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Abstract

The object of this paper is to find a quick and ac-
curate method for computing the projection matrices
of an image sequence, so that the error is distributed
evenly along the sequence. It assumes that a set of cor-
respondences between points in the images is known,
and that these points represent rigid points in the
world. This paper extends the algebraic minimisation
approach developed by Hartley so that it can be used
for long image sequences. This is achieved by initially
computing a trifocal tensor using the three most ex-
treme views. The intermediate views are then com-
puted linearly using the trifocal tensor. An iterative
algorithm is presented which perturbs the twelve en-
tries of one camera matriz so that the algebraic error
along the whole sequence is minimised.

1 Introduction

In recent years, the availability of texture mapping
graphics hardware has increased, so that most desk-
top computers are able to display exceedingly realistic
three-dimensional scenes. To achieve these new lev-
els of realism it is important that textured models are
obtained from photographic images.

Established geometric techniques exist for comput-
ing the motion between two or three views. The fun-
damental matrix describes the projective geometry be-
tween two views and the trifocal tensor describes the
geometry of three views. In the past, sequences have
been computed by linking together many fundamental
matrices or tensors into long chains.

The trifocal tensor [1] expresses the geometry of
three views and can be computed from six points in
three views, up to one of three projective ambiguities,
as was shown by Quan [2]. Recently research into
higher order tensors by Heyden [3] has shown that the
quadrifocal tensor (four views) is the highest order
possible. For longer sequences the only improvement
is the ability to average over a larger number of images.

Since closely spaced cameras have a small motion,
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it is important to use widely spaced views to improve
the accuracy of the results. In this paper the trifocal
tensor will be used to develop a method for comput-
ing the projection matrices of a sequence of images,
so that all the projection matrices are in the same
projective framework. This will be one of a family
of solutions that all describe the projective geometry.
The self-calibration technique by Pollefeys et al.[4] is
used to select one metric solution from the family of
projective solutions.

2 Background

A point X = [X Y Z 1]7 is projected onto an image
plane by a 3 x 4 projection matrix P, which can be
expressed in homogeneous co-ordinates as
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The matrix P has 11 degrees of freedom and can
be computed from six known points.
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If a second camera P’ is introduced and the first

camera is assumed to be the normalised camera P =
[T | 0] then the fundamental matrix is given by:

F = [a4] ><A (3)

Points on the two images are related by equation 4
which can be expressed geometrically as the epipolar
constraint (see figure 1).
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Figure 1: Epipolar geometry.

The ray projected from a point in the first image
will be viewed as a line in the second image. Alterna-
tively, a point in the world defines an epipolar plane
which intersects both image planes at an epipolar line,
and the projection of the point in the world must lie
along the epipolar line. All epipolar lines intersect at
the epipole, so the fundamental matrix must have a
zero determinant, and this can be seen in equation 5.
Since the fundamental matrix has 9 entries, can be
computed up to scale, and has a zero determinant, it
must have 7 degrees of freedom.
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If a third camera P" is introduced, it defines a
plane containing the three camera centres (the trifocal
plane) and this plane introduces three constraints on
the epipoles (equation 8..10) which are can be seen in
figure 2.
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The 3x 3 x 3 trifocal tensor [1] is a more general way
of representing the geometry of three views and is ex-
pressed in terms of lines (equation 12). A line ) in the
first view defines a plane through its camera centre. If
a line X or point p’ in the second image is projected
onto this plane, it defines a line or point in the world.
This line or point in the world can then be projected
into the third view. Alternatively contracting the ten-
sor with A\ defines a homography for lines from the
second to third images (equation 13).

T7* = (albf — ajbh) (11)
N = AT (12)
N = HyN (13)
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Figure 3: A line projected onto three views.

The trifocal tensor has 18 (3 x 7 — 3) degrees of
freedom and can be computed linearly from 7 point
matches. An alternative computation by Quan [2] us-
ing a canonical co-ordinate system, requires only 6
points matched across the three views, but produces
one or three solutions. This approach was imple-
mented and analysed in detail by Torr and Zisserman
[6] who used a combination of robust sampling and
optimisation to accurately compute the trifocal ten-
sor. An alternate approach by Hartley [6] adjusts the
epipoles to minimise the algebraic error of the linear
solution. This paper describes an extension of this
work, so that it can be used to compute the geometry
of long image sequences.

3 Method

In this section a new method of computing the
projection matrices of an image sequence will be pre-
sented.

A video camera can be used to obtain a long se-
quence of images. The motion between successive
frames will be small but the overall motion of the
viewer will be large. The trifocal tensor of the three
most extreme views will be much more accurate than
the tensor of three successive views. Once this outer
tensor is known, the intermediate projection matrices
can be computed using the linear algorithm which will
now be presented.
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Figure 4: The initial tensor is computed from the three
most extreme views

The projection matrices of two views can be ob-
tained from the initial tensor. These two matrices are
represented by a normalised camera matrix P = [I | 0]
and a 3 x 4 projection matrix P’, then the object is to
compute for each view in turn along the sequence the
3 x 4 camera matrix P".

The equation for obtaining the trifocal tensor from
three camera matrices where the first camera is nor-
malised [1] is:

Tijx = Pj; Py — Py Pj), (14)

Since the entries of P/, are known, the vector t,
containing the entries of T};;, written as a 271 column
vector, can be written as a linear function of b, which
is a 12 x 1 column vector containing the entries of P".

t = Hb (15)

In this equation H is a sparse 27 x 12 matrix con-
taining the entries of P’.

The linear solution to the trifocal tensor can be
written as a measurement matrix M multiplied by the
tensor vector t, and by combining equations 15 and
16, a linear solution to the third camera matrix is
obtained.

Mt=0 (16)
MHb =0 (17)

The linear solution to this equation gives the entries
of the new camera matrix b.

Algorithm 1 The linear algorithm

Compute initial tensor.
Extract P and P’ (P" is ignored).
for each intermediate imagei do
Compute the linear solution for P; (equation 17)
end for

4 Non-linear Approach

The linear solution will not find an optimal solu-
tion for the projection matrices as it is dependent on
the initial projection matrix P'. The non-linear ap-
proach solves this problem by optimising the values
of P' so that the algebraic error [6] along the whole
image sequence is minimised.

An initial solution is computed using the linear
method, and the twelve entries of the last camera ma-
trix are adjusted, such that the algebraic error of the
whole sequence is minimised. To ensure the minimisa-
tion process does not converge on the trivial solution
(where all cameras are at the same point) the con-
straint ||t|| = 1 must be enforced. This is implemented
using Levenberg-Marquardt minimisation.

Algorithm 2 The non-linear algorithm

Compute initial tensor.
Extract P and P'. Normalise P.
while converging do
Compute the linear solution for the sequence.
Update P' to minimise the algebraic error.
end while

This algorithm is an extension of the work by Hart-
ley [6] from the three view trifocal tensor to long image
sequences. Hartley solved for the trifocal tensor by op-
timising the epipoles so that the algebraic error of the
camera matrix entries was minimised. In this work
one matrix (P') is fixed and the projection matrices
of the image sequence are computed.

5 Results

The stability of the linear and non-linear algorithms
have been investigated to determine their robustness
in the presence of Gaussian noise. A synthetic set
of point data was generated by randomly selecting a
number of world points with mean zero and with a
standard deviation of 1.0 . The cameras were posi-
tioned 5 units away from the synthetic point data,
and the rotations of the cameras and a small pertur-
bation of their position was chosen randomly. Image
points from P and P’ were projected into each of the
intermediate images, and the geometric distance be-
tween the projected points and the correct locations
was measured.

The mean and standard deviation of the geometric
point error for a 20 point dataset is shown for both the
linear and non-linear algorithms in figures 5 and figure
6, respectively. An analysis of the effect of the size of
the matched point set on the non-linear algorithm is
shown in figure 7.
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Figure 5: Stability analysis of the linear algorithm.
The initial trifocal tensor (dashed) is computed us-
ing Hartley’s algebraic minimisation. The upper curve
is the mean geometric distance between a point pro-
jected from the reference views and its correct loca-
tion.

5.1 Results Using Real Images

A sequence of six images, of a calibration grid, was
captured using a single PULNIX camera with an 8mm
lens. The Harris [7] corner detector was used to locate
features in each of the six images, and the features
were manually matched. Since not all of the corners
were accurately located, a robust computation of the
trifocal tensor was used (Torr and Zisserman [5]). The
mean geometric distances using the linear algorithm
are listed in table 1. The final matrices are shown in
figure 8. Epipolar lines and their corresponding point
matches have been marked on the image. The mean
geometric distance from each point to its epipolar lines
is 0.6 pixels.

6 Discussion
The algebraic minimisation algorithm has a number
of advantages over a conventional bundle adjustment.
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Figure 6: Stability analysis of the non-linear algo-
rithm. The initial trifocal tensor (dashed) is computed
using Hartley’s algebraic minimisation. The upper
curve is the mean geometric distance between a point
projected from the reference views and its correct lo-
cation.

A bundle adjustment requires 11N parameters to be
optimised. If the derivatives are approximated this
requires 11N computations of the geometric point er-
ror for each iteration. By perturbing just one of the
matrices, and using the linear solution to the interme-
diate images, the optimisation problem is reduced to
12 parameters.

It is interesting to compare the results of the lin-
ear and non-linear algorithms. It can be seen that
the non-linear solution is significantly more robust to
noise than the linear solution. The 5 pixels of noise
produced only 2 pixels of error in the standard devi-
ation. The reason for the poor stability of the linear
solution is that small errors in P’ cause large errors in
the intermediate images (see figure 5). By varying P’
the non-linear algorithm becomes significantly more
robust to noise.



Figure 8: Calibration grid image sequence.
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Figure 7: Effect of number of matched points on the
stability of the non-linear algorithm.

Table 1: Projection Matrices

Image Mean Distance | Mean Distance
(all 30 matches) (25 inliers)
Reference 2.41 1.52
2 3.76 2.5
3 3.20 1.8
4 2.26 14
5 1.28 0.99

7 Application 1: Visualisation of Mod-
els from Image Sequences

As the reader may recall, the motivation for com-
puting the projection matrices, was to visualise three-
dimensional models. In this application the models
are stored as a sequence of segmented images. Each
segment is assigned to a planar surface and each sur-
face is assigned a vector normal.

A new viewpoint is generated by first projecting the
known segmentations into the new viewpoint. If the
camera matrix of the reference image is P = [I | 0],
and the camera matrix of the new image P’ = [4 | a4],

the plane [d n] is transfered using the homography [8]

H =nA - a4d” (18)

The visualisation algorithm requires an image seg-
mentation for each reference image, and the plane vec-
tor of each surface. This information is specified once
for each surface. A closed contour is drawn using a
mouse and three points along the contour are matched
with corresponding points in any of the other refer-
ence images. The linear solution to the plane vector
is computed:

p = (nA —asd¥)p (19)
0=[p]x(nA — asd”)p (20)

0= ([p']xA)n = [p']x (asp™)d (21)
0= M[dn]* (22)

This equation can be easily solved using the SVD
from three point matches, provided that the image
co-ordinates are correctly normalised. For stable so-
lutions it, is essential that the corresponding points
obey the epipolar constraint.

An example of surface matching is shown in figure
9 and the rendered output is shown in figure 10 .

Figure 9: A surfaceis added to the model by specifying
it in one view. Three points must be matched to define
the plane. The segment can be projected into all of
the images.



Figure 10: This image was rendered using a segmented
sequence of images, from surface normal vectors.

8 Application 2: Image Editing

Another interesting application for calibrated im-
age sequences is image editing. Consider the case
where we want to take a photograph of a building
which is obscured by a number of trees or a road sign.
If a number of images were available from other view-
points, and the model of the building was known, then
the area obscured by the tree or road sign could be ren-
dered using information from the other images. This
requires both a knowledge of the camera geometry and
the model of the obscured objects.

In the following example a calibration grid is ob-
scured by some wooden blocks. The projection matri-
ces of six images were recovered using the non-linear
technique presented in this paper. The geometry of
the image segments was entered manually using equa-
tion 22. The original image is shown in figure 11 and
the rendered image with the block removed is shown
in figure 12.

Figure 11: Image Editing: The original image.

Figure 12: Image Editing: The block removed.

9 Future Work

The next stage of the project is to automati-
cally compute the image segmentation. This will be
achieved by using robust techniques to compute the
homographies between the surfaces in the image.

10 Conclusion

In this paper a new method for computing the pro-
jection matrices of an image sequence, has been pre-
sented. This approach is an extension of Hartley’s
algebraic minimisation technique. It is an attractive
technique as it requires only twelve parameters to be
optimised, regardless of the length of the image se-
quence. The algorithm has been tested on synthetic
data, in the presence of noise. The projection matri-
ces computed in the first half of this paper were then
used for visualising three-dimensional models of image
sequences. A second application, image editing, was
also presented which made use of the calibrated image
sequences.
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