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ABSTRACT

Considerable improvement in the performance of contin-

uous speech recognition systems, particularly those based
on Hidden Markov Models (HMMs), has been shown in re-
cent years. Nevertheless a number of unsolved problems
remain which limit this progress, including the success-
ful modelling of co-articulation and the identification of
out of vocabulary utterances. One possible solution is to
re-synthesise speech from the N-best time-aligned phone-
mic transcriptions produced by an HMM, and re-score
this list based on a spectral comparison between the orig-
inal and re-synthesised speech frames. In this paper a
novel speech production model (SPM) suitable for use in
such a system is introduced, and preliminary re-scoring
results are presented.

1. INTRODUCTION

The application of speech production models to the task
of automatic speech recognition is a relatively new area
of research which has attracted increasing interest over
the past few years [10]. The basic operation of such a
combined system is illustrated in figure 1.
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Figure 1. System overview.

A conventional speech recogniser such as an HMM is
used to provide a list of hypothesised speech transcrip-
tions, along with a time-alignment at the phonemic level.
Each of these time-aligned phoneme strings is then used
as input to the speech production model and the speech
is re-synthesised. By comparing the synthetic speech cor-
responding to each of the N-best phonemic transcriptions
with the original speech, it is possible to re-score the tran-
scriptions, thus potentially offering improved recognition
results.

In order to successfully re-order the HMM output tran-
scriptions, the combined system must make use of infor-
mation which the HMM alone does not. The key advan-
tage of using a production model in this context is that it
allows an explicit representation of co-articulation to be
used. In statistically based systems such as HMMs, vari-
ability in the speech signal is typically accounted for by
the inclusion of multiple models for each phoneme accord-
ing to its phonetic context. Thus instead of maintaining a
single model for each phoneme, either biphone or triphone
models are used, in which a phoneme’s left or right con-

text (biphone) or both (triphone) are incorporated into
the model. The success of this approach is usually lim-
ited by the very large amount of training data that would
be required in order to adequately model each phoneme
in all of its contexts.

By using an articulatory speech production model it is
possible to provide an explicit model of co-articulation as
shown in figure 2. If a suitable set of articulator targets
and co-articulation parameters can be extracted for each
of the phonemes, plausible articulator trajectories can be
generated for any phoneme string. Thus whereas the ma-
jority of speech synthesisers are currently rule-based, this
requirement has generated renewed interest in articula-
tory speech synthesis [11, 13, 9].

The performance of many of these systems has how-
ever, been limited by an inability to model the excitation
sources and propagation characteristics of the human vo-
cal tract sufficiently accurately. An alternative approach,
and that which is pursued here, is to relax the constraint
of exactly mimicking human physiology and instead to
construct a self-organising model which learns an appro-
priate representation from speech data. A brief overview
of this speech production system will now be presented
[1], along with the results of a preliminary evaluation.
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Figure 2. Co-articulation modelling in articulatory speech
synthesis.

2. SYSTEM INITIALISATION

An appropriate initialisation is essential for any com-
plex learning system. In this model initialisation data
consists of parametrised human speech along with the
associated pseudo-articulator trajectories. The term
“pseudo-articulator” refers to a variable which is used
to parametrise the vocal tract shape, but which is not
constrained to model an actual human articulator [9].
These data were generated by using a Kelly-Lochbaum
synthesiser [8, 2, 3, 11] to produce a codebook of [pseudo-
articulator, parametrised speech vector] pairs. The speech
vectors were parametrised using 12 mel-frequency liftered
cepstral coefficients excluding log energy.

The codebook generated in this way contains 102488
entries, and unlike other such codebooks described in the
literature [12, 9] variable vocal tract length is explicitly
incorporated via a parameter which controls the num-
ber of vocal tract sections used in the Kelly-Lochbaum
synthesiser. Approximately 55% of the codebook entries
correspond to vowels semi-vowels and glides, 30% to un-
voiced and voiced fricatives, and 15% comprise the nasals.
In addition a small number of silence fames are included
for modelling stops and inter-word spacing.



Data with which to initialise the system are generated
by inverting this codebook to obtain approximate pseudo-
articulator trajectories corresponding to a corpus of hu-
man speech. Since the inverse mapping from speech spec-
tral vectors to pseudo-articulatory vectors is non-unique,
quite different articulator positions can produce approx-
imately the same speech output; hence the choice of ar-
ticulator positions must also be constrained to follow a
smooth geometric path.

In addition, the combination of this non-uniqueness
with the fact that the mapping is also non-linear means
that it is possible to have non-convex target regions in
pseudo-articulator space [5], so the inverse model must
also be constrained to a particular solution.

Both of these constraints are satisfied in our system
by using a dynamic programming algorithm, incorpo-
rating both geometric and acoustic cost functions, to
map speech spectral vector sequences into correspond-
ing pseudo-articulator sequences. To reduce the com-
putational load, a sub-optimal search was used in the
dynamic programming algorithm, which considered only
the 500 codebook vectors with the best acoustic match
at each step. Figure 3 shows an example of a pseudo-
articulator trajectory generated in this way. Phonemic
boundaries are shown as dotted lines, and the pseudo-
articulator takes on steady values during phonemes, with
transitions occurring at phoneme boundaries.
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Figure 3. Pseudo-articulator trajectory for "displacement”.

We applied this technique to 600 sentences of speech
from one male speaker taken from the speaker-dependent
portion of the Defence Advanced Research Projects
Agency (DARPA) Resource Management (RM) corpus.
From the pseudo-articulator trajectories generated, statis-
tics describing the position of each pseudo-articulator at
the midpoint of each phoneme were computed.

These statistics can then be used to generate approxi-
mate pseudo-articulator trajectories corresponding to ar-
bitrary time-aligned phoneme sequences. At the phoneme
midpoints, the pseudo-articulators take on the mean val-
ues computed for the phoneme concerned. Trajectories
are then generated by a piece-wise linear interpolation
between the means, constrained to pass through the av-
erage of two adjacent pseudo-articulator targets at the
phonemic boundary, as shown in Figure 4.
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Figure 4. Generation of pseudo-articulator trajectories using
constrained linear interpolation.

In this figure, phonemic boundaries are shown by dotted
lines, and the target positions for the pseudo-articulator
at the phoneme midpoints are shown by crosses.

3. CO-ARTICULATION

3.1. Models of co-articulation

During speech production, considerable flexibility is pos-
sible in the positions of the various articulators without
causing excessive degradation of the acoustic speech sig-
nal. As a result, any particular sound will be produced
differently according to the context in which it appears,
due to two types of co-articulatory effect [4]:

e Anticipatory co-articulation: occurs from right to left
and is due to timing effects — the articulator is “look-
ing ahead” to its next target position and has started
to move towards it.

e Carryover co-articulation: occurs from left to right
and is due to mechanical inertia  articulators can
only move at a finite speed.

This suggests the use of a model in which each pseudo-
articulator has a specific target position which would
ideally be achieved during the production of a given
phoneme, but in which the actual path followed is gov-
erned by the dynamics of the particular articulator.

The drawback of such a model is that both the sin-
gle target position for each phoneme and the articulator-
specific dynamics are independent of context. In reality
however, the positions of the various articulators will be
more or less highly specified according to the phoneme
being produced [6]. For example, during the production
of the phoneme /p/, the lips are constrained to form a clo-
sure, while the tongue body is free to take up the position
required for production of the following vowel.

A more accurate model therefore, would be one in which
the articulators follow a path of “least resistance”, sub-
ject to the constraint that their positions at any given
time must be sufficiently accurate to produce the desired
acoustic output.

3.2. Implementation

One approach to this problem [7] is to specify a region
through which an articulator must pass in order to pro-
duce acceptable acoustic output, with the actual path
taken being chosen to minimise articulatory effort. This
is effectively what is achieved in our system, in which the
position of each pseudo-articulator is specified as a Gaus-
sian distribution about a mean (or “target”) value.

The statistics describing these distributions are found
by sampling the initial pseudo-articulator trajectories at
the phonemic mid-points for each of the 600 training sen-
tences. Co-articulation is then modelled by modifying the
pseudo-articulator positions about these means, accord-
ing to an approximation to the curvature of the pseudo-
articulator trajectory at each phonemic midpoint.

These curvatures were approximations to the second
derivative of the trajectory, computed as the difference
between the gradients of the two linear interpolants on
either side of each target. The distribution of this cur-
vature measure for each phoneme was also modelled as a
Gaussian distribution estimated from the 600 sentences of
training data.

Co-articulation was then implemented by modifying the
initial positions of the pseudo-articulator targets up or
down according to the local trajectory curvature. For
example, if the curvature at a particular phoneme was
one standard deviation higher than the mean curvature
for that phoneme, then that target was under-shot by
one standard deviation from the target mean.

Once the pseudo-articulator target positions have been
modified according to their context in this way, the con-
strained linear interpolation described above is applied to
give the actual pseudo-articulator trajectories used.



4. SYSTEM TRAINING

4.1. Acoustic mapping

Our aim when training the production system was to
jointly optimise both the pseudo-articulator trajectory
shapes and the mapping from these to acoustic vectors.
For this reason we replaced the Kelly-Lochbaum vocal
tract model used in the generation of the acoustic code-
book with an assembly of neural networks, in which each
network was trained to approximate the mapping from
pseudo-articulator positions to output speech for a partic-
ular phoneme. We parametrised the speech using 24 mel-
scaled log-spectral coefficients computed every 10msec,
with a 25msec Hamming window applied to the input
speech.

To generate a sequence of these acoustic vectors cor-
responding to a given time-aligned phonemic string, the
pseudo-articulator trajectories are divided in time at the
phoneme boundaries. The trajectories corresponding to
each individual phoneme are then passed to the appro-
priate neural network, and the resulting acoustic vectors
are concatenated to yield the parametrised speech vector
sequence corresponding to the original utterance.

4.2. Re-estimation

During the training phase, the neural network mappings
and the pseudo-articulator statistics are iteratively re-
estimated so as to more accurately reproduce the input
speech.

The target positions of the pseudo-articulators for each
phoneme are re-estimated using the pre-trained neural
networks and linearised Kalman filtering. The Jacobian
matrices H of the network mappings are derived using an
extension of the standard back-propagation formulae to
compute the derivative of each network output with re-
spect to each input. An updated estimate x of the pseudo-
articulator position at any point in time can then be found

by:
x =%+ PHT(HPHT + R)™!(z — h(%))

where h() is the network mapping, R is the network’s

output error covariance matrix, P is the covariance ma-
trix associated with the original estimate X and z is the
observed acoustic vector [1].

This technique was used to re-estimate the positions
of each of the pseudo-articulator target positions at each
phoneme midpoint, and from these updated values a new
set of statistics describing means and standard devia-
tions of pseudo-articulator positions and curvatures were
derived. From these, the pseudo-articulator trajectories
were re-computed, and the neural network mappings re-
trained. This process was iterated to determine an opti-
mum set of pseudo-articulator statistics.

5. EVALUATION PROCEDURE

5.1. Generating N-best lists
The system was evaluated on the DARPA RM speaker-

dependent evaluation data which comprises 100 sentences
read by the same speaker used in the training data set.
In order to test the ability of the system to accurately re-
synthesise parametrised speech for recognition purposes,
we require a set of word-level N-best hypotheses as to the
text corresponding to these evaluation sentences.

These hypotheses were generated using the HTK Hid-
den Markov Model toolkit. A set of speaker-dependent
single Gaussian mixture triphone HMMs was trained on
the 600 training sentences, and these models were then
used to generate up to 100 most likely word transcriptions
of the input sentences. While it was possible to generate
all 100 transcriptions for most sentences, some extremely
short (e.g. 2-word) sentences generated less than 100 dif-
ferent transcriptions.

Since the standard word-pair grammar for the RM cor-
pus is extremely simple and the vocabulary size relatively
small (997 words), recognition rates are typically high.
Our aim however, is to assess the acoustic modelling
achieved by the speech production model, hence the word
N-best transcriptions were generated using a null gram-
mar.

Time-aligned phonemic transcriptions corresponding to
each word-level N-best hypothesis were generated using
a forced Viterbi alignment of the word transcriptions to
the parametrised speech vectors. This algorithm uses dy-
namic time-warping to find the most likely phoneme se-
quence consistent with a given word sequence. The result
is a set of phoneme strings together with a time alignment,
suitable as input to the speech production model.

5.2. Re-scoring N-best lists

For each time-aligned phonemic transcription, a corre-
sponding set of co-articulated pseudo-articulator trajec-
tories was derived and passed to the appropriate neural
networks, which produce 24-dimensional acoustic vectors
at their outputs. For each transcription in the N-best
list the resulting sequence of acoustic vectors is compared
with the sequence of acoustic vectors corresponding to the
original speech being recognised. The entry in the N-best
list which gives the closest match to the original is selected
as the most likely transcription.

When computing the distance between a given syn-
thetic acoustic vector and the actual acoustic vector cor-
responding to it, we use a Mahalanobis distance measure
which incorporates our confidence in the synthetic vector
coeflicients. Since we have previously computed the error
covariance matrix R associated with each neural network
mapping, the standard deviation associated with each co-
efficient in the synthetic vector can be used to scale the
difference between this vector and that corresponding to
the actual speech. The total distance between the actual
and synthetic vector sequences is therefore determined by
summing the Mahalanobis distances between each of the
individual vectors.

Since we also have prior information as to the proba-
bility of a given entry in the N-best list representing the
correct transcription of the input speech, this knowledge
is incorporated into the scoring process. This probability
decreases roughly exponentially with depth in the N-best
list, so we weighted the scores with a function which de-
creases exponentially over the first 15 N-best scores, and
is constant thereafter.

6. RESULTS

6.1. Re-scoring example

An example of the successful re-scoring of a sentence is
shown in Figures 5, 6 and 7. These show smoothed acous-
tic vector sequences corresponding to a section of an utter-
ance in which the speaker said the word “conventional”.
In this case the N = 1 hypothesis incorrectly transcribed
this section as “can change no”, whereas the N = 6 hy-
pothesis contained the correct transcription.

Figure 5 shows the sequence corresponding to the orig-
inal speech, and Figures 6 and 7 show the sequences syn-
thesised by the SPM from the N = 6 and N = 1 transcrip-
tions respectively. As can be seen from these diagrams,
Figure 6 gives both a better alignment and a closer spec-
tral match to the original speech than Figure 7, and hence
is the transcription chosen as corresponding to the utter-
ance.

While the gross spectral characteristics of the synthe-
sised vector sequences correspond roughly with those in
the original speech, the undesirable discontinuities in-
troduced by the concatenation of the outputs of the
phoneme-specific neural networks are clearly visible.



Figure 5. Acoustic output for original speech fragment:
“conventional”.

Figure 6. Acoustic output for synthetic speech from N = 6
transcription: “conventional”.

Figure 7. Acoustic output for synthetic speech from N =1
transcription: “can change no”.

6.2. Overall results

The performances of HTK and the SPM are measured in
terms of:

e H, the number of correct word labels.

e [, the number of deleted labels.

o S, the number of substituted labels.

o [, the number of inserted labels.
From these, the percentage of labels correctly recognised
is given by:

Percent Correct = % * 100%

where N is the total number of labels. The overall ac-
curacy also incorporates the number of insertions, and is
computed as:

N-D-S-1
Percent Accuracy = — N * 100%

Over the 100 test sentences, HTK and the SPM both
score 82.07% of words correctly identified, with the same
number of deletions and substitutions. However, the SPM
has many more insertions than does HTK, and hence a
lower accuracy score. This indicates that the SPM is
favouring transcriptions in which additional words have
been inserted which give a good short-term match to the
original speech, yielding slightly improved scores.

This is supported by the observation that when a
threshold is applied to the re-scoring process, such that
an N-best list is only re-ordered if the difference between
the N =1 score and the N = k score is greater than this
value, the SPM accuracy increases to 75.61% as compared
with 75.95% for HTK.

While these results demonstrate that it is possible to
achieve results comparable to those of a simple HMM by
using a SPM to re-score N-best lists, it is clear that greatly
improved acoustic modelling will be necessary if this tech-
nique is to be successfully applied to more complex tasks.

7. CONCLUSIONS

The field of speech recognition using speech production
models is still in its infancy, yet appears to show great
promise. In this paper a pseudo-articulatory speech pro-
duction system has been presented which is self-organising
and has the potential to address the problem of co-
articulation modelling encountered by current continuous
speech recognition systems. The co-articulation scheme
proposed not only models geometric constraints, but is
also consistent with “window” models in which the rel-
ative degrees of specification or under-specification of
pseudo-articulators are explicitly modelled.

By using a set of pseudo-articulators which are not
constrained to human physiology and an assembly of
neural networks to learn the mapping from the pseudo-
articulatory trajectories to output speech, both the trajec-
tories and the acoustic mapping can be jointly and itera-
tively optimised from an initialisation state, thus avoiding
the problems of accurately modelling the human speech
production process.

When evaluated on speech drawn from the DARPA RM
speaker-dependent corpus, the system described exhibits
an acoustic modelling performance which is comparable to
that of a simple HMM, however significant improvement
is clearly necessary before the system could be applied to
more difficult problems.

Considerable work will be required before production-
based systems such as that presented in this paper will be
able to improve upon the results obtained by state-of-the-
art recognisers. However, at the present time phonemic
variation due to co-articulatory effects is the significant
factor limiting the performance of large vocabulary con-
tinuous speech recognition systems, due to the inability to
provide sufficient training data to train context-dependent
models. Speech production models such as that described
in this paper may prove a viable technique for addressing
this problem.
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