-organising pseudo-articulatory
speech production model (SPM), and present recent
results when training the system on an X-ray mi-
crobeam database. The SPM extracts statistics de-
scribing articulator positions and curvatures during
the production of continuous speech, then applies an
explicit co-articulation model to generate synthetic
articulator trajectories corresponding to time-aligned
phonemic strings. A set of artificial neural networks
estimates parameterised speech vectors from the syn-
thetic articulator traces. We present an analysis of
the articulatory information in the X-ray microbeam
database used, and demonstrate the improvements
in articulatory and acoustic modelling accuracy ob-
tained using our co-articulation system.

Nous décrivons un modéle auto-organisatif
pseudo-articulatoire de la production de la parole
(SPM), et présentons des résultats obtenus sur une
base de données contenant de micro-faisceaux de
rayons X. Le SPM extrait des statistiques décrivant
les positions et courbures des articulateurs lors de la
production de la parole continue, puis met en appli-
cation un modéle explicite de la co-articulation pour
générer des trajectoires articulatoires synthétiques
qui s’accordent avec une séquence de phonémes
aligné dans le temps. Un ensemble de réseaux
neuromimétiques estime les vecteurs paramétriques
de la parole en fonction des traces synthétiques artic-
ulatoires. Nous présentons une analyse du contenu
informationnel de la base de données utilisée, et
montrons ’amélioration des modeles articulatoires
et acoustiques obtenu en utilisant notre systéme
co-articulatoire.

INTRODUCTION

The achievable modelling accuracy of any self-
learning system is highly dependent upon the quality
of the data from which its parameters are extracted.
In previous papers we described a self-organising
SPM which was trained on synthetic articulatory data
derived using a codebook of (pseudo-articulator vec-
tor, acoustic vector) pairs. A Kelly-Lochbaum syn-
thesiser was used to generate the codebook entries,
and dynamic programming was used to invert this
codebook to obtain pseudo-articulatory traces corre-
sponding to speech taken from the Defence Advanced
Research Projects Agency (DARPA) Resource Man-
agement (RM) corpus [1].

While this provides a useful starting point in the

absence of physical articulatory data, there are two
significant sources of inaccuracy in such a model. The
first of these is due to the fact that the articulatory
system which is used to generate the codebook is syn-
thetic, and usually will not correspond closely to that
of the speaker whose speech is used in the inversion
process. Secondly, this process itself is sub-optimal
due to the significant quantisation errors introduced
in order to keep codebook size practical, and the nec-
essary trade-off between acoustic and articulatory ac-
curacy.

Until recently however, some such method for ob-
taining a data set was needed, due to the lack of
a physical database providing measured articulator
traces accompanied by synchronous speech record-
ings. In this paper we now present the results of
applying our articulatory parameter extraction tech-
niques and subsequent parameterised speech synthe-
sis algorithm to data from the University of Wisconsin
(UW) X-ray microbeam (XRMB) speech production
database [4].

DATABASE FORMAT

The UW XRMB database contains sampled articula-
tor position traces along with synchronously recorded
speech waveforms for 57 speakers of American En-
glish, comprising 32 females and 25 males. The
corpus contains sentences (40%), citation words and
sound sequences (33%), prose passages (13%), oral
motor tasks (8%) as well as counting and sequences
of number names (6%). For each of these a nominal
word-level transcription is provided, although sub-
jects occasionally deviated from this text.

Acoustic data

The speech signal was recorded using a directional
microphone in the presence of machine noise at a
sampling period of 46us (approximately 21739 Hz).
A fixed recording period was used for each task,
which occasionally resulted in truncated recordings
for slower speakers. In addition, a short tone is played
at the start of each task, and background comments
such as “good” and “rep” are present at the end of
many utterances.

Articulatory data

The articulator positions were determined using a
narrow X-ray beam to track the movements of gold
pellets glued to the tongue, jaw and lips of a subject



while reading from the set corpus. Three reference
pellets were attached to the subject’s head, and a to-
tal of eight articulator pellets were tracked relative to
these, with the subject’s head viewed in profile by the
apparatus. The eight pellets are denoted UL (upper
lip), LL (lower lip), T'1 to T4, (tongue positions 1
to 4 where 1 is closest to the tip), M NI (mandible
incisor), and M NM (mandible molar).

The x and y positions of each of these pellets were
recorded at sample rates which varied according to
the relative observed accelerations of the various ar-
ticulators, and were then interpolated and re-sampled
at a uniform sampling period of 6.866ms (approxi-
mately 146 Hz).

Due to limitations imposed by the experimental
set-up, the XRMB system occasionally mistracks pel-
lets during recording due to the loss of a pellet trace,
or as a result of confusion between two traces which
pass close to one another. Tracking may be lost for
a brief period or throughout an utterance, and each
tracking error usually affects only one or two artic-
ulators. These tracking errors have been identified
and marked by hand for a subset of the speakers, and
for the speaker used in this work (jw18), 21% of the
records used were found to contain a tracking error
in one or more articulator pellets.

DATABASE PREPARATION

Data preprocessing

The raw acoustic signal contained significant noise at
half the Nyquist frequency — approximately 5435Hz
— which was removed using a notch filter. The result-
ing signal was down-sampled to 16kHz by interpo-
lating 92 times up to 2MHz, then down-sampling 125
times. The 16kHz speech was parameterised using the
CUED HTK hidden Markov model (HMM) toolkit
into both 24-dimensional log Mel-frequency log fil-
ter bank (FBANK) coefficients and 12-dimensional
Mel-frequency cepstral (MFCC) coefficients. In both
cases a Hamming window of length 25ms was applied
to the acoustic signal before computing the Fourier
transform, and a step size of 10ms was used between
adjacent parameterised speech frames.

The 16 articulator waveforms (z and y positions
of 8 pellets) were also interpolated, and re-sampled
at intervals of 10ms starting from 12.5ms to give val-
ues corresponding to the centres of the parameterised
speech frames. The word-level transcriptions sup-
plied with the database were hand-edited to corre-
spond with the actual text spoken, including nonsense
transcriptions corresponding to truncated words at
the ends of utterances.

Generation of alignments

A phonetic dictionary for the words in the XRMB
database using the RM phone set was constructed

by merging and editing relevant entries from the RM
and LIMSI-ICST dictionaries, and adding entries cor-
responding to truncated utterance endings.

A set of monophone HMMs with two emitting
states for stop and diphthong phonemes and three for
the remaining phonemes was trained using HTK on
MFCC parameterised speech from the RM speaker-
independent corpus. Separate three-state monophone
HMMs corresponding to the tone played at the start
of each utterance and the “good” and “rep” back-
ground comments found after many utterances were
trained on parameterised speech vectors extracted by
hand from 21, 16 and 5 examples of each sound re-
spectively.

These model sets were then combined and used
with the hand-edited transcriptions and dictionaries
to train a set of speaker-dependent 5-mixture mono-
phone HMMs on the speech of one speaker (jw18).
Sentences, citation words and number sequences were
used as training data, and the prose passages were
segmented into individual sentences by hand for use
A state-level forced Viterbi align-
ment of the data sets to the transcriptions was then
performed, to yield a data set labelled at the sub-
phoneme level.

In the case of stop phonemes the two states align
to the occlusion and burst sections of the phoneme
respectively, where the burst state is optional; in the
case of diphthongs these align to the initial and fi-
nal voiced sections. In both instances each state is
treated as a separate phoneme, giving an expanded
set of 60 “phonemes”.

as test data.

ARTICULATORY MODEL

Using these phonemic alignments, each articulator
trace is sampled at points corresponding to the cen-
tres of the various phonemes, to give a set of statis-
tics describing mid-phonemic articulator positions for
each phoneme. The resulting positional variations
are modelled by single Gaussian distributions, where
deviations from the mean positions are due both to
random variations in articulator positioning, and to
anticipatory and carryover co-articulation.

To synthesise articulator trajectories correspond-
ing to an arbitrary phonemic string, we must predict
the direction and magnitude of the co-articulatory
movement away from these mean positions from
knowledge of the time-aligned phonemic string alone.
This is achieved by observing that the variation in ar-
ticulator position in most cases is strongly correlated
with the curvature of the trajectory at the point con-
cerned: relatively high and low curvatures tend to
give undershoot and overshoot of the mean position
respectively.

For each instance of each phoneme we therefore
also compute a measure of the approximate curvature
of each articulator trajectory at the phonemic mid-



point, computed as the difference between the gradi-
ents leading out of and into the midpoint when lin-
ear interpolation is used between successive phonemic
means.

These curvature statistics are also modelled as sin-
gle Gaussian distributions, so that the position and
curvature statistics describing articulator behaviour
during the production of a given phoneme form a
bi-normal distribution. By computing the correla-
tion coefficients between the curvature and positional
statistics we can then predict the articulator’s devi-
ation from the mean using only a knowledge of the
phoneme sequence.

Given such a set of co-articulated time-aligned
mid-phonemic positions, complete articulator trajec-
tories are synthesised by using linear interpolation
constrained to pass through the average of two ad-
Jacent co-articulated target positions at the phone-
mic boundary. To enhance the system’s robustness
to unusual contexts given the small size of the train-
ing data set, a low-order low pass filter is applied
to the resulting trajectories to remove very sharp ar-
ticulator movements which are otherwise observed in
approximately 0.3% of phonemes.

ACOUSTIC MODEL

The non-linear mapping from synthetic articulator
trajectories to FBANK parameterised speech vectors
is approximated by a set of artificial neural networks
(ANNs), where a single ANN can be used for each
phoneme, or else data sets from similar phonemes can
be combined into a single mapping.

The articulator inputs to the ANNs were scaled by
the mean and standard deviation for each individual
articulator computed over the entire training set to
yield a majority of inputs in the range [-1,1]. The
target vectors were chosen as FBANK vectors as these
result in a less compact but simpler acoustic mapping
than do MFCC parameters, due to the absence of the
cosine transform.

In all cases the ANNs were trained using resilient
back-propagation (RPROP), which gives much faster
training times than simple back-propagation. The
number of hidden nodes was varied to give optimum
results, and in all cases cross-validation was used to
prevent over-training.

RESULTS

Articulatory modelling

Statistics describing articulator positions and curva-
tures at phonemic midpoints were computed for the
training data set, along with their corresponding cor-
relation coefficients. Figure 1 shows an example of the
correlation coefficients for the 2 and y co-ordinates of
8 articulators for the phoneme /s/.
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Figure 1: Correlation coefficients for phoneme /s/.

The relatively low correlation coefficients for lower
lip, jaw and tongue tip positions reflect the fact that
these articulators are highly constrained in position
for the production of /s/, whereas the tongue back is
relatively free to move to positions dictated by neigh-
bouring phonemes, as evidenced by the larger corre-
lations for 12 to 1'4.

Synthetic articulator trajectories were then con-
structed both with and without co-articulation from
time-aligned phonemic strings produced by forced
alignment of the transcriptions to the training and
test data sets. The errors between the synthetic and
X-ray trajectories were computed at all points, and
the use of co-articulation gave a reduction in error for
all training sentences, and in 24 of 25 test sentences.

The mean error for each articulator scaled by its
mean and standard deviation over the entire training
set was computed, and each articulator’s error was
again found to decrease with co-articulation on the
training set. The results for the test set are shown in
Figure 2.
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Figure 2: Test set errors by articulator.

The errors for all articulators except the z po-
sition of the mandibular incisor decrease with co-
articulation. In general the errors in tongue position
are less than for lip and jaw position, with the z po-
sition of the front and back of the jaw being most
poorly modelled. This is as expected since the ex-
tension of the jaw has relatively little effect on the
acoustic signal, and we expect much of the variation
in this articulator to be random movement.

An example of the effects of co-articulation on a
synthetic articulator trajectory is given in Figure 3,



for the articulator which is is most affected by the
co-articulation model, T'4y.
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Figure 3: Movement in height of tongue back (T'4y)

for utterance: “problem, children, dormer”.

As expected, the back of the tongue is relatively
high during the phoneme /1/ and relatively low during
/r/, and the co-articulation model has resulted in a
closer approximation to the X-ray trajectory.

Acoustic modelling

Separate sets of ANNs were trained to learn the map-
pings to FBANK parameterised speech vectors from
synthetic articulator trajectories with and without
co-articulation, as well as from the original X-ray
data.

The mean output errors for the networks trained
on synthetic co-articulated input trajectories were
lower than the corresponding errors without co-
articulation for 80% of phonemes. Of the remaining
20%), half of these showed an error increase of less
than 3%; of those with significant error increases, the
majority were for uncommon phonemes, for which
very little training data was available, resulting in
less accurate co-articulation statistics.

Similarly, the networks trained on synthetic co-
articulated input gave lower output errors than those
trained on the original X-ray articulator data in 77%
of phonemes, despite the inherently less accurate in-
puts used by the former. This result is probably due
to the fact that there is significantly more random
variation in articulator positions for the X-ray data
by comparison with the synthetic traces, which devi-
ate from their mean positions in a systematic way.

FUTURE WORK

In a previous paper [3] we applied a SPM trained
on a synthetic articulatory database to the task of
word recognition for the RM corpus. We now in-
tend to use the SPM trained on data from the UW
XRMB database to the tasks of both phoneme and
word recognition, by re-scoring N-best lists produced
by a traditional recognition system such as HTK.

It would also be instructive to examine the effects
of combining data sets from different phonemes before
training the acoustic mappings, and to investigate

modifications to the articulator set. These could take
the form of dimension reduction using either principal
component or linear discriminant analysis, or else an
increase in dimensionality via the generation of ad-
ditional articulatory inputs, as demonstrated for the
SPM trained on RM data [2].

CONCLUSION

In this paper we presented a speech production model
which extracts its parameters automatically from an
X-ray articulatory database. Statistics describing ar-
ticulator positions and curvatures during the produc-
tion of 60 phonemes were extracted and modelled
with single Gaussian distributions. Significant corre-
lations were found between these two sets of statistics
for many articulators and phonemes, indicating that
curvature may be a useful predictor of co-articulatory
variation in articulator positions.

We demonstrated a method for synthesising ar-
ticulator trajectories from time-aligned phonemic
strings, and showed that the use of our simple co-
articulation model significantly improves modelling
accuracy. Sets of artificial neural networks were used
to approximate the mappings from articulator trajec-
tories to parameterised speech vectors, and the net-
works supplied with synthetic co-articulated articula-
tor traces trained with lower output errors than did
both those without co-articulation and those using
the original X-ray trajectories as inputs.
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