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Surface interpolation with radial basis functions for
medical imaging
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Abstract—

Radial basis functions are presented as a practical solution
to the problem of interpolating incomplete surfaces derived
from three-dimensional (3-D) medical graphics. The specific
application considered is the design of cranial implants for
the repair of defects, usually holes, in the skull.

Radial basis functions impose few restrictions on the ge-
ometry of the interpolation centers and are suited to prob-
lems where the interpolation centers do not form a regular
grid. However, their high computational requirements have
previously limited their use to problems where the number
of interpolation centers is small (< 300). Recently developed
fast evaluation techniques have overcome these limitations
and made radial basis interpolation a practical approach for
larger data sets.

In this paper radial basis functions are fitted to depth-
maps of the skull’s surface, obtained from X-ray CT data
using ray-tracing techniques. They are used to smoothly
interpolate the surface of the skull across defect regions.
The resulting mathematical description of the skull’s surface
can be evaluated at any desired resolution to be rendered
on a graphics workstation, or to generate instructions for
operating a CNC mill.

Keywords— Surface interpolation, radial basis function ap-
proximation, medical graphics, titanium cranioplasty, CT
imaging.

I. INTRODUCTION

URFACE interpolation has a role to play in computer

assisted surgical planning through the reconstruction
of missing surfaces and the prediction of soft tissue move-
ment. The context for this work is the repair of defects in
the skull with cranial implants. In this application medi-
cal graphics are used to reveal bone surfaces in X-ray CT
data. By fitting a mathematical function which smoothly
interpolates across holes in the surface, a hard plastic mold
can be milled by a computer numerically controlled (CNC)
mill. A titanium prosthesis can then be formed by press-
ing a flat titanium plate into the mold under high pressure
in a hydraulic press. The desired characteristics of the in-
terpolant are therefore that it is a smooth single-valued
function, that it can interpolate across irregularly shaped
holes and that it tends towards a flat plate far from the
interpolation centers.

The paper is organized as follows. Section II back-
grounds the cranioplasty application. Section I discusses
various approaches to the interpolation problem. Section
IV introduces radial basis functions and section V illus-
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trates the application of radial basis functions to the prob-
lem of interpolating depth-maps of the skull’s surface. Sec-
tion VI presents examples of fitting surfaces to real data
and section VII considers computational requirements. A
discussion follows in section VIII.

The notation C* is used throughout to denote a function
which is continuous in its first 7 derivatives. The notation
O(f(n)) indicates that the work or storage (depending on
the context) required by a process is bounded by a multiple
of f(n). For example, the work in solving an n x n system
of linear equations, with no special structure, is Q(n?).

II. CRANIOPLASTY

Cranioplasty is the procedure of repairing defects, usu-
ally holes, in the skull with cranial implants. Tt is difficult
to form a cranial prosthesis intra-operatively when a de-
fect is large (> 25 ¢cm?) or occurs in a region where the
bones are thin or surround vital tissue, such as the orbit of
the eye. In these regions the complex shape of an implant
requires that it be formed presurgically.

Prefabrication of a cranial implant requires an accurate
model of the defect area to ensure that a good fit is achieved
at the time of surgery and the need for alteration is min-
imized. There is no standard process for the design and
manufacture of prefabricated cranial implants, each treat-
ment facility varying in the details of its method, and even
then, each case being approached individually. However,
most methods involve forming a model to which the im-
plant, or a template for the implant, is manually fitted.

Linney et al. [13] have attempted to remove these man-
ual aspects in the case where a defect is unilateral. They
reflect the sound side of the anatomy on to the defective
side of the body in software and use this as a model for the
prosthesis, with the intention of providing symmetry to the
shape of the repaired skull. However, this technique 1s ap-
plicable only where a symmetrical undamaged region of the
skull exists. Even when this criterion is met, restoring the
original skull shape is not always desirable if large cavities
result between the brain and the implant. Furthermore,
the skull is not always naturally symmetric.

In this paper the problem of designing a cranial implant
is viewed as a surface interpolation problem where the sur-
face of the skull is described by a mathematical function.
The problem is to fit a function to the bone surface which
interpolates across user-defined defect regions. The aim of
this work is to create a one-step process for the design of
cranial implants by integrating medical graphics and sur-
face interpolation with CNC milling.

Depth-maps of the skull’s surface, obtained from X-ray
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CT data using ray-tracing techniques, have been used to
construct models of cranial defects [23], [7], [13]. A 3-D
CT data set in the form of a regular array of voxels is ob-
tained by stacking a set of equally spaced CT slices taken
through the head. A set of uniformly spaced parallel rays is
cast into the C'T data set from a user-determined direction.
As a ray propagates through the data set an interpolation
strategy is employed to estimate the CT number between
voxel centers. A threshold corresponding to the Hounsfield
number for bone (typically 500) is chosen as the criterion
for terminating a ray. The depth at which each ray ter-
minates is recorded to form a depth-map of the surface of
interest.

Accurate determination of depth-map values is impor-
tant to ensure good fit of the final implant. The Hounsfield
threshold must therefore be chosen carefully. Partial vo-
luming artifacts in the CT data mean that ray-tracing may
produce errors in the vicinity of thin bones. These difficul-
ties, associated with extracting depth-maps, are discussed
elsewhere [8], [19]. In the following sections we address
the problem of interpolating depth-maps. Suffice to say
that most of our defects occur in regions where the skull is
convex and the bone is thick. Applying a global threshold
provides sufficient accuracy for our purposes in these cases.

From the resulting depth-map a 3-D model can be milled
out of a block of epoxy-resin by a CNC mill. Often only
a model of the region immediately surrounding a defect is
required and the model can be milled from a single orien-
tation of the workpiece.

A depth-map of a cranial defect can be displayed on a
graphics workstation with the aid of shading. A rendered
view of the skull surface allows a user to graphically iden-
tify a defect region in the skull. Many rendering techniques
are found in the medical graphics literature [10], [14], [11],
[21], [22]. Surface shading, determined by the gradient of
the surface at each ray and the position of hypothesized
light sources, can provide a realistic visualization of a 3-D
surface on a two-dimensional (2-D) display device. In this
work a Phong shading model [21] with a single light source
is used to render depth-maps of skull defects. The user
identifies a defect region graphically with the aid of a work-
station’s mouse.

Depth-maps are rendered at a resolution sufficient for the
operator to identify defect regions and then subsampled for
the purpose of fitting a surface. A depth-map mesh of 2 mm
squares provides more than adequate sampling of the sur-
face of the skull for interpolation in most cases. Although
the resolution within a CT slice is usually 0.3-0.5 mm;, the
spacing between slices for cranial examinations is typically
2-3 mm. Consequently, a depth-map which resamples the
data at a higher frequency will contain a ripple which orig-
inates from the interpolation procedure employed by the
ray-tracer. Furthermore, such a depth-map will result in an
unnecessarily large number of interpolation nodes, greatly
increasing the storage and computational costs of solving
the interpolation equations.

Figure 1 illustrates the cranial surface interpolation
problem. Figure 1(a) is an example of a ray-traced view

of the surface of the skull rendered from a CT data set.
Figure 1(b) is a detailed view of the defect in Figure 1(a)
where the region identified as being free of defect by the
user is highlighted. Figure 1(c) illustrates the lower res-
olution depth-map corresponding to the detailed view of
the defect while Figure 1(d) is the partial depth-map cor-
responding to the highlighted region in Figure 1(b). This
is the depth-map to which an interpolating function is to
be fitted. In summary, the original ray-traced depth data
lies on a regular rectangular grid. The user then interac-
tively identifies a defect region of irregular shape, and the
corresponding data points are discarded. This results in a
final depth data set to be interpolated which is of the form
of a finite grid, with a hole, or holes.

I11. SURFACE INTERPOLATION

The depth-map is regarded as a single-valued function of
two variables (2-D), f : R? — R, where the interpolation
nodes at which the value of the function is known do not
generally form a complete regular grid. The problem is to
approximate f with a smooth function which interpolates
the given data and provides at least C! continuity in order
to avoid creases in the restored surface.

One approach to this problem is to fit a polynomial to
the data. However, an invertible system which uniquely
defines the interpolant is not guaranteed for all positions
of the interpolation nodes. Moreover, such a polynomial
interpolant will typically display spurious bumps and wig-
gles. An alternative is to fit piecewise polynomials. These
require that IR? be divided into suitable patches, typically
rectangles and triangles. One employs different polynomi-
als on the different patches, and the pieces are joined in
ways that provide continuity of the prescribed low order
derivatives. Examples of such methods are tensor prod-
uct spline interpolants, parametric spline interpolants, C!
surfaces made up of Clough-Tocher macro elements over
triangles, etc. Surfaces of these types are widely used in
CAD [5] and in Finite Element methods for solving partial
differential equations. However, they are not well suited to
scattered data interpolation problems, particularly when
there are large data-free regions.

The radial basis approximation method offers several ad-
vantages over piecewise polynomial interpolants. The ge-
ometry of the known points is not restricted to a regular
grid and there is no need to define a mesh of patches. Also,
the resulting system of linear equations is guaranteed to
be invertible under very mild conditions. Finally, polyhar-
monic radial basis functions have variational characteriza-
tions which make them eminently suited to interpolation
of scattered data, even with large data-free regions.

IV. RADIAL BASIS FUNCTION APPROXIMATION

We begin by introducing radial basis function approx-
imation generally before considering the specific case of
approximating a function of two variables. Consider f :
R?Y — R a real valued function of d variables that is
to be approximated by s : R® — IR, given the values
{f(x;):i=1,2,...,n}, where {x; :i=1,2,...,n}is aset
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of distinct points in IR called the nodes of interpolation.
We will consider approximations of the form

s(x) = x€R?, X\ €R,

(1)
where p,, is a low degree polynomial, or is not present,
|| - || denotes the Euclidean norm and ¢ is a fixed function
from IR to IR. Thus the radial basis function s is a linear
combination of translates of the single radially symmetric
function ¢(|| - ||), plus a low degree polynomial. We will
denote by 7l the space of all polynomials of degree at
most m in d variables. Then the coefficients, A;, of the
approximation s are determined by requiring that s satisfy
the interpolation conditions

)+ Nid(llx—xil),
i=1

s(xj) = f(x5), i=12,...n, (2)
together with the side conditions

Z)\jq(Xj) =0, for all ¢ € n¢. (3)

j=1

Some examples of popular choices of ¢ and the name of
the corresponding radial function are given below.

(linear)

(thin-plate spline)
—ar (Gaussian)

(multiquadratic)
where a and ¢ are positive constants.

Some typical conditions on the nodes under which the

interpolation conditions (2) and (3) uniquely specify the
radial basis function (1) are given in Table I.
In the case when the polynomial term is absent from the
radial basis function (1) there are no corresponding side
conditions (3). Also “not coplanar” in this context means
that the nodes do not all lie in a single hyperplane, or equiv-
alently that no linear polynomial in d-variables vanishes at
all of the nodes. The surveys of Powell [18] and Light [12]
are excellent references for these and other properties of
radial basis functions.

In this paper we are particularly concerned with 2-D
(depth-map) data and will consider linear and thin-plate
spline interpolants. Then (2) and (3) imply that the coeffi-
cients of the radial basis function and the polynomial p1(x)
can be found by solving the linear system

wollE e

QT 0
(aij) = (o(llxi = %)), (6)
1 L1 v
L oz y

where

1 zp

A= (AL As. AT (8)
¢ = (co,cr,e2)7, (9)
pi(x) = cotcrx+cay (10)

and

f:(flana"')fn)T (11)

The thin-plate, or 2-dimensional biharmonic spline we
consider models the deflection of an infinite thin plate [6].
While the linear radial basis function will interpolate the
data, the thin-plate spline is more attractive since it also
provides C! continuity and minimizes the energy functional

200 2 2 2 2

o (33) (25 (2
Rz \ 0T Oxdy Oy?

over all interpolants for which the energy functional (12)
is well defined. In this sense the thin-plate spline is the
smoothest interpolator of f. Higher order polyharmoic
splines achieve continuity of higher derivatives. Perrin et
al. [17], [16] have used the tri-harmonic thin-plate spline
(#(x) = ||x||*1og ||x||) in electroencephalography to inter-
polate with C? continuity distributions of potential and
current scalp density measured on the surface of the head.

)2 drdy (12)

V. RADIAL BASIS INTERPOLATION OF DEPTH-MAPS

In this section we discuss the application of radial ba-
sis functions to the interpolation of cranial depth-maps.
The first task is to calculate the interpolant, or rather
its coefficients. Our current solution procedure is as fol-
lows. The nodes are first scaled uniformly in z and y, and
shifted so that the new nodes lie in the unit square. The
variational characterization of the thin-plate spline inter-
polant means that it is preserved under this transforma-
tion. Then the interpolation problem corresponding to the
transformed data is solved using the double precision di-
agonal pivoting method for symmetric indefinite systems
from Lapack [9]. The implementation invokes iterative re-
finement to improve the accuracy of an initial solution if
warranted by the magnitude of the residual. In our exper-
iments the infinity norm condition number of the system
was typically around 6 x 10°, the initial relative residual
was around 2 x 10713, and the initial relative error was
around 1.5 x 10~ and our aim was to obtain a relative
error (against the “true” thin-plate interpolant) of 107%.
Overall, we found that more than adequate accuracy in
the fitted surface was readily obtained by solving in double
precision, even without iterative refinement.

The natural criterion for assessing a restored cranial sur-
face i1s how closely it matches the original surface prior to
the introduction of the defect. However, the original sur-
face 1s rarely known and does not exist in the case of a con-
genital defect. Therefore, we simulated the performance of
the method by seeing how well it restored artificial holes in
complete skulls. The interpolant fitted to the incomplete
depth-map was then compared with the original surface.

Figure 2 illustrates the test data employed in the fol-
lowing interpolation example in which an artificial hole is
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introduced into an initially defect free depth-map of a cra-
nial surface. Figure 2(a) is a rendered view of a CT data set
which is free from defect. Figure 2(b) is an enlarged view
of part of Figure 2(a) with an artificial hole superimposed.
Figure 2(c) is the corresponding depth-map. A thin-plate
spline radial basis interpolant was fitted to 683 points in
Figure 2(c). Figure 3 compares the fitted surface with the
original data. Figure 3(a) is the complete depth-map of the
original data, while Figure 3(b) is the depth-map of the in-
terpolated surface. Figures 3(c) and 3(d) are the rendered
views of the respective depth-maps in 3(a) and 3(b).

In Figure 4(a) the difference between the fitted thin-plate
spline surface and the original is displayed. The scales
are in millimetres. The maximum error for the thin-plate
spline interpolant is 0.60 mm. Figure 4(b) is the corre-
sponding comparison between the original surface and a
linear radial basis interpolant. The largest error from the
original is 0.56 mm. The differences between the two in-
terpolants and the original surface are dependent upon the
surface data chosen in Figure 2. This example is neverthe-
less typical of many of the smooth, low curvature surfaces
which are to be reconstructed. Although the magnitude of
the error in both fitted surfaces is similar, the variational
characterization of the thin-plate spline, and its C' conti-
nuity make it the natural choice for cranial implant design.

A. Surface evaluation

Once the linear system is solved, s can be evaluated at
any resolution, anywhere on IR?. Figure 5 shows the thin-
plate surface from Figure 3 evaluated outside the convex
hull of the interpolation nodes. Figure 5(a) is a rendered
view taken from above the surface, while Figure 5(b) is the
corresponding depth-map. Apparent is the planar compo-
nent of the solution which is described by the low degree
polynomial term in (1).

At Christchurch Hospital, cranial implants are made
from flat titanium plate which is pressed into a mold in
a hydraulic press. The interpolant determines the shape of
the mold. The tendency of the interpolant to a flat plane
outside the interpolation nodes i1s an ideal characteristic
in this application. The smooth convergence of the mold
surface to a flat plane reduces the likelihood of thinning or
tearing of the metal at the periphery as it is drawn in to
the mold.

It is desirable to orient the mold surface so that the pla-
nar component is flat with respect to the plane of the press.
The normal of the planar component of the fitted surface
(Figure 6) is derived directly from the coefficients ¢; and
¢o of the polynomial term py (x),

n = (—c1,—cs,1). (13)
The rotation angles about the z and y axes, denoted by @
and 1 respectively, required to re-orient the interpolated
depth-map so that the normal aligns with the z axis (view-
ing axis) are given by

—C9

f=tan" ! | —=—
\/l-l-c%

In practice the plane of the fitted surface is usually close
enough to the (x-y) plane of the press to be used without

) and Y=tan"le;  (14)

risk of tearing the titanium plate or press membrane. If
it is not, then ray-tracing is repeated with an improved
viewpoint determined by the orientation angles § and .
A new surface is fitted to the depth-map corresponding to
the improved viewpoint.

VI. EXAMPLES

Two examples are presented to illustrate the application
of radial basis interpolation to real CT data of skull defects
requiring repair.

The first example involves the repair of a very large
(150 cm?) hole in a basically convex region of the skull.
Figure 7(a) is a rendered view of the CT data set which
consists of 38 slices at 3 mm spacing with a pixel size
of 0.47 mm. The rendered threshold corresponds to a
Hounsfield number of 500. Figure 7(b) is a detailed view
of the defect with the support region identified by the
user highlighted. Figure 7(c) is a mesh-plot of the sup-
port shown in Figure 7(b). The mesh resolution is approx-
imately 1 mm. This is the data to which a surface is fit-
ted. Figure 8(a) is a rendered view from directly above the
thin-plate spline surface fitted to the data in Figure 7(c).
Figure 8(b) is a mesh plot of the fitted surface viewed from
the same direction as Figure 7(c).

The mold produced from the interpolated surface data
is shown in Figure 9(a) next to the finished titanium plate.
CNC instructions were generated from the surface data to
machine the mold from a very hard epoxy-resin. In Fig-
ure 9(b) the finished plate is shown beside a model of the
defect area which has been machined from hard plastic us-
ing depth-map data shown in Figure 7.

The second example involves the repair of a hole close to
the orbital margin and other regions of high curvature such
as the zygomatic arch. Consequently, a smooth concave
mold could not be produced from a mirror-image depth-
map of the unaffected side. Figure 10(a) is a rendered view
of the CT data set which consists of 47 slices at 3 mm spac-
ing with a pixel size of 0.89 mm. The rendered threshold
corresponds to a Hounsfield number of 500. Figure 10(b) is
a detailed view of the defect with the support region iden-
tified by the user highlighted. Figure 10(c) is a mesh-plot
of the support shown in Figure 10(b). The mesh resolu-
tion is approximately 1 mm. Figure 11(a) is a rendered
view from directly above the thin-plate spline surface fit-
ted to the data in Figure 10(c). Figure 11(b) is a mesh
plot of the fitted surface viewed from the same direction as
Figure 10(c). The surface continues smoothly outside the
support of the defect region, which is essential for pressing
titanium into the mold without tearing.
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VII. COMPUTATIONAL CONSIDERATIONS

Radial basis functions have previously been proposed as
interpolants for 3-D data where the interpolation centers
do not lie on a regular grid, by Nielson [15]. However,
Nielson notes that conventional methods limit the applica-
tion of radial basis functions to data sets of moderate size
(n=300 to 500). Cutting et al. [4] have used the thin plate
spline radial basis function to warp a wire mesh template
of a skull on to cranial surface data extracted from CT and
MRI data. This is done by manually identifying 44 homol-
ogous landmarks in the two data sets. Each landmark in
the template dataset forms an interpolation node and has
a warping vector associated with it which maps it on to its
pair in the skull dataset. Radial basis functions have also
been used in electroencephalography to interpolate poten-
tials measured on the surface of the head to produce to-
pographical maps [17], [16], [20]. However, the number of
electrodes (interpolation nodes) used in this application is
again small, typically fewer than 40.

Generating a radial basis interpolant involves solving a
linear system like (5) for (Ae)”. Since the ¢’s we use are
typically non-zero, and growing away from zero, the ma-
trices of these systems display none of the special struc-
tures such as sparsity, bandedness, positive definiteness
commonly exploited to enable fast solution of linear sys-
tems. Thus solution of these systems by direct, or even
simple iterative methods, requires O(n®) operations and
O(n?) storage. Taking advantage of the symmetry of the
system, will halve the usual operations count for Gaussian
elimination but even symmetric solvers will still be imprac-
tical when n is large. These requirements used to be a con-
siderable obstacle to the use of radial basis functions when
n is large. Fortunately there are already known methods
which allow the solution of the thin-plate spline interpo-
lation equations with O(n) storage and in O(n?logn) op-
erations (see [3] and the references there). Furthermore,
improved methods under development by M.J.D. Powell
and others promise solution in O(nlogn) operations.

The current calculations however involve moderately
sized data sets and conventional techniques are satisfac-
tory for solving the corresponding linear systems. The 697
node interpolation problem underlying Figure 8 required
approximately 40.5 seconds of CPU time to solve on a SUN
Sparc 2, while the 578 node interpolation problem underly-
ing Figure 11 required approximately 23.5 seconds of CPU
time to solve on the same machine.

Once a radial basis function has been fitted to the data
we face the problem of evaluating it. Due to the behav-
ior of ¢, the work required for direct evaluation of s at
a single extra point, z, is proportional to the number of
nodes n. Thus, the amount of computation required for
direct evaluation of s on a fine mesh becomes significant,
even for moderate node counts n. However, recently devel-
oped fast evaluation methods (see Beatson and Newsam [1]
and Beatson and Light [2]) exploit hierarchical data struc-
tures and series expansions, to reduce the incremental cost
of one evaluation of a thin-plate spline to within precision
¢, to O(1 + |loge|) operations. Of course the setup time

Spline of 205 x 205 512 x 512
evaluation grid || evaluation grid
direct fast direct fast

Figure 8 176s 4.34s 1103s | 9.53s

Figure 11 | 146s 4.35s 910s 9.33s

TABLE II

COMPARISON BETWEEN FAST AND DIRECT EVALUATION TIMES OF
THIN-PLATE SPLINE INTERPOLANTS.

before evaluation does depend on the node count, nodal po-
sitions, the values of the spline coefficients, and the desired
accuracy.

Table IT shows times in seconds for evaluation tasks asso-
ciated with the figures of this paper. The improvement to
be had by using a fast evaluation code is dramatic. All com-
putations were carried out in double precision on a SUN
Sparc 2 machine, and the fast evaluator was required to
evaluate the fitted surface with an infinity norm relative
error, ¢, of less than 107*.

VIII. DiscussioN

This paper has demonstrated the application of radial
basis functions to cranial implant design. Radial basis func-
tion approximation is suited to this type of problem due to
the few constraints placed upon the geometry of the nodes
of interpolation. Few alternative techniques are available
when the data do not lie on a complete regular grid. The
thin-plate spline is a particularly appropriate choice since it
fits a smooth C! surface to the data and is the smoothest
C! interpolant in the sense that it minimizes the energy
functional (12). The property that the interpolant tends
to a flat plate far from the interpolation centers is ideally
suited to the manufacture of titanium prostheses in a hy-
draulic press.

Accurate depth-map values are required because the fit-
ted surface passes through all the specified depths. Al-
though ray-tracing can be in error, for example, in the
vicinity of thin bone, a strength of our approach is that
the user can arbitrarily exclude points from the depth-map
in regions where they do not have confidence in the ray-
traced values.

Some complex repairs can not be described by a single-
valued function and consequently can not be manufactured
by pressing titanium plate in a mold. In these cases we re-
sort to traditional hand forming techniques and sometimes
use multiple-part prostheses, where the separate parts are
formed and butt welded together [7]. Most of our defects,
however, occur over convex regions of the skull.

A development of our current software will provide the
surgeon with an interactive facility for sculpting the sur-
face via adjustment of the depth at user specified “control
points”. For example, restoring the natural shape of the
skull across a large hole may lead to a large cavity form-
ing between the brain and the prosthesis. The user may
want to indent an initial depth-map in the defect region to
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avoid such cavities. Similarly, the surface data around the
periphery of the hole may not be sufficient to restore the
appropriate shape to the skull. Ultimately, the ‘correct’
surface is that which is intended by the surgeon. The thin
plate spline interpolant provides an appropriate surface in
most cases, but sometimes may require adjustment.

Prerequisites for the new interactive software are an effi-
cient means for updating an initial matrix factorization as
interpolation nodes are added and deleted, and also a fast
means of recalculating the resulting surface. Fortunately,
algorithms for both tasks are available.

One suitable method for the first task is the matrix up-
dating method which is amongst the things discussed in
Beatson and Powell [3]. They first change the interpolation
problem into an equivalent problem, with symmetric posi-
tive definite matrix, and then consider means for updating
the Cholesky factorization of this matrix as the nodes of
interpolation change. In the current context this would
enable solving the system with a few extra nodes of inter-
polation at the cost of O(n?) extra operations, rather than
the O(n?) operations required if one started from scratch.
A suitable method for the second task is the fast evaluation
code described in a section VII.
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spatial polynomial Restriction
o) dimension degree on

d m nodes
linear any 1 nodes not coplanar
thin-plate 2 1 nodes not colinear
Gaussian any absent none
multiquadric any absent none

TABLE 1

CONDITIONS IMPOSED ON NODES FOR VARIOUS RADTAL BASIS INTERPOLANTS
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Fig. 1. Extraction of a depth-map of the skull from CT data. (a) Rendered view of the bone surface from a CT data set, (b) detailed view of
the defect with a user-defined region of defect-free bone highlighted, (¢) depth-map of the rendered view of the defect in (b), (d) partial
depth-map corresponding to the highlighted region in (b).
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(b) Detail of the test surface with an artificial defect superimposed.

Test data for surface interpolation. (a) Original CT data set.

(c) Depth-map corresponding to (b).

Fig. 2.
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L

I data. (b) Depth-map for thin-plate

igina

2. (a) Depth-map for or

igure
spline surface. (c) Rendered view of original data. (d) Rendered view of thin-plate spline surface.
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Fig. 3. Comparison of the interpolated surface with the or
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(b)

Fig. 4. Comparison of surface variation between the thin-plate spline and linear radial bases; the variation is in millimetres. (a) Difference

between the thin-plate spline surface and original data. (b) Difference between the linear surface and original data.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. Y, FEB 1997 12

80\

60\

40

20\

200 200

(b)
Fig. 5. Behavior of interpolant in Figure 3(b) far from the data points. (a) Rendered view of fitted thin-plate surface. (b) Mesh plot of
thin-plate surface.
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Fig. 6. Depth-map coordinate system.
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(c)
Fig. 7. Example of fitting a surface to a cranial defect. (a) Rendered view of full CT data set. (b) Detail of the defect region with support
region for surface highlighted. (c) Depth-map corresponding to (b).
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(b)

Fig. 9. (a) Finished plate with the mold used to press the titanium plate. The mold was machined from epoxy-resin using interpolated
surface data shown in Figure 8. (b) Finished plate with the plastic model of the defect area machined using depth-map data shown in
Figure 7.
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Fig. 10. Example of fitting a surface to a cranial defect. (a) Rendered view

(c)

of full CT data set. (b) Detail of the defect region with support

region for surface highlighted. (c) Depth-map corresponding to (b).
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Fig. 11. (a) Rendered view of fitted surface in Figure 10. (b) Depth-map of fitted surface.



