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3D Shape Reconstruction using Volume Intersection Techniques

Abstract

This paper presents a technique for reconstructing objects from noisy boundary data
that are scattered, unorganised and incomplete. Volume intersection algorithms are used
to reconstruct incomplete objects from their silhouettes. An imagined light source is
moved about the data and the cumulative amount of ‘light’ seen at each point in space is
interpreted as indicating the likelihood that the point is inside the object. The object data
need not be uniformly distributed nor exclusively come from the surface of the object.
Explicit identification of false object data and distinction between surface and interior
data are avoided. A limitation of volume intersection algorithms is their inability to
reconstruct concave surfaces. We show how the dependency of the visual hull of an object
on the viewing region can be used to resolve concavities. The novel concept of a localised
viewing region is introduced and shown to improve the ability of the method to reconstruct
complex shapes in the presence of noise. Algorithms for 2D pixel and 3D voxel data are
described and applied to 3D ultrasound data.

1 Introduction

Volume intersection methods are a popular way of obtaining shape from silhouette [2,
3,4, 5, 6, 7]. Sources of silhouette data include laser range data, video and thermal
imaging [10]. A silhouette can be thought of as a binary valued projection of an object
space. A set of silhouettes specifies a bounding volume obtained by back-projecting each
silhouette and finding the associated intersection volume. This volume approximates the
object to a greater or lesser extent depending on the silhouette viewpoints and the object
itself.

The two main aims of shape-from-silhouette research have been to recognise a known
object from its silhouette and to estimate its position and orientation [11, 10, 13, 12]
or, in the case of robot navigation and acquiring 31 models, to reconstruct an unknown
object from a set of silhouettes which it has generated [14, 4]. In this paper, volume
intersection methods are applied to a new type of problem: that of reconstructing the
shape of incomplete objects. Projections of incomplete object data are used not only to
reconstruct the given object data but also to interpolate across missing data.

The paper is organised as follows. Section 2 discusses related work and Section 3 in-
troduces the principle of the reconstruction method. The constraints placed on a surface
formed by this approach are not obvious and Section 4 attempts to shed light on these.
In Section 5, we show how the method is realised by a modified volume intersection al-
gorithm. In Section 6 the algorithm is extended to real-valued data and in Section 7 an
iterative version which overcomes the major difficulties of the initial algorithm is intro-
duced. Techniques for handling the problem of reconstructing cavities within a shape are
discussed in Section 8. The reconstruction method is then applied to 3D voxel data in
Section 9 and results are presented for a 3D ultrasound phantom.



2 Related work

2.1 Shape from silhouette

Two types of volume intersection algorithms are known for extracting shape from silhou-
ette, those that employ a slowly changing viewpoint between image frames [4] and those
based on a sparse set of distinct views [6]. In both approaches each image defines a cone
of rays formed by back-projecting the silhouette. The object is described as the volume
which lies within all the cones. If every possible viewpoint outside the convex hull of the
object were used, the volume that lay within all the cones would be the object’s visual
hull [2], or more specifically, the external visual hull. The object O, its visual hull VH(O)
and its convex hull CV(0O) are related as follows, O < VH(O) < CV(0O). The object
may only be exactly reconstructed where the object surface is coincident with the surface
of the visual hull. Laurentini [1, 2] has considered the question as to how much of the
shape of the unknown object can be inferred from the volume formed by the intersec-
tion of back-projected silhouettes and presents algorithms for computing the visual hull
of polygonal sets, polyhedra and solids of revolution. While this work is of theoretical
importance, it does not tackle the practical problem of reconstructing real objects from
incomplete data in the presence of noise.

Although the volume intersection methods are inherently limited in their ability to
reconstruct concave or self-occluding surfaces, researchers have studied the problem of
identifying regions where concavity is likely [4, 10]. Michel and Nandhakumar [10] sug-
gests that by detecting concavities in the silhouette of an object and partitioning the
silhouettes it is possible to expose subparts that would otherwise be occluded. In the
special case of reconstructing a rotating object from continuous varying views, Zheng [4]
uses discontinuities in the silhouette profile and the rate of change in the silhouette with
respect to the angle of rotation to identify regions which cannot be reconstructed. In
Section 8 we show that it is possible to resolve concavities when reconstructing the shape
of incomplete objects by introducing a localised viewing region.

Much research has focussed on efficient implementation and storage of reconstruc-
tions [5, 6, 7]. The problem of reconstruction from restricted viewing directions [5] has
also been studied. In active vision systems researchers consider the problem of automat-
ically choosing new viewing directions in order to efficiently constrain the reconstructed
volume [14, 15]. Other work has focussed on approximating silhouettes with polygons [5]
and reconstruction from polygonal silhouettes [6]. Volume intersection techniques can be
further divided into those in which the reconstruction is object-centred [3] and those where
the reconstruction is dependent on an external co-ordinate system [6]. In this paper we
are concerned with object-independent representations.

2.2 Shape reconstruction from scattered object data

We are interested in the problem of fitting a surface to scattered, unorganised data asso-
ciated with an isolated object. The data is unorganised in the sense that the adjacency
relation between surface points is not known. Two points may be in close proximity in
3-space but not necessarily adjacent on a surface passing through them. When surface
data is obtained from a laser surface scanner, the relationship between surface points is
usually known by virtue of the methodical way in which an object is scanned. Conse-
quently, many techniques for recovering surfaces from range data require the adjacency



relationship to be known. Constructing surfaces from unorganised range data [8] is rele-
vant to stereo vision, free-hand laser scanning and the extraction of surfaces from 3D edge
data [16]. In this paper we consider the specific example of 31 ultrasound data acquired
from a free-hand system [17, 18]. It is clinically desirable to be able to fit surfaces and
measure organ volumes from ultrasound data. Ultrasound detects changes in the acoustic
impedance of the media through which it propagates. These changes are often associated
with the boundaries of objects of interest. Small changes in acoustic impedance within
an object mean that return echoes are not always associated with the boundary of the
object to be reconstructed. The nature of free-hand ultrasound data means that the raw
data do not lie on a regular grid and some regions are more densely sampled than others.
Consequently, we are interested in the problem where the object data have the following
properties: (1) the data are not exclusively surface data, (2) the data are non uniformly
distributed, (3) the data contains noise, (4) no a priori knowledge of the object’s shape is
available.

Other approaches to the problem of reconstructing the shape of incomplete objects
do not address all these properties. For example, Hoppe et al. [8] have considered a the
problem of fitting surfaces to unorganised range data, but the input data are assumed
to be exclusively surface data and associated with a single surface. A uniform sampling
density is also assumed. Cheng et al. [9] have studied the problem of boundary extraction
from 3D ultrasound data, but they consider the specific case of extracting the surface of
the fetus from a regular voxel array. Belohlavek et al. [19] propose a method for extracting
volumes from 3D ultrasound data which involves the identification of regions of interest,
contrast enhancement, thresholding, and morphological filtering. However, these processes
require significant user interaction. Snyder et al. [16] have developed a method for closing
gaps in two and three dimensional edge data, a problem with similar characteristics. Their
method is applicable to binary data, where the presence or absence of an edge is specified,
but does not generalise to continuous-valued data in an obvious manner. In the analysis
of real-world data, including ultrasound data, it is advantageous to associate a confidence
with the presence of an object boundary. This results in a continuous-valued distribution.

An alternative approach to this type of problem involves fitting deformable models
such as superquadrics to the data [20]. These methods require prior knowledge of the
size and shape of objects to be reconstructed. Performance depends on the specifica-
tion of parameters which control the surface and determine the relative influence of data
points. Determining these parameters from actual data to achieve optimum fit is dif-
ficult, especially in the presence of noise [21]. Model fitting procedures constrain the
topology of objects which can be reconstructed. Superquadric surfaces, for example, are
parameterised in terms of latitude and longitude, implying a spherical topology. Ideally,
a general approach is sought that will impose few restrictions on reconstructible shapes.
The novel approach presented here is an attempt to form surfaces with minimal additional
information.

The shape reconstruction problem might also be viewed as an unsupervised clustering
problem where points are classified as belonging or not belonging to an object. There
are many such techniques but most do not explicitly define boundary surfaces which
interpolate the data. Kxamples of clustering approaches include minimum spanning trees,
Voronoi diagrams and the generalised Hough Transform [22]. Most of these techniques use
some sort of Euclidean distance measure or a specific geometric feature as the metric for
clustering points. In this paper the novel metric used to cluster points is the visibility of
a boundary surface which encloses the data. This metric has interesting properties which



enable a surface to be fitted to sparse, noisy data when the density of the data varies
throughout the reconstruction domain.

3 The shape reconstruction problem

We begin by considering a single object isolated from its surroundings and sampled in an
irregular manner to give a scattered distribution of points deemed to belong to the object.
In three dimensions we wish to reconstruct a surface enclosing the object data.

Vv S(x, 6)
S

Figure 1: Definition of the reconstruction space, €2, in two dimensions.

Before continuing further it is necessary to state the shape reconstruction problem
formally. Consider a vector space V, in which x defines a point. Let € be a subspace of
V bounded by a simple closed surface S. €2 is termed the reconstruction space and must
contain the object to be reconstructed. The region outside €2 is analogous to Laurentini’s
viewing region R [2]. S defines the boundary of the viewing region. O(x) defines an
attribute of the subspace. Initially we consider a binary value which defines whether or
not a point belongs to the object of interest. €2.5; denotes the region of the space occupied
by the object of interest. Qobj denotes a subset of €., corresponding to the incomplete
object data, Qob] C Qup; C Q2 C V. This is the ideal case. In practice Qob] may contain
noise; hence Qob] ¢ Qq;. The problem is to reconstruct Q,; given the partial object data,
Qobj-

The approach developed here is also applicable to the analogous two dimensional prob-
lem of reconstructing a closed curve from partial edge data in a plane. Because the method
proposed generalises straightforwardly from two to three dimensions, the two dimensional
case is described initially.

The method involves determining an occluded angle, denoted by 6,.., at each point
in €. A ray emanating from a point x, where x € €2, is occluded if it intersects object
data prior to reaching the reconstruction boundary, S. In two dimensions (Fig. 1) a ray
emanating from x can be defined by the point x and the ray’s orientation relative to an
arbitrary axis, 8, where 6 € [0,27]. S(x,6) is the point where the ray first intersects the
reconstruction space boundary. Note that since the definition of S is arbitrary, a ray may
intersect S more than once. The occluded angle at x, 6,..(x), may be found by integration
over all rays emanating from x and is expressed in Eq. (1).



6,00 (x) = /0 7 p(x, 8)d8 (1)

where
{ 1 if S is occluded along the ray § emanating from x,
F(x,0) = .
0 otherwise.
From Eq. (1) it can be seen that 6,.. may range from 0 to 27, where 0 corresponds to no
occlusion and 27 implies that x is totally enclosed by object data. In Section 5 we show
that the occluded angle is related to the intersection of back-projected silhouettes.

We can now calculate 6,..(x) at each point in € and form the occluded angle distri-
bution. Points inside the object may be expected to have a higher occluded angle than
those outside the object. We therefore regard the occluded angle as a measure of the
likelihood that a point is contained within the object. Initially we consider the simple case
where points in the occluded angle distribution above a particular threshold are viewed
as candidate solution regions. In this case, the choice of a threshold determines the shape
of the reconstructed object.

Q
Q

Qb Qb
(a) (b)

Figure 2: (a) Example of a shape which cannot be reconstructed, (b) alternative choice
for S that allows the cavity to be reconstructed.

Shapes which can be reconstructed are restricted to those where every point along the
perimeter can ‘see’ some part of the reconstruction space boundary, S. In other words, no
point on the perimeter is occluded from all points on S. This limitation on shapes which
can be reconstructed is dependent on S. Fig. 2(a) illustrates a shape for which the above
condition is not met. The object occludes itself relative to S in the vicinity of the cavity.
For the same shape this is no longer the case in Fig. 2(b) due to a different choice of S.

4 Analysis of occluded angle distribution

The occluded angle distribution, 6,..(x), depends on S and Qobj. In general, 6,..(x),
evaluated at some point x, x € €, is a function of all the object data and not just
that within the local neighbourhood of x. This, and the observation that the 6,..(x)
distribution may contain discontinuities, and hence is only piecewise differentiable, makes
an analysis difficult. However, some important general characteristics can be inferred by
considering a few specific objects which might otherwise be considered of little practical
significance. Table 1 lists properties of the occluded angle distribution for seven such
cases. An infinite reconstruction space which encloses the convex hull of the object data
is chosen so that the reconstruction dependency on S can be ignored.



Case

0,.. profile

L. | Inside a closed contour. 0,cc = 27

2. | On the boundary of a smooth, simple convex curve. 0,.=n

3. | On the boundary of an arbitrary smooth curve. 0,..>

4. | Closed circle. R RT Ooce(r) = 27 O<r<R (2)

o Boce(r) = 2sin 71 (R/7) r| >R (3)
ROR

Partial circle where p is the proportion P~ —p=1

5. | of the circle present and the gaps are in- / R nJ—Cp“ Oocc(r) = p2m Ir| <R (4)
finitely small and uniformly distributed B Boue(r) = 2(2p — ) sin " (R/r) |r| > R (5)

along the circumference, 0 < p < 1.

Circle containing a single gap defined by 2.
6. the angle 144y, where 0 < by, < m. The <R
profile considered is along the axis of sym-
metry.

0
Ooce(r) = 7+ 2tan™!

pee(r) = 2sin~H(R/7)

dl —7r

Rsin(wg%)

where dy = Rcos(wg%),

dy = R/ cos(

wQZap ) .

T’S—R7r2d2

—-R<r<dy

Inside a completely convex object O bound by a curve
containing n discrete gaps.

eocc(w) =27 — Z:’L:l 0066i (ZC)

where Oec, =27 — 0o, and z € O.

(6)

Table 1: Properties of the occluded angle distribution for some simple 2D curves. A reconstruction space 2 which encloses the convex

hull of the objects is considered in these examples so that the distribution dependency on S may be ignored.




Inside any closed contour, 8,.. is 27 everywhere since the boundary, S, is occluded
in all directions. Along the perimeter of any convex curve, 8,.. will be 7, except when a
discontinuity in curvature (i.e. a sharp corner) occurs, in which case 6,.. will be less than
or equal to 7 at the discontinuity. For a smooth, arbitrary contour 6,.. will be > .

In the case of a closed circle centred on the origin with radius R, 8,.. at a point outside
the circle, r > R, can be described as a function of radial distance from the circle centre
(Eq. 3). A discontinuity occurs between the interior of the circle, where 6,.. is 27, and the
boundary where 6,.. is 7. If the circle now contains gaps such that only a fraction, p, of
the curve is present, and the gaps are infinitely narrow and evenly distributed about the
circumference, then in the limit, 8,.. “inside” the circle will form a uniform distribution
with the value 27p (Eq. 4). In this context “inside” means within the convex hull of the
data points. The fraction of holes present in the circle is 1 — p, therefore outside the circle,
r > R, ... is similar to that in the closed case except that it is reduced by the coefficient
1—(1-=p)(1-p)=(2p—p*). The circle can be reconstructed by thresholding the 6,..
distribution. It can be shown that the range over which the threshold can be varied for a
small reconstruction tolerance, § < R, decreases in an approximately squared relationship
with decreasing p [18]. We might therefore expect that halving the number of points on
a convex curve will lead to an approximate quartering of the range over which the 8,..
threshold may vary for a specified reconstruction tolerance.

We now consider the 8,.. profile along the axis of symmetry of a circle containing a
single gap. The gap is defined by the angle which it subtends at the circle centre, 4.
Along the circle perimeter 8,.. is m. It can be shown from the general expression for
0,cc inside the circle that constant values of 6,.. define a family of chords which pass
through the gap end points [18]. Along the straight line between the gap end points 6,..
is m, independent of the gap width (this iso-surface corresponds to a chord with infinite
radius). These observations are true for any convex curve containing a gap.

In the case of multiple discrete gaps in a circle the effect of each gap inside the circle
can be considered separately. We define the complimentary (non-occluded) angle as ,.. =
21 — 6,... At each point inside the circle the occluded angle is the difference between 27
and the net non-occluded angle due to each individual gap (Eq. 6). Superposition can
be used to determine 6, inside any convex curve, however, superposition is not generally
applicable; applicability is guaranteed only inside the curve.

A superposition argument can also be used to consider the effect of noise data (data
which are falsely identified as part of the object to be reconstructed). A noise element
can be modelled by the smallest closed circle which circumscribes it. The value of 6,..
at a point in  may be increased due to the presence of a noise element by at most the
amount 2sin~'(R/r), where r is the distance to the element and R is the radius of the
circumscribing circle. A pseudo-superposition argument applies in the sense that points
which are occluded from the noise element by intervening object data are not influenced
by it.

5 A discrete algorithm for estimating 6,..(z)

A discrete 2D data space, represented as an array of pixels of finite size, is now considered.
Following the notation introduced in Section 3, a subset of pixels forms the reconstruction
space, Q. O(j) denotes the value of the j* pixel in Q, where j is an integer index. O(j) is
considered constant over the domain of each pixel. We want to calculate 8,.. at the centre



of each pixel within € in order to form the discrete occluded angle distribution, 6,..(j).
In the case of binary object data,

0(j) = { 1 ifje Qobj (7)

0 otherwise

Here Qobj is the subset of pixels identified as part of the object to be reconstructed.

We return briefly to the continuous domain in order to formulate an approximation
for 6,... The term projection is introduced in this context to mean a line integral of the
attribute O(x) along a straight line path through Q. Referring to Fig. 1, P(x,#) denotes
the projection along the ray emanating from the point x with orientation 6,

S(x,8)

P(x,6) = / O(u)du (8)

X

where S(x, 6) is the point on S where a ray initiated at x with orientation @ first leaves Q.
Straight line ray paths are assumed throughout this paper. The binary projection sample,

Prin(x,0), is defined as,

0 if P(x,0) =0

Prin(x,6) = { 1 otherwise 9)

Prin(x,0) is the silhouette of the object data at z in the viewing direction 6. Equation

(1), which defines 6,.. at a point x, may now be interpreted as the integral of binary
projections (silhouettes) along all rays emanating from x,

Boe(x) = /0 T Py (x, 0)d (10)

Equation (10) can be approximated by a finite sum of N projections taken at equally
spaced orientations,

Ooce(x) ~

27 N
N Zpbm(xﬂi) (11)
=1

where 6; is the angle specifying the orientation of the i** ray, 8; = ZZW” This equation says
that the proportion of rays along which object data are “seen” to the total number of rays
cast approximates the ratio of the occluded angle to 27. In general, the larger N is, the
better the approximation will be.

In the discrete space, a binary projection may be approximated with a pixel-based
ray tracing algorithm [18]. The direct implementation of Eq. (11) suggests evaluating
N projections at every pixel in €2. However, the contribution to 6,.. at each pixel for a
particular projection angle may be calculated simultaneously by casting a set of parallel
rays through Q, where the density of the rays cast is sufficient to guarantee that every
pixel in € is considered. An accumulator array is formed where each cell corresponds to a
pixel in €. The contributions from each projection angle at each pixel in €2 are summed
in the accumulator. As each pixel along the path of a ray is considered, the content of the
corresponding cell in the accumulator is set to one if object data has been encountered
along the path of the ray, and set to zero otherwise.

This process is best illustrated by an example. Fig. 3(a) is a test data set of object



(a) (b) (c) (d)

Figure 3: Estimation of the discrete 8,.. distribution. (a) Object data, (b) a single binary
projection, (c¢) summation of two projections, (d) summation of 25 projections.

pixels. The reconstruction space is the entire 150x150 pixel image. Fig. 3(b) depicts the
contents of the corresponding accumulator array after a single set of parallel rays has
been cast through €2. The resulting image depicts the value of the corresponding binary
projection evaluated at each pixel. The bright pixels represent pixels occluded by object
data, i.e. the value of the projection is 1 at these pixels. As further sets of rays are
traced through € over a range of orientations, the resulting binary projections for each
orientation are summed in the accumulator array. The value in each accumulator cell
indicates the number of projections occluded at the corresponding pixel in €2. This is
approximately proportional to ... Fig. 3(c) illustrates the summation of the projection
in 3(b) with a second projection. The result is a tri-valued accumulator where pixels fall
into three categories, those occluded by object data in both directions (bright pixels), those
occluded by object data in only one of the two directions (mid-grey pixels), and those not
occluded by object data in either direction (dark pixels). Fig. 3(d) is the accumulator
corresponding to Fig. 3(a) after summing 25 projections taken at equally spaced angular
intervals through Q.

In this implementation, N projections are taken at equally spaced angular intervals
of 8 over the range [0,27]. Due to the finite number of projections, the occluded angle
estimated at each pixel is discretised to integer increments of %’r; this is the threshold
resolution. The minimum number of projections required to reconstruct a given shape can
be very small, but this number is shape dependent and prior knowledge of the shape and
its orientation are required to take advantage of it.

In general € is a subset of pixels within a rectangular array. Only object data pixels
within Q are considered. Evaluation of the projection integral therefore commences when a
ray enters € and halts when it leaves €. If a ray, when continued along its course, re-enters
Q then evaluation of the projection is recommenced afresh. This process is repeated until
a ray leaves the domain of the image. Consequently, an arbitrary reconstruction space
may be defined.

5.1  Thresholding

Having formed an estimate of the occluded angle distribution, it is possible to recon-
struct simple objects such as those described in Table 1 by applying a threshold to the
distribution.

Fig. 4 illustrates the reconstruction of an incomplete circle (case 5 in Table 1). The
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Figure 4: Reconstruction of an incomplete circle with 25% of the perimeter present. (a) 50
projection accumulator, (b) 150 projection accumulator, (c) 150 projection accumulator
thresholded for 6,.. > 0.57, (d) threshold applied after filtering with a 5x5 median filter.

original test data are a 200x200 pixel image of a circle with approximately three quar-
ters of the circumference pixels removed, i.e. p, the proportion of the circle present, is
25%. Fig. 4(a) is the corresponding accumulator array after taking 50 binary projections
through the data. In Fig. 4(b) the number of projections is trebled from 50 to 150; conse-
quently the 8,.. distribution inside the circle is smoother due to the improved resolution
(2.4° vs. 7.2°) and accuracy with which 6,.. is determined. The finite number of projec-
tions manifests itself as a crisscross or mottled pattern in the accumulator. The occluded
angle distribution should be smooth and continuous throughout €2 except at object data,
where discontinuities may arise.

The application of the threshold 8,.. > 0.57 to the 150 projection accumulator in
Fig. 4(c) has resulted in holes. This is the critical value predicted by Eq. (4) in Table 1
which should reconstruct the circle in the ideal case. However, the discrete data approxi-
mately represents the theoretical case analysed in Table 1. The practical defects resulting
from a finite number of projections and aliasing due to pixel-based ray tracing can be
reduced by median filtering the accumulator. A median filter preserves low frequency
transitions in the accumulator while removing high frequency speckle regions, the kind
produced by a limited number of projections. Fig. 4(d) is the result of thresholding the
150 projection accumulator in Fig. 4(b) after applying a median filter with a 5x5 support.
Filtering has smoothed out local variations in 8,.. while retaining the location of the circle
boundary. Consequently, the threshold process has been able to reconstruct the interior
of the circle uniformly.

Fig. 5(a) is a 2D ultrasound image of a rubber ball phantom suspended in jelly. The
strong reflection in the middle of the scan comes from a wire support used to hold the
ball in place. The stronger interface on the left side of the image indicates the direction
of insonification. The raw scan data in Fig. 5(a) was thresholded to give Fig. 5(b), the
required binary representation for the algorithm. The choice of this threshold is a com-
promise between a conservative one which ensures that weak interfaces likely to result
from speckle are neglected, and a relaxed threshold which risks highlighting extraneous
interface pixels. Fig. 5(c) is the corresponding filtered accumulator formed by taking 100
binary projections about 5(b); the contour 6,.. > 0.867 is superimposed upon the accumu-
lator. This threshold choice resulted in the best reconstruction of the phantom. Although
large gaps in the perimeter have been bridged, the threshold chosen does not follow the
original data closely. This is expected since 8,.. is greater-than-or-equal to 7 along any
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Figure 5: Reconstruction of an ultrasound phantom. (a) 2D ultrasound image, (b) thresh-
olded ultrasound slice, (c¢) 100 projection accumulator with 6,.. > 0.867 contour shown.

smooth, opaque surface. A threshold less than 7 will therefore always dilate object data
and will never construct a surface which coincides with the data. When gaps are large or
non uniformly distributed, the application of a threshold to the 6,.. distribution is often
inadequate to reconstruct the boundary of even a simple convex curve.

Two shortcomings of this initial approach become apparent from studying data from
simple phantoms; the original binary classification of the ultrasound data is critical to the
outcome and the application of a single threshold to the occluded angle distribution is
rarely able to extrapolate across large gaps while closely adhering to interface data. These
problems are addressed in the following two sections.

6 Continuous-Valued input data

A binary reconstruction space, where points are identified as either belonging or not
belonging to the object under study, has been discussed. A reconstruction space where
O(x) is a continuous-valued distribution which reflects the likelihood that a point is part
of the object to be reconstructed is now considered. This avoids a binary classification of
the input data. Here rays cast through €2 are gradually attenuated by object data rather
than simply being occluded. The data are treated as being translucent. The model for ray
attenuation proposed is an exponential one based on monoenergetic X-ray attenuation.
A ray undergoes exponential attenuation as it traverses the reconstruction space, where
the linear attenuation coefficient is defined by O(x). Referring to the two dimensional
reconstruction space illustrated in Fig. 1, 8,..(x, #), the amount of attenuation experienced
by a ray passing through €2 along the path defined by # and x, is given by,

S(x,6) )
eocc(xv 0) =1- e_fx Ou)du =1- €_P(x’€)7 (12)

where S(x,8) is the point on S where a ray initiated at x with orientation 8 first leaves
Q. As before, the total amount of attenuation at x, f,..(x), is found by integrating over
all rays emanating from x,
2 2
0o (x) :/ (1 e PON) g = 27 —/ =P g, (13)
0 0

It is appropriate to refer to #,..(x) as an attenuation distribution. A consequence of

11



the continuous projection model is that points originally specified as object data are not
necessarily preserved by thresholding the attenuation distribution. In the case of binary
projections, f,..(x) is 27 at any point in the object data.

6.1 Discrete implementation

Following the notation of Section 5, the discrete 2D attenuation distribution, 6,..(j), is
calculated at the j** pixel by approximating the integral in Eq. (13) with a summation
over a finite number of projections,

Boee (§) & ¥ 2(1 — P60 (14)

where N is the number of projections taken and P(j,6;) denotes the projection sample
taken at the j* pixel with the orientation 6;. Because P(j,6;) has a continuous value
it is appropriate to calculate the contribution from each pixel according to the ray path
length through the domain of the pixel. If O(x) is considered constant over the domain of
each pixel, then the contribution of the k** pixel to the projection sample P(j,6;) passing
through it is O(k)d; ;. where &; ;1 is the ray path length through the kt* pixel.

The direct implementation of Eq. (14) suggests taking N projections through € at each
pixel. Although this guarantees that 6, is evaluated at pixel centres, it is computationally
intensive. A significant reduction in computation can again be achieved if a single set of
parallel projections is traced through € for each projection angle. As a ray is traced
through Q, the cumulative value of the line integral of the linear attenuation coefficient
along the ray is recorded at each pixel boundary encountered. The amount of attenuation
at the centre of the k" pixel can be linearly interpolated from the projection rays either
side of the pixel. For example, in Fig. 6 the value at the k** pixel is interpolated from the
projection samples P, 1., Py x, and Py 1 k., Pyt1,k,. The attenuation at a pixel due to each
projection angle is then summed in an accumulator array. In this way the computationally
intensive task of ray-tracing is greatly reduced. Filtering is not required because aliasing
artifacts from pixel-based ray tracing are avoided.

7)17+1

Figure 6: Bi-linear interpolation is used to estimate the attenuation at the & pixel, Py,
for the projection angle 6.
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7 Iterative algorithm

In Fig. 5 the choice of an appropriate threshold was critical to producing the final recon-
structed shape. This choice depends on the object’s shape and the object data. A high
conservative threshold results in surfaces which closely adhere to object data. However,
larger gaps are not bridged and separate regions tend to result. A lower, relazed thresh-
old is capable of bridging larger gaps in incomplete surface data. However, the resulting
surface may no longer adhere closely to object boundary data and consequently the recon-
structed surface will tend to be larger than the actual object, as demonstrated in Fig. 5(c).
When the threshold is relaxed further, the surface fitted tends to circumscribe the object
data and become more circular. We define a conservative threshold as one which is greater
than or equal to w. This follows from the observation in Section 4 that 6,.. is 7 along any
smooth section of a convex curve. A threshold less than = will define a contour larger than
the object. In general, the application of a single threshold is capable of reconstructing
only simple, mostly complete objects with uniformly distributed gaps and little noise.

Compute 8 occ Threshold
" 21
_In|t|al 777777 /P(x’ 8)d8 xc0 Recon_structed
object data object
0 0 occ
Threshold
New object data
0 occ

Figure 7: An iterative algorithm for object reconstruction.

An iterative algorithm (Fig. 7) is proposed to allow interpolation across large gaps
while adhering closely to likely object boundaries. The attenuation distribution 6,..(x) is
formed as before and a conservative threshold is chosen which partially extrapolates the
data. The regions extracted by thresholding are then employed as the object data for a
second iteration of the algorithm. This process is repeated with the result that the object
data grow to form a continuous region, interpolating across gaps, yet retaining accurate
object boundaries.

Fig. 8 illustrates the iterative reconstruction of a circle from sparse binary edge data.
The reconstruction space coincides with the domain of the image and contains a small
noise region (Fig. 8(a)). The initial accumulator, after taking 100 projections about the
object data, is displayed in 8(b). It is not possible by thresholding the accumulator after
a single iteration to form a reconstruction which extrapolates across the gaps in the edge
data and at the same time adheres closely to the perceived circle. Instead a conservative
threshold, 6,.. > , is chosen to form the new object data (Fig. 8(c)) for the next iteration.
The growth in the initial data is small, but this quickly increases with further iterations.
Fig. 8(d) and Fig. 8(e) are accumulators for the fourth and sixth iterations. A contour
corresponding to the threshold 6,.. > 7 is superimposed upon the sixth accumulator in
8(f); this contour interpolates the original data and represents a possible solution. In
this example the conservative threshold was maintained at 6,.. > 7 between iterations;
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new object data found upon thresholding were universally assigned a high attenuation
coefficient.

(e)

Figure 8: Iterative reconstruction of a circle. (a) Object data, (b) first iteration accumu-
lator, (c) object data for 2nd iteration obtained by thresholding (b), (d) accumulator for
4th iteration (e) accumulator for 6th iteration, (f) 6th iteration accumulator with contour
corresponding to ... > 7 superimposed.

Fig. 9 illustrates the iterative reconstruction of an object from sparse data contami-
nated by noise. The initial object data, Fig. 9(a), is binary and the reconstruction space
coincides with the domain of the image. Four iterations consisting of 100 projections are il-
lustrated in Fig. 9(b-e). The thresholds applied at each iteration were 1.67, 1.67, 1.37, 1.3,
respectively. At each iteration the new object data derived by thresholding the attenua-
tion distribution were assigned high attenuation coefficients. The binary image depicted
in 9(f) is the result of thresholding Fig. 9(e) for 6,.. > 1.3m.

In these examples a simple binary threshold, chosen interactively, has been applied at
each iteration. The general requirement is to start with a high threshold and decrease
it over subsequent iterations. Ideally, the initial threshold should not be so high that it
eliminates genuine object data, or that it fails to augment the initial object data. High
initial thresholds are chosen primarily to ensure that only the points most likely to be
part of the object are added to the new derived set of data. If false object points are
identified (points outside the actual object) then these may grow in subsequent iterations.
In the case of a single iteration, the reconstructed object was determined by the threshold
applied to the initial accumulator and was very sensitive to this choice. The threshold
choice in the iterative scheme is not so critical. The process converges if a fixed threshold
greater than 7 is maintained.

Key properties of the shape which the iterative scheme produces are determined by the
final threshold applied. In the case of binary projections, if the final threshold applied is 7,
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(e) (f)

Figure 9: Iterative reconstruction of an object in the presence of noise. (a) Object data
(b-e) 100 projection accumulator after 1st, 2nd, 3rd and 4th iterations (f) reconstructed
shape obtained by thresholding (e) #,.. > 1.37.

oce

then the shape constructed will be completely convex. The shape constructed in Fig. 9(f)
is not completely convex; here the final threshold choice of 8,.. > 1.37 has preserved the
concavities. A lower choice would begin to fill these in. The final threshold determines
the depth of concavities allowed in a shape’s perimeter.

8 Reconstruction of cavities

The surfaces of an object which can be reconstructed from silhouettes are those which
coincide with the object’s visual hull. Laurentini shows that the visual hull for an object
is uniquely defined for all viewing regions which enclose its convex hull [2]. When the
viewing region enters the object’s convex hull, the visual hull is dependent on the viewing
region. This is illustrated in Fig. 2. The limitation which a global threshold places on
shapes containing cavities can be overcome by taking advantage of the dependency of
B,cc(x) on the reconstruction (viewing) boundary S, when S lies within the convex hull of
the object.

Fig. 10(a) illustrates the problem of reconstructing a shape with a significant cavity.
If the domain of the image is employed as the reconstruction space, then the minimum
threshold angle required to resolve the cavity is such that the object data will remain
as a cluster of discrete regions. Gaps will not be bridged, but treated as cavities. The
application of a global threshold cannot distinguish between a gap and an intended cavity
of similar size in the perimeter of an object. Fig. 10(b) is the result of taking 100 projections
where the reconstruction space coincides with the domain of the image. The bright pixels
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(d) (e) (f)

Figure 10: Iterative reconstruction of a cavity by defining a suitable reconstruction space.
(a) Object data, (b) accumulator for 1st iteration where the reconstruction space coincides
with the domain of the image (c) alternative reconstruction space, (d) accumulator for 1st
iteration, (e) accumulator for 2nd iteration, (f) reconstructed shape after three iterations.

inside the cavity indicate high attenuation and hence these are seen as having a high
probability of being part of the object. This is contrary to the desire to preserve the
cavity. In Fig. 10(c) an alternative, ‘doughnut’ reconstruction space is defined. Fig. 10(d)
is the result of taking 100 projections through this new reconstruction space; it can be
contrasted with 10(b). Fig. 10(e) is the result of a second iteration of 100 projections
through the data derived by thresholding Fig. 10(d) for 6,.. > 1.67. Fig. 10(f) is the
result of thresholding the third and final iteration of the process such that 6,.. > 1.67.
The definition of the new reconstruction space has allowed the cavity to be resolved, while
still extrapolating across the gaps in the perimeter. Note that the only restriction on €2 is
that it form a connected space; {2 may contain holes.

Figure 11: Definition of a circular reconstruction subspace centred on the point x € V.
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User interaction can determine whether or not a cavity is resolved by supplying a
suitable reconstruction space. However, this amounts to supplying an initial guess of the
object’s shape. Alternatively, by introducing a localised reconstruction space centred on
each point x, the ability to reconstruct cavities can be significantly improved without
having to supply an initial estimate of the shape.

Consider the 2D case of a circular reconstruction space, €2,., centred on the point x,
where x € V (Fig. 11). In 2D, with continuous-valued data, #,..(x) is now given by,

2
Boce(X) = 27 — / e HCICULT) (15)
0

where R is the radius of the reconstruction space centred on x. The amount of attenuation
at each point x € V is determined by the object data contained within the circle of radius
R surrounding it. Clusters of points circumscribed by the reconstruction space will tend
to form regions with successive iterations of the method. The size of R limits the distance
over which two data points can be joined, and hence the size of regions formed. Thus, with
a small reconstruction space, only data points in close proximity can be grouped together
in a single iteration. As R increases, the influence of points further away is felt.

Localising the reconstruction space necessarily compromises the power of the original
method to interpolate across large regions of sparse object data. However, in practice
starting with a local reconstruction space and increasing R, together with the threshold
applied at each iteration, produces better results than employing a reconstruction space
that contains all the object data.

Implementation of the localised reconstruction space can be achieved using the discrete
algorithm described in Section 6.1 with neglible additional computing overhead. A FIFO
buffer is introduced to calculate the line integral of O(x) along each projection ray. This
stores the contribution to the projection integral from the last n pixels which a ray has
passed through (Fig. 12). The size of this buffer, n, is a function of how many ray-pixel
intersections occur over the distance R along the ray path. As the ray is traversed and
the % pixel is encountered, the previous value of the projection, P;_1, is incremented by
the contribution from the new pixel, AP;, and decremented by the contribution from the
oldest pixel in the buffer, AP;_,_;. The new increment is then stored in the buffer in
place of the oldest, and ray-tracing continues. As before, the attenuation at pixel centres
is interpolated from the neighbouring projection samples. The additional computation
required to realise the localised reconstruction space is therefore small and is independent

of R.

Figure 12: Computation of 6,.. along a ray on a 2D grid for a circular subspace with

radius R.
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In Fig. 13 the application of a local reconstruction space is illustrated with the data
considered in Fig. 10. Fig. 13(a) is the accumulator after taking 100 projections. The
attenuation at each pixel is calculated from object data within a 10 pixel radius. Fig. 13(b)
is the accumulator after three iterations with a space 10 pixels in radius and a further
iteration with a larger space 15 pixels in radius. A threshold of 1.47 was applied at each
of the first three iterations. A more conservative threshold of 1.5m was then applied to
the accumulator in Fig. 13(b). Fig. 13(c) is the result of taking a further iteration of
projections with a space 15 pixels in radius and thresholding it for 1.57. A reconstruction
similar to that in Fig. 10(f) has been achieved without the definition of a shape-specific
reconstruction space.

(b) (c)

Figure 13: Iterative reconstruction of a cavity by defining a local reconstruction space.
(a) Accumulator after first iteration with a circular space R = 10 pixels, (b) accumulator
after two further iterations and a fourth with R = 15 pixels, (c) thresholded accumulator
after a fifth iteration with R = 15 pixels.

9 3D shape reconstruction

In three dimensions the reconstruction space becomes a volume and 6, is interpreted as
the occluded solid angle. ,.. is measured in steradians, hence 8,.. € [0,47]. The occluded
solid angle at the point x, 6,..(x), is given by,

2r /2
Oocc(x) = 47 — / / e~ Px0) cos(p)depdh (16)
0 —-7/2

where P(x, 0, ¢) is the projection of O(x) along the ray passing through € defined by the
point x and the two angles, 6 €[0,27] (azimuth) and ¢ €[—7F,7] (elevation).

Estimation of the discrete 6,..(x) distribution in 3D is analogous to that in 2D. The
accumulator becomes a 3D array of voxels. Planes of rays are traced through the recon-
struction space and tri-linear interpolation between the four neighbouring projection rays
is used to estimate 8,.. at each voxel centre.

In 2D, it is possible to take projections at equally spaced orientation angles for any
specified number of projections. In 3D, orientations are chosen by projecting a uniform
random distribution on to the solid angle space defined by # and ¢. A cylindrical equal
area projection is used to do this. An approximately even coverage of orientations is then
achieved for sufficiently large N.
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Figure 14: Iterative reconstruction of a cube. (a) Object data consisting of a cube with
90% of its surface voxels missing, (b) reconstructed object data after two iterations, (c)
reconstructed object data after four iterations.

9.1 3D reconstructions

Figure 14 demonstrates the iterative reconstruction of a cube from an incomplete set of
surface voxels. In Fig. 14(a) 90% of the surface voxels for a complete (20x20x20) cube
have been removed. The object data form a binary distribution and have been assigned a
high attenuation coefficient rendering them opaque. Fig. 14(b) is the reconstructed object
data after two iterations of projections with a conservative threshold choice (©, > 2.57
steradians). The surface voxels have formed small clusters. Fig. 14(c) is the reconstructed
object data after four iterations. Voxels occluded in at least half the projections taken are
shown (©,.. > 2 steradians). 98.8% of the cube has been reconstructed with 0 extraneous
voxels. The sharp edges and flat faces of the cube have been reconstructed. The Q... > 27
threshold defines a convex surface in 3D, with respect to S. A lower choice would dilate
the cube.

Figure 15 illustrates the reconstruction of a more complex object from noisy data. 95%
of the surface voxels of the test object were removed and noise was added with a uniform
random spatial distribution. The data set is binary; noise and object voxels carry equal
weighting. Four iterations of projections were performed. In the final iteration a localised
spherical reconstruction space was used to remove extraneous noise regions surrounding
the main object. The threshold applied after the first iteration (1.27) was increased to
2.27 and maintained for the following iterations. Fig. 15(a) is the raw data. Fig. 15(b)
is the data resulting from thresholding the first iteration. Fig. 15(c) is the final iteration
with the surface corresponding to the threshold 2.27 depicted. Without prior knowledge
and recognition of the object, or any of its subparts, there is no reason to suppose that
the object consists of flat surfaces nor that a surface should be fitted across the apparent
gaps in the trunk of the ‘k’. Variation of the threshold applied between iterations might
produce an improved reconstruction, however, we have yet to determine a mechanism for
making such a choice. Figure 16 illustrates the effect of different threshold choices on the
second iteration of the reconstruction. A range of thresholds between 27 and 47 have
similar effect. In this example, the final reconstructed object is not very sensitive to the
threshold choice. This observation tends to be true of many other examples studied.

By considering the ideal case of opaque surfaces containing no missing data we can
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(a) (b)

Figure 15: Iterative reconstruction of an object in the presence of noise. (a) Object data
(b) reconstructed object data after the first iteration (c) reconstructed object data after
four iterations

define limits on what shapes are reconstructible for a given threshold. The scale of recon-
structible surface features is determined by the size of the reconstruction space. Consider
a local subspace of radius R and the points on the opaque surfaces depicted in Fig. 17. If
the surfaces are opaque and contain no holes then the visible angle at the point x in each
case is 27, m and 7, respectively. This means that the occlusion threshoﬁ]ds which allow
these surface points to be reconstructed are those greater than 27, 37 and 3, respectively.
For example, in Fig. 17(a) a threshold 7" less than 27 will construct a surface which lies a
distance Rcos% above the plane. A threshold less than 37 in Fig. 17(b) will construct a
surface which fills-in the concave edge with a beading, the radius of which is a function of
R and T'. If a threshold close to 0 is chosen then the object data are uniformly dilated.
In mathematical morphology this is equivalent to a dilation with a spherical structuring
element of radius R [23]. A threshold of 47 is equivalent to an erosion with a sphere of
radius R. For an object containing all three types of surface facets shown in Fig. 17, the
threshold required to accurately reconstruct the shape is dictated by that of the most con-
cave feature, in this case the corner shown in Fig. 17(c). A threshold between 37 and I
will not accurately reconstruct such corners but may reconstruct planar and edge surfaces
depicted in Figs. 17(a) and 17(b).

In general, the final threshold applied determines the cavities permitted within an
object, irrespective of the data. The use of a localised reconstruction space means that
the occluded solid angle is determined over a sub-region of the object’s surface. The cavity
constraint implied by the threshold is still valid, but only at a scale determined by the size
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(c)
Figure 16: The effect of varying the solid angle threshold (a) = (b) 27 (c) 37 (d) 3.87.

of the local reconstruction space. If the object data are translucent (i.e. when continuous
projections are used to compute 8,..(x)) then it becomes difficult to make such general
statements since the amount of occlusion (attenuation) at a point depends on the thickness
as well as the spatial distribution of the surrounding object data.

Figure 15 represents a particularly difficult example of a 3D reconstruction because of
the binary nature of the input data. In many real-world data sources true object data and
false (noise) data carry different weightings. For example, in the case of ultrasound data,
false interfaces tend to be characterised by weaker reflections while genuine interfaces are
much stronger. This information can significantly assist object reconstruction.

Figure 18 illustrates the reconstruction of an ultrasound phantom from a set of spatially
registered 2D ultrasound scans [18]. Fig. 18(a) is the raw ultrasound data projected onto
a regular voxel grid of 1mm? voxels. 2D ultrasound slice data were taken from arbitrary
positions and orientations around the phantom and were mapped to the nearest voxel with
multiple contributions to the same voxel being averaged. The majority of voxels contained
no data due to the incomplete coverage of the phantom by the set of scans. This is the input
data to the algorithm. Fig. 18(b) is the corresponding 3D accumulator after two iterations
of projections. At each iteration 1000 projections were taken with rays spaced 1mm apart
within each projection. The reconstruction space coincided with the domain of the voxel
array; a locally defined reconstruction space was not used to reconstruct this object. The
raw data were acquired with 8-bit resolution and an attenuation coefficient assigned which
varied linearly with the ultrasound number over the range 0.0-5.0. Consequently, strong
reflections were effectively treated as opaque and weaker reflections as translucent. The
first iteration was thresholded for 8,., > gﬂ' steradians. The resulting object data was then
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Figure 17: The local visible surface angle for three configurations of opaque planar surfaces.
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Figure 18: Reconstruction from 3D ultrasound data. (a) 3D ultrasound data for a phan-
tom, (b) 3D accumulator after two iterations of 1000 projections. The surface shown
corresponds to a threshold of 6,.. > 27 steradians. (c) Rendering of phantom from CT
data.

assigned a high attenuation coefficient, resulting in a binary data set. The accumulator
formed by taking projections about this data was thresholded for 6,.. > 27 steradians.
This is the surface displayed in Fig. 18(b). For comparison, the phantom was CT scanned
with parallel slices taken at constant spacing so that a regular voxel array of data was
acquired. The resolution was twice the ultrasound resolution within each slice. A view
similar to Fig. 18(b) was produced in Fig. 18(c) via a standard ray-tracing algorithm. The
main differences are due to incomplete coverage of the object by the ultrasound probe
during scanning.

10 Conclusion

In this paper we have demonstrated a new application for shape-from-silhouette research:
the reconstruction of object surfaces from scattered, unorganised data. The problem
differs in that the 3D object data, albeit incomplete, are specified rather than being
unknown. Projections taken from multiple viewpoints through the data have been used to
reconstruct an incomplete object just as a human observer might do when inspecting a data
set with a volume visualisation package. People have the ability to discern structure from
semi-transparent visualisations of volume data when the data are viewed from multiple
viewpoints in an animated sequence, even though the individual views may be ambiguous.
The approach to object modelling proposed in this paper can be viewed as an attempt
to model this apparent perceptual skill. The method used to cluster points in the object
data is based on determining their visibility (occlusion). We defined the occluded angle
distribution as the projection of the object data within the subspace €2 on to each point in
Q2. We generalised from binary projections (silhouettes) to continuous-valued projections.
This allowed points originally specified as object data to be removed by the thresholding
process. An iterative algorithm was developed which enabled interpolation across regions
of sparse and dense data alike. Although it is difficult to characterise this algorithm, due
to the dependency on the initial object data, some general properties can be discerned in
the case of binary projections. The most important is that the threshold applied at each
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iteration determines the degree of self-occlusion allowable in the reconstructed surface.

Reconstructing concavities is an inherent difficulty with volume intersection techniques.
The visual hull determines how much can be understood about an object from its silhou-
ettes. It becomes dependent on the viewing region when the viewing region enters the
convex hull of the object. In Section 8 this dependency was used to reconstruct concave
object surfaces. This solution requires some knowledge of the object to be reconstructed
when specifying €. A more satisfying approach is the use of a localised reconstruction
space Q(x). This gives the method a morphological flavour whereby €(x) is analogous to
a morphological structuring element. However, unlike traditional morphological closing
filters [23] there is no explicit erosion operation and the dilation is a function of the local
data within Q. The amount of dilation varies throughout €, it is not uniform except in
the case of an extreme threshold choice.

Throughout this paper we have considered projections taken at equi-angular spacing
in order to compute the attenuation or occlusion at each point in 2. Depending on the
data distribution and the object, this is not strictly necessary. Some active vision systems
choose projection directions based on the data [15, 14]. Such techniques may be applicable
in our problem and may reduce computation.

Any solution to the ill-posed problem of constructing surfaces from sparse, unorganised
data in the absence of a priori information is a compromise between opposing goals.
Distinguishing between a gap to be bridged and a cavity to be preserved is arbitrary
in the absence of further information. In the method described, user interaction has
been used to resolve ambiguities in how a surface may be fitted to the data through the
specification of a threshold and the domain of €2. These parameters are the subject of
further investigation. The approach presented here is inherently biased towards filling-in
cavities when they are not reconstructible. Similarly, a poor choice of thresholds results
in cavities being filled-in. However, we have shown that this novel approach can produce
interesting results. Furthermore, in the presence of noise, the ability to robustly fit a
simpler surface is likely to be useful in many applications.
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