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Abstract
The main issues of developing an automatic and reliable scheme for spline-
fitting are discussed and addressed in this paper, which are not fully covered
in previous papers or algorithms. The proposed method incorporates B-spline
active contours, the minimum description length (MDL) principle, and a novel
control point insertion strategy based on maximizing the Potential for Energy-
Reduction Maximisation (PERM). A comparison of test results show that it

outperforms one of the best existing methods.

1 Introduction

Representing curves by analytic functions instead of sets of data points allows the
geometry of curves to be exploited in various ways [1], and may also be used for
data smoothing [2] or for storing data efficiently. However, it is difficult to find a
fully automated spline-fitting method which consistently performs as well as methods
based on human assistance.

A number of schemes have been proposed for fitting analytic functions to image

curves. Duda and Hart [3] suggested a polygonal representation scheme based on the



subdivision of joined line segments, while other methods [4, 1, 5, 6, 7, 8, 9] have been
suggested for fitting B-splines. These methods were found to be unsatisfactory for
curved-based applications such as those discussed in [10, 11] primarily because as a
result of poor control-point distribution an unduly large number of control points must
be used in the fitted B-spline to reduce estimation error — this causes large instability
in the computation of contour derivatives. In some cases the control points must be
initialised manually. Furthermore, most of these methods terminate the spline fitting
based on a predefined error threshold.

The main contributions in our paper are: (i) highlighting and discussing the main
issues to spline-fitting, describing where previous methods fail — past papers have not
done this; (ii) introducing a novel control-point insertion strategy which attempts
to maximize error-reduction through the iterative insertion of control-points — this
addresses the issue of control-point distribution more accurately compared to previ-
ous heuristic schemes; (iii) combining different techniques addressing all the issues
into a highly functional and automated spline-fitting algorithm, which have not been

achieved with previous algorithms.

2 Main Issues in Fitting B-Splines

The important issues to consider when fitting image contours with B-splines are:

Parameterisation When handling image curves, the B-spline parameterisation
along the fitted curve does not need to unique and the B-spline model may be sim-
plified by having control points uniformly spaced at unit intervals along the spline pa-

rameter (it does not follow that the control points are uniformly spaced in the image



domain). A measure typically used for the quality of a fit is the sum-of-squared-errors
(the ‘error energy’) given by £ =" ||&; — S(t;)||* where @; are the data samples with
associated spline parameter values ¢;, and S(¢) is the spline with parameter ¢'. Since
FE may be minimised through reparameterisation of S such that the (&, — S(¢;))’s
are perpendicular to the tangents S'(¢;)’s of the spline, the problem may be stated as
that of assigning the optimal spline parameter value t; to each of the sampled points
x;. Bartels et al. [4] proposed the use of normalised arc-length distances between
data points for the parameterisation, while Guéziec and Ayache [5] suggested using
arc-length distances along a polygonal representative curve. However in both cases,
the assigned parameter values are only heuristic estimates. If iterative fitting strate-
gies [9, 6] are further used, the parameter values may be further refined numerically
but these are computationally expensive and may produce erroneous results if the
initial estimates are weak. There are also spline-fitting algorithms which do not take
this into account (eg. [1]), and are likely to employ the common solution of assigning
consecutive data points to a uniformly increasing sequence of parameter values which

unsurprisingly gives poor results.

Number of Control Points The number of control points in a spline model de-
termines the number of degrees of freedom available in the fitting process, and an
optimal choice for this is needed to maintain both smoothness and closeness of fit.
A number of statistical tests have been proposed including tests for the constancy
of an unbiased error variance estimate [7] and Powell’s test for trends [12]. However

in most of the other spline-fitting methods a empirical error threshold is used, which

LFor clarity, we call the points S(¢;) on the spline the sampling points



does not take into account the amount of noise present nor the scale of the curves.

Distribution of Control Points Regions which are poorly modelled by polynomi-
als of the given spline order require a greater concentration of control points to reflect
the greater information density. This is analogous to the Shannon-Nyquist sampling
theorem [13] applied to local regions, and also with the exception that instead of fre-
quencies we consider the amount of information per unit length. Hence it ts incorrect
to assume that the optimal distributions of control points are similar between splines
of different order, or that control points cluster around regions of higher curvature.
Although the initial positions of the control points may be numerically improved, it is
likely that only a local minimum for £ will be found (Jupp’s ‘lethargy’ theorem [14]),
and hence good initial estimates for the control points have to be obtained. How-
ever in [5], initial control points estimates are based on Duda and Hart’s polygonal
representation. Figure 1(c,d) show how the polygonal representation may be used to
produce a control-point distribution which will give rise to control points clustering
around higher curvature regions. This is clearly weaker than what is possible as shown
in figure 1(b). Others [6] assume that some initial distribution of control points is
available or may be obtained heuristically. Some control point insertion strategies,
elaborated in section 3.2, have also been proposed but which are not satisfactory in

our experience.

Data Sampling Regions of curves which require a higher proportion of control
points to model should have the same higher proportion of sampled points in the
vicinity in order to achieve the same rate of oversampling, by further drawing on the

analogy with the Shannon-Nyquist sampling theorem. Many algorithms however treat
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Figure 1: Control point distributions using different strategies. (a) the original curve to be
fitted. (b) a spline with two control points which is fitted manually and deemed optimal to
the eye; the ‘+’s mark the boundaries between piecewise polynomials. (c) shows the best

polygonal representation which is used to produce the distribution of control points in (d?
It is clear that clustering control points around high curvature regions is not necessarily
optimal.

all available data points equally or weigh them according to their accuracies [5, 7].
Doing this unfortunately results in simple regions of the curve (eg. long straight
sections) being modelled with too much precision, at the cost of poorly representing
the complex (high information) regions of the curve. Lu and Milios [6] attempted
to overcome this problem using curvature-dependent weighing of data points, which

fails to take into account the source of the problem.

3 Theoretical Approach to B-Spline Fitting

The top-level paradigm for fitting splines proposed here is based on the continual
evolution of a spline such that the spline deforms to approximate the curve to be
represented. A sequence of images depicting the evolution of the spline in our final
fitting algorithm is shown in figure 2.

The features of our paradigm are:

1. B-Spline Active Contours. The optimal positions of a fixed set of control

points are recovered by treating the B-spline as an active contour.
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Figure 2: (a) shows the shape to be fitted, which at the moment is treated as an open

contour with the break near the lower right region. (b)-(f) shows the spline with increasing
number of control points.

2. Optimal Control Point Insertion. A control point insertion strategy is

derived which maximises energy-reduction potential.

3. Minimum Description Length (MDL) Framework. The minimum de-
scription length theory [15] caters for a parameter-free estimation of the optimal

number of control points.

These are discussed in the next few sections.

3.1 B-Spline Active Contours

The crucial difference between point-based and B-spline active contours is that instead
of including an internal energy term, regularisation is intrinsic through the fewer
degrees of freedom available in deformation. The characteristics of B-spline active

contours allow two fitting issues to be explicitly addressed:



Data Sampling Instead of using all available data points, the data is resampled ac-
cording to some preferred distribution of sampling points on the active contour. This
distribution of sampling points may be changed for each iteration. In the proposed
model, the number of sampling points per piecewise polynomial is fixed, and is given
by R = % > 1 where R is the oversampling ratio, N is the number of sampling
points and M is the number of control points. Hence if during the minimisation pro-
cess two control points are drawn closer, the sampling also becomes proportionally
denser in that region. Since the control points of the B-spline are uniformly dis-

tributed along the spline parameter, the ratio may be achieved by sampling at fixed

intervals of the spline parameter.

Parameterisation Given a distribution of sampling points, data samples are ob-
tained by searching perpendicularly to the spline tangent at each sampling point.
These data samples therefore are associated with the spline parameter values at the
corresponding sampling points.

Since the original curve is originally represented as densely sampled but discrete
data points, it is convenient to model the curve as an initial polygonal curve obtained
by joining all data points with line segments. The data point associated with a
sampling point may then be found by solving for the intersection of the tangent

perpendicular and the polygonal curve.

3.2 Control Point Insertion

Iterative fitting schemes which involve gradually increasing the number of control

points during the fitting process [7, 5, 6] usually require a control point insertion



strategy. In this paper, the insertion of control points is considered in its dual form
of inserting hinges, which are the boundaries between polynomial pieces.

The shortcomings of two current strategies are discussed here:

1. Interval Midpoint Strategy. Dierckx [7] proposed that a control point be
introduced in the middle of the piecewise-polynomial which has large displace-
ments from the data points. However if these displacements are skewed to one
side of the piecewise-polynomial, the optimisation routine may be trapped in a

weak local minimum. See figure 3.
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Figure 3: Interval Midpoint Strategy. In (a), a hinge is introduced in the midpoint of a
piecewise-polynomial interval, and by using the active contour optimisation the configu-
ration in (b) is reached. A preferred solution is shown in (c).

2. Largest Displacement Strategy. L.u and Milios [6] suggested that the control
point be introduced such that a hinge is formed at the point on the spline which
has the maximum displacement from a data point. However it is possible that
this maximum displacement may correspond to a position on or close to a hinge.
Introducing a hinge at the position gives very unstable results. See figure 4.
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Figure 4: Largest Displacement Strategy.In $a), the initial hinge has little effect since
a collapse mechanism has not been set up. If another hinge is introduced at the maxi-
mum displacement, the configuration in (b) is arrived at after using the active contour

optimisation. A preferred solution involving a good collapse mechanism is shown in (c).



Observation of the failure of the largest displacement strategy reveals that control
points must be introduced such that compatible collapse mechanisms [16] (related to

the plastic deformation of structural beams) must be formed. More details may be

found in [17].

3.2.1 The Potential for Energy-Reduction Maximisation (PERM) Strat-

egy

Ideally, a control point should be inserted at a location such that the maximum error
reduction occurs. This would correspond to maximizing the information represented
by the new control point, and consequently regions with higher information density
would contain more control points. In this strategy we attempt to estimate the
position on the spline to introduce a hinge such that the potential for reducing the
error enerqy I is maximised.

Consider a polynomial piece of the spline. By mapping the polynomial piece onto
a horizontal line segment, the residual displacements between the sampling points
and the data points are also mapped such that they become perpendicular to the line

segment. The new vertical displacements d; may be written as

Z; S(tz> m ()

See figure 5. The hinges on either side of the polynomial piece are also noted as either
fixed (for end-points) or free.

By allowing the line segment to be completely broken at some point, we proceed
to calculate the maximum error energy reduction possible on both the smaller line

segments which can be achieved by moving the break point and free hinges vertically,



as in figure 5. For a given break point, the error-energies are quadratic. If the error
energy to the left of the break point at ¢; is F;, then

Ei(a,B) = ZZ:((X‘l‘Jﬂ_a

j:m

— d;)? (2)

1 —m
where a and [ are the (vertical) displacements of the left hinge and break point

respectively. The maximum energy reduction possible may be easily computed by

ApBy = AEi(6,3) = - (VE) H 'V VEy |, sy (3)

N | —

where (V E) is the gradient of F and Hj is the Hessian which is constant with respect

to a and (3.
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Figure 5: The PERM strategy. See text for details.

The Energy-Reduction Potential for a particular point is defined as the sum of the

left and right maximum energy reductions if a break is introduced at that point
Pi=ApEi+ A Ey (4)

Intuitively, this potential does not necessarily refer to the immediate potential for
energy minimisation. Instead it measures the energy-reduction potential for a hinge
at the point to be part of a compatible collapse mechanism likely to be formed after an
additional number of control point (hinge) insertions.

The PERM strategy is therefore to insert a hinge at the point on the spline

corresponding the maximum energy-reduction potential P. Results based on the
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PERM strategy have shown that the control points are introduced in near-optimal

regions, and compatible collapse mechanisms are formed.

3.3 Minimum Description Length (MDL)

The minimum description length (MDL) criterion by Rissanen [15] provides a generic
method for comparing the optimality of different models fitted to a particular set of
data, where models may have different dimensionality and structure.

Model-fitting may be expressed in a Bayesian framework as mazimising the apos-
teriori probability P(8]|X) where X is the matrix of data points given by X =
[, @3 ... &y, and 0 is a variable-length vector containing all model parameters.
Then with the application of Bayes’ rule and the assumption that P(X @) is a normal

distribution, we obtain an expression to be minimised:

log e

L(X,0)=

(y—39) Kp'(y —Fg) + Mlog N (5)
where L(X,8) = —log P(X|0) — log P(8) is the ideal code length to describe both
X and 0, y = [T 27 ... 2% ] is a vector containing the elements of X, K is the
covariance matrix of y, and M is the number of control points.

In circumstances when the covariance matrix K is unknown, it is possible to
estimate this from the residual errors. Using the usually satisfactory simplification
2

K = o?] in our analysis, an unbiased estimate for the uniform variance o? is o2 =

y'y
N—M-1°

As new control points are gradually introduced, each new estimate L;;4 is
calculated based on UAQJ- for the current estimate. If L;1; < L;, previous estimates
L; may then be revised by backpropagating the new UA?]-_H. This scheme is similar to

that used in [18]. The minimum L is usually considered found once L remains higher

11



than the lowest estimate over a number of iterations.

4 Implementation and Experimental Results

The specific problem considered here is that of fitting B-splines to chains of edgels ob-
tained from any edge-detection and linking algorithm. For the purpose of comparing
the performance of our PERM-based algorithm to the latest spline-fitting methods,
we implemented Guéziec and Ayache’s algorithm [5] which in our opinion addresses
the main spline-fitting issues most thoroughly among the other published methods.
The algorithms were tested on the contours shown in figures 6(a) and 7(a,e). The
results are compared in terms of errors for the same number of control points, as
shown in figures 6(f) and 7(d,h). For the first curve, the fit obtained by Guéziec and
Ayache’s algorithm when errors are similar to our fit for 9 control points is also shown
in figure 6(d).

The results indicate that the PERM control-point insertion strategy is superior
compared to using Duda and Hart’s polygonal representation scheme, since our al-
gorithm performs better for any number of control points. However as would be
expected, this advantage reduces when linear splines are used. Additionally, Guéziec
and Ayache’s algorithm requires less computation time. The evolution of our ac-
tive contours take considerably longer since at each time-step the data needs to be
resampled, and convergence is slow in some situations for a gradient-descent based

optimisation.
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Figure 6: (a) The contour on which the two compared algorithms are tested. (b) The
spline with 9 control points using Guéziec and Ayache’s (G&A) algorithm, and (c) The
spline with 9 control points using our (C&C) algorithm. (d) The spline from the G&A
algorithm for which the average squared errors is similar to the errors for the spline in

(d). (e) The spline from our algorithm superimposed on the original image. (f) is a graph
comparing squared errors when using different numbers of control points with the two

algorithms.
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Figure 7: (a,e) show the initial curves to be fitted. In (b,f), the splines obtained by using
the G&A algorithm up to 10 control points. (c,g) show the same curves fitted using our
algorithm at 10 control points. A graph providing comparison of squared errors to number
of control points for both algorithms is shown in (d,h).
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5 Conclusions

We have shown that by explicitly describing the main issues in B-spline fitting, a
model designed to resolve these issues may be developed. B-spline active contours
and the minimum description length principle have been used in various ways but have
rarely been applied to spline-fitting, while the PERM control-point insertion strategy
is inspired by structural mechanics analysis. By combining these features, we show
that it is possible to produce a fully automatic spline-fitting algorithm which is capable
of outperforming existing methods used in computer vision. The caveat however
lies in the amount of time active contours require to converge on the optimal curve-
representation solutions. If fitting is to be carried out on polygonal image curves, or if
a polygonal approximation suffices, a faster regression based Duda and Hart’s method
is often accurate enough. However when a good estimation of contour derivatives is
required, the proposed algorithm is considerablt more reliable. Nevetheless, this may
be improved by using more complex methods (eg. conjugate-gradient methods) in
the optimisation process, and will form part of our plans for future work. As is, the
algorithm has been applied in [10, 11]. Tt is also currently being ported to the TUE
environment by the Oxford Robotics Research Group and will be publicly available

in due course.
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