REAL-TIME RECOGNITION OF BROADCAST RADIO SPEECH

G.D.Cook' J.D. Christie P.R. Clarkson'

M.M. Hochberg*

B.T. Logan' A.J. Robinson'

C.W. Seymour’

fCambridge University Engineering Department,
Trumpington Street, Cambridge CB2 1PZ, UK.

*Nuance Communications, 333 Ravenswood Avenue,

Building 110, Menlo Park, CA. USA.

ABSTRACT

This paper presents a real-time speech recognition system

used to transcribe broadcast radio speech. The system is
based on ABBOT, the hybrid connectionist-HMM large vo-
cabulary continuous speech recognition system developed
at the Cambridge University Engineering Department [1].
Developments designed to make the system more robust
to acoustic variability and to improve performance when
decoding spontaneous speech are described. Modifications
necessary to increase the speed of the system so that it op-
erates in real-time are also described. Recognition results
and latency figures are presented for speech collected from
broadcast news segments on BBC Radio 4.

1. INTRODUCTION

To date, most research on very large vocabulary continuous
speech recognition has focused on clean, read speech from a
single domain such as North American business news. The
introduction of the Switchboard corpus has encouraged re-
search into recognition of spontaneous speech covering a
wide variety of domains, ranging from crime to air pollu-
tion [2]. Error rates for this task reflect the difficulty of
recognising spontaneous speech, with state-of-the-art sys-
tems achieving around 50% word error rates [3].

For speech recognition technology to become widely used,
systems must not only be capable of handling speech from
a variety of environments (different microphones, noise,
etc.) and domains (read business news, spontaneous speech,
etc.), but in many real-world situations they are also re-
quired to operate in real-time. As a first step in this direc-
tion, this paper describes recent developments to ABBOT,
a hybrid connectionist-HMM large vocabulary continuous
speech recognition system [1]. These developments are de-
signed to

e make the system more robust to acoustic conditions
such as background noise and microphone mismatch,

e improve performance when decoding spontaneous
speech, and

e increase the speed of the system so that it operates in
real-time.

To evaluate the performance of the system, we used radio

speech recorded from BBC Radio 4.

We present results for read studio speech, for spontaneous
studio speech, and for spontaneous telephone speech. We
show that the system is capable of operating in real-time.

We also investigate the effect of context-dependent acoustic
models on both word error rates and decode times for this
domain.

2. SYSTEM DESCRIPTION

The system is based on the ABBOT large vocabulary con-
tinuous speech recognition system developed for the recent
ARPA evaluations. For real-time transcription of radio
broadcasts, a number of modifications to the original system
have been required. The basic components of the real-time
system are shown in figure 1 and are briefly described in
the following sections. Note that the three basic compo-
nents may be performed on different processors to bound
the recognition time to that of the slowest process; in this

case, the decoder.
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Figure 1. Real-time hybrid connectionist-HMM
speech recognition system.

2.1. Data Collection

An Audiolab 8000T tuner with a five-element external aerial
is used for FM radio reception. The audio signal is digi-
tised at 16 kHz sample rate and 16 bit resolution by a
Silicon Graphics Indigo workstation. For studio-recorded
speech, the received signal is reasonably clean: the NIST
tool wavmd reports typical signal-to-noise ratios of around
45 dB. Any significant mismatch between the acoustic char-
acteristics of the radio speech and training data is likely to



be due to differences in microphone response, studio acous-
tics, and any processing applied to the signal prior to trans-
mission.

Segment boundaries are marked on the incoming speech
using an energy measure. The energy in a 64ms frame is
compared with the average energy over the last 5 seconds.
If the ratio is less than a threshold, the frame is marked as
silence. If greater than 0.5 seconds of silence is detected,
a segment boundary is marked. This segmentation process
is not essential, but is used to reduce the memory require-
ments of the decoder.

2.2. Acoustic Processing
2.2.1. Feature Eztraction

The acoustic waveform is segmented into 32 millisecond
frames every 16 milliseconds. The original version of AB-
BOT used a 20 channel mel-scaled filter bank with voicing
features (MEL+). However, experiments with the ARPA
1995 hub 3 adaptation data have shown that Perceptual
Linear Predictive (PLP) [4] cepstra coding is more robust
to microphone mismatch. The results in table 1 are from 32
utterances spoken by two talkers. The row labelled relative
WER increase indicates the relative increase in error rate
from the Sennheiser microphone. PLP results in a mean
performance gain of 19.1% over MEL+.

microphone S/N [ PLP | MEL+
Sennheiser-HM D410 38 18.5 18.5
Apple Plaintalk 13 56.3 64.6
Microsoft Sound System 14 33.9 46.6
SunMicrophone I1 15 40.2 45.6
Audio-Technica AT859QMLx | 17 26.8 34.8
Crown PCC-170 15 42.2 51.8
Sony ECM-55B 25 24.2 37.5
mean: (far field) 34.6 42.8
relative WER increase 101% | 153%

Table 1. Results on 1995 Hub 3 Adaptation Data

2.2.2. Normalisation

The stream of feature vectors is normalised by converting
each input channel into a zero mean, unit variance signal
and then byte coding the resulting stream. This achieves
data compression, robustness to convolutional noise, and a
scaled vector appropriate for processing by the connection-
ist model.

The normalisation procedure usually demands knowledge
of the statistics of all features over an entire utterance. For
real-time operation, however, this approach is inadequate
since a delay equal to the length of the current utterance is
necessarily introduced. The solution has been to employ a
simple running average of the past frames.

2.2.3. Acoustic Modelling

The recurrent neural network (RNN) provides a mech-
anism for modelling the context and the dynamics of the
acoustic signal. In the real-time system, the RNN is used
to map the sequence of acoustic feature vectors to a lo-
cal (in time) estimate of the posterior probabilities of the
phones given the acoustic data. This acoustic model re-
places the standard mixture Gaussian models used in tradi-
tional HMMs and has the advantage of achieving good per-

formance using no (or very little) context-dependent mod-
elling.

A Viterbi based procedure is used to train the acoustic
model. Each frame of training data is assigned a phone label
based on an utterance orthography and the current model.
The backpropagation-through-time algorithm is then used
to train the recurrent network to map the acoustic input
vector sequence to the phone label sequence. The labels
are then reassigned and the process iterates [5].

While our standard evaluation system uses a merging of
four acoustic models, this is not feasible for the real-time
system described here. Hence we use just a single front-end
based on PLP features as previously described.

Due to the compact connectionist architecture, generat-
ing the frame-by-frame posterior probabilities is achieved
in faster than real-time on many standard workstations. A
limited context-dependent implementation provides better
acoustic models for clean speech resulting in fewer errors
and much faster decoding [6]. We evaluated the use of a
context-dependent acoustic model on broadcast radio data.
This resulted in a 7.8% reduction in word error rate, but
the system is no longer able to operate in real-time.

2.3. Language Model

The style of most of the speech recorded from the radio
was very different from the style of text found in the cor-
pora which are traditionally used to build language models,
which frequently contain newspaper text, often focussing
on business news. Such corpora tend to contain American
English text, whereas we are aiming to recognise British
English speech. A language model trained on American En-
glish text would bias the system against recognising com-
mon British English words and phrases, and particularly
British place names. Furthermore, the style of the lan-
guage used in broadcast radio speech is very different from
that used in newspaper text. In particular, common phrases
such as “You’re listening to ...” and “This is John Smith
reporting from ...” would not be found in the training cor-
pora, and would lead to recognition errors. In addition,
hesitations such as “um”, “er”, etc. and false starts, where
a speaker begins to say one word, and then changes their
mind are a major source of error.

In order to circumvent this problem, a language model
was constructed by combining 100 million words of general
text from the 1995 ARPA hub 4 language modelling data,
and the British National Corpus [11]. The British National
Corpus contains 100 million words of British English, from
a wide variety of sources, of which 10 million words are
transcribed spontaneous speech. Such text should hopefully
match the target domain more closely.

The results of using this language model are compared
with those which are obtained using the 1994 ARPA stan-
dard 20k trigram language model.

2.4. Decoder

The recognition search procedure was implemented using
the NOwAY decoder [7]. This decoder, which uses a start-
synchronous stack decoder approach, makes direct use of
the posterior probabilities estimated by the recurrent net-
work in phone deactivation pruning, offering a considerable
speedup. Recent enhancements to the NOWAY decoder are
described briefly below and in more detail in [8].



Since the language model is only applied at word ends
during the search, log probability estimates within words
are raised relative to word ends. This information can be
exploited to achieve a more efficient search by specifying
the beamwidth within words to be narrower than at word
ends. This modification results in a speedup of a factor of
1.5-2.0, with little or no search error.

The decoder was modified to incorporate new sentences
within an utterance. A sentence break was specified to have
an acoustic realisation as a pause model with a minimum
duration (typically 20 frames).

3. RESULTS

3.1. Test Data

We evaluated the system on broadcast radio speech
recorded from BBC Radio 4. The test data was recorded
on 22* November, 1995, and is the programme “World at
One”. This is a daily news programme covering national
and international news and issues. It is comprised of read
speech, studio interviews, and interviews conducted over
the telephone.

Speech Duration percentage
Read studio 9 mins 15 secs 26%
Spontaneous studio 4 mins 57 secs 14%
Spontaneous telephone | 21 mins 12 secs 60%

Table 2. Composition of test data

The composition of the programme used is shown in ta-
ble 2. As can be seen, the majority of the data is spon-
taneous speech. The spontaneous studio speech is from
interviews between the news reader! and politicians or re-
porters. The telephone speech comprises mainly interviews
with members of the general public and contains a far
greater number of hesitations and false starts than the spon-
taneous studio speech.

3.2. Acoustic Models

Separate recurrent-neural-network acoustic models were
trained for the wide-band studio speech and for telephone
speech. The acoustic model used for wide-band speech was
trained on the speaker independent training data from the
wsjcam0 corpus [9]. This consists of 92 speakers reading
business news from the Wall Street Journal. To train the
telephone speech acoustic model, the wsjcam0 waveforms
were bandpass filtered to simulate a telephone channel. The
cutoff frequencies used were chosen to match the bandwidth
of British telephone channels. The lower cutoff is 300 Hz
and the upper cutoff is 3.4 kHz.

3.3. Context Independent Results

The results when using context-independent acoustic mod-
els and the 1994 ARPA standard 20k trigram language
model can be seen in table 3. Decoding is performed in
real-time for the studio speech on a HP 735/99 worksta-
tion. Telephone speech requires a greater decoding effort
and takes approximately 1.4 times real-time. Acoustic pro-
cessing is performed on a separate workstation and is real-
time in all cases.

IThis is an anchorperson in the US.

Speech Sub. | Del. | Ins. | WER
Read studio 365 | 74 | 54 | 49.0
Spontaneous studio 44.5 | 14.2 | 4.2 | 62.9
Spontaneous telephone | 56.5 | 7.4 | 9.6 | 73.4

Table 3. Results using context-independent acous-
tic models and the ARPA 1994 standard 20k tri-
gram language model

The word error rates are high in all cases. This is due
to conversational nature of the speech, microphone/channel
mismatch, and the use of an inappropriate language model.
The speech to be decoded is primarily spontaneous and cov-
ers a wide range of topics, while the acoustic and language
models have been trained on read business news from the
Wall Street Journal. In addition, the out-of-vocabulary
(OOV) rate is very high; 9.0% and 9.1% for the studio
and telephone speech, respectively. This is much more sig-
nificant than typical values for read business news (1.3%—

1.6%) [10].

The results in table 4 have been generated using the lan-
guage model described in section 2.3. This results in a small
reduction in word error rate for all of the types of speech.
We believe the use of spoken text in the language model re-
sults in only a small improvement because of the relatively
small amount of text.

Speech Sub. | Del. | Ins. | WER
Read studio 35.2 | 65 | 6.3 | 48.0
Spontaneous studio 41.1 | 13.5 | 5.1 | 59.7
Spontaneous telephone | 51.6 | 10.8 | 7.2 | 69.7

Table 4. Results using context-independent acous-
tic models and a language model generated from
the British National Corpus and the ARPA 1995
hub 4 language modelling data

We are currently investigating methods of optimally com-
bining language models generated from different source do-
main texts. This will enable us to take advantage of the
large amount of business news text available, while also re-
flecting the spontaneous nature of most broadcast news.

3.4. Speed / Error Rate Trade Off

In order to achieve real-time performance it was necessary
to increase the decoder pruning. We investigated the effect
of this extra pruning on error rate.
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Figure 2. Decode time versus error rate for the
context-independent system and the ARPA 1994
standard 20k trigram language model



For real-time performance the error rate is 54.4%. This
is reduced to 51.6% when using evaluation pruning levels,
however, decode time is increased almost five times.

4. ONLINE RECOGNITION

We established that the system can decode broadcast radio
speech in real-time. This introduces a new parameter of
interest — the time taken for a word to filter through the
system and appear as text. This is a measure of latency
and would be of interest in, for example, an interactive sys-
tem where it is important to have not only un-interrupted
transcription, but as brief a lag as possible between the ut-
terance of a word and the emergence of its transcription.

Readings of latency were taken using live news. Every
30 seconds the word being uttered was noted and the time
until its transcription (correct or otherwise) appeared was
measured. The audio collection, acoustic feature compu-
tation, normalisation, and acoustic processing all ran on a
Silicon Graphics Indigo, while the decoder ran on an HP
735/99. A plot of the measurements are given in figure 3
and indicate a mean latency of 6 seconds with a standard
deviation of 5 seconds.

20

18 b

16

14

latency (secs)
RN
IS

©

I I I I
0 50 100 150 200 250 300
time from start (secs)

Figure 3. Latency versus time for the context-
independent system and the ARPA 1994 standard
20k trigram language model

When the acoustic data is messy (unclear articulation or
background noise), the decoder efficiency is reduced because
many hypotheses have similar scores. The system is, there-
fore, prone to backlog. The latency figures show that, al-
though often falling behind (up to 16 seconds at one stage),
the system successfully regains ground and, after four and
a half minutes of constant decoding, the latency is only 1.1
seconds. This condition of falling behind is a result of the
system running very close to the real-time decode threshold.
It is worth noting, however, that the latency did not ever
fall below one second. This can be considered as the time
taken for acoustic data to be processed and mapped to a
word string in the case where there is no backlog. The initial
delay is caused by the normalisation process. This requires
initial prior statistics, and this is achieved by buffering the
first five seconds of data.

5. CONCLUSIONS

There is clearly a long way to go before the performance
of recognition systems on broadcast speech approaches that

obtainable on read business news. Significant improvements
in language models are required to more closely match the
source and target domains. Because of the greater diversity
of broadcast news, larger vocabularies are also required in
order to reduce the OOV rates.

Acoustic mismatch is another major source of error when
recognising broadcast speech — available training data con-
sists of read business news. How can we adapt acoustic
models to varying broadcast conditions and spontaneous
speech? These are open issues we are currently investigat-
ing.
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