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Summary

This thesis is concerned with the synthesis of speech using trainable systems. The
research it describes was conducted with two principle aims: to build a hidden Markov
model (HMM) based speech synthesis system which could synthesise very high quality
speech; and to ensure that all the parameters used by the system were obtained through
training. The motivation behind the first of these aims was to determine if the HMM
techniques which have been applied so successfully in recent years to the problem of
automatic speech recognition could achieve a similar level of success in the field of speech
synthesis. The motivation behind the second aim was to construct a system that would
be very flexible with respect to changing voices, or even languages.

A synthesis system was developed which used the clustered states of a set of decision-
tree state-clustered HMMs as its synthesis units. The synthesis parameters for each clus-
tered state were obtained completely automatically through training on a one hour single-
speaker continuous-speech database. During synthesis the required utterance, specified as
a string of words of known phonetic pronunciation, was generated as a sequence of these
clustered states. Initially, each clustered state was associated with a single linear predic-
tion (LP) vector, and LP synthesis used to generate the sequence of vectors corresponding
to the state sequence required. Numerous shortcomings were identified in this system,
and these were addressed through improvements to its transcription, clustering, and seg-
mentation capabilities. The LP synthesis scheme was replaced by a TD-PSOLA scheme
which synthesised speech by concatenating waveform segments selected to represent each
clustered state. The final system produced speech which, though in a monotone, was nat-
ural sounding, remarkably fluent, and highly intelligible. The segmental intelligibility was
measured using the Modified Rhyme Test, and a 5.0% error rate obtained. The speech
produced by the system mimicked the voice of the speaker used to record the training
database. The system could be retrained on a new voice in less than 48 hours, and has
been successfully trained on four voices.
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Chapter 1

Introduction

1.1 A Definition

This thesis is concerned with the synthesis of speech. Specifically, it is concerned with
the synthesis of speech containing different words, and/or different word orders, from any
speech stored with or transmitted to the synthesis system. In this thesis such systems are
referred to as arbitrary speech synthesis (ASS) systems.

1.2 Applications of ASS Systems

When considering the possible applications of ASS systems, it is important to distinguish
those cases in which a system which can generate arbitrary speech is needed, from those
in which a few recorded utterances would suffice. The advantages of recorded utterances
are that they are currently still more intelligible, more natural, and considerably more
engaging than the speech of any ASS system. However, as described below, it is not
always possible, and often not desirable, to use a recorded utterance based system, and
then an ASS system is required.

For some applications the sentences to be synthesised are not, and cannot, be known
in advance. For these the only automated solution possible is an ASS system. Examples
are the proof-reading of documents, both reading and speaking aids for the disabled, and
devices to read messages, such as electronic mail, over telephone lines. Applications also
exist in language teaching, where ASS systems could demonstrate the correct pronuncia-
tions of both words and arbitrary phrases. Other future possibilities include speech output
for automatic translation systems and intelligent machines.

For other applications the sentences to be synthesised may all be known in advance,
and in these the prior recording of utterances is possible. However, an ASS solution may
still be preferable. The number of sentences to be synthesised and the rate at which
they need to be updated are the determining factors. For applications involving small
numbers of sentences, for example a voice alarm system, or sentences which are unlikely
to change over time, such as those used in a CD-ROM based multi-media encyclopedia,
recordings may be the best solution. However, for applications involving access to very
large or rapidly changing databases an ASS system driven from a text database has many
advantages. With an ASS system the need to record all the utterances in advance, and
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to maintain this set of utterances, is replaced by the much simpler task of preparing and
maintaining a text database. Individual words can be changed without having to re-record
whole phrases, and the original speaker never needs to be recalled. Furthermore, text is a
much more compact storage medium than speech.

One example of a database-access application, which is already in use (Sorin and
Gagnoulet 1995), is a system which enables mail order catalogue product descriptions
to be obtained over the telephone. Also tried are a system for use in libraries, which
telephones borrowers when their books are overdue, and a reverse directory enquiries
system, from which the name and address corresponding to a particular telephone number
can be obtained over the telephone. There are also possible applications in situations where
information needs to be given to a person whose eyes are otherwise engaged. For example,
a system can be envisaged which would inform a driver of traffic problems relevant to
his/her journey, or dynamically give directions to his/her destination.

Another set of possible applications arises from the increasing capacity of ASS systems
to mimic the voice of a particular speaker. As this technology comes to fruition, celebrity
ASS systems, or systems which sound like the members of a users family, become possibil-
ities. Integration of ASS systems with automatic speech recognition systems would open
the way to voice-driven voice mimicking. Such systems would have great entertainment
value, enabling, for example, the construction of celebrity voice Kareoke systems. They
could also be used to produce voice-overs for television commercials, or as insurance poli-
cies for film companies, or even individuals, against somebody losing their voice. With the
advent of digital audio broadcasting providing widespread access to high quality signals
of the speech of politicians, military personnel, and celebrities, such systems also have a
large potential for abuse. This is an issue which must be faced both by the companies
supplying such technology and by society in general.

The number of possible applications for ASS technology has greatly increased in recent
years, largely due to the rapid increase in the use of computers in society. With many
more potential users than was hitherto the case, research into improving the intelligibility
and naturalness of ASS systems is therefore perhaps more important now than ever before.

1.3 Generic ASS System Structure

All ASS systems require some input specification of the speech to be synthesised. Most
frequently the input specification used is the text of the desired utterance, in ASCII form.
The process of converting this input to speech is known as Text-to-Speech (TTS) synthesis.
For many of the applications described in Section 1.2 this is exactly what is required, since
the text is all that is known about the required speech. For some applications however,
such as those in which the phrases to be synthesised are constructed by a computer, more
information may be available about the required speech than just the corresponding text.
In these cases, this additional information can be passed from the underlying system to the
speech synthesis system, instead of having a TTS system attempt to generate the same
information from the corresponding text. Indeed, (Young and Fallside 1979) suggested
that the synthesis system should be passed a “concept”, from which it would construct
both the required sentence and the synthetic speech. These approaches can simplify (or
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avoid) many of the problems involved in synthesising arbitrary speech from text. However,
since TTS synthesis is required in many applications, this chapter discusses all the issues
relevant to TTS conversion.

In order to be able to synthesise arbitrary speech, all ASS systems must make use
of some set of sub-phrase synthesis units to construct the acoustic realisation of each
phrase. The set used, and the manner in which it is used, varies between different synthesis
systems. The existence of these units results in all T'TS systems being essentially composed
of three sub-systems, although there is some overlap between these. These sub-systems
are, the conversion of arbitrary text into synthesis units (see Section 1.8), the conversion
of arbitrary text into prosodic parameters (comprising segmental durations, fundamental
frequency contours, and energy contours, see Section 1.9), and the conversion of synthesis
units and prosodic parameters into speech. The different synthesis techniques which can
be used to generate synthetic speech are discussed in Section 1.4, and the different types
of system into which these techniques are incorporated in Sections 1.5, 1.6, and 1.7.

1.3.1 Trainable ASS Systems

Trainable approaches to automatic speech recognition (ASR), aided by the increasing
power of modern computers, have had a great deal of success in recent years. Typically,
these methods involve creating an appropriate model and then estimating its parameters
automatically through training on a suitable database. Their success stems from their abil-
ity to capture the regularities and variations present in large training databases through
the optimisation of well understood criteria. They have largely replaced rule-based ap-
proaches to ASR, which were difficult to optimise, and usually based on human analysis of
substantially smaller amounts of data. These considerations suggest that applying similar
methods to the problem of speech synthesis might have a similar degree of success.

The attraction of using trainable, data-based, methods for speech synthesis, besides
the improvements in performance which they may bring, is the flexibility that such systems
would have with regard to changing voices or languages. A synthesis system constructed
automatically could be adapted to a specific new voice, or even a new language, simply
by retraining on new data. Such a system would represent a considerable advance over
more traditional approaches to speech synthesis. These require extensive new work to
achieve such changes (although less precise voice alterations can be more easily obtained
with some systems).

The need to develop ASS systems in several languages is obvious; even amongst the
developed nations likely to be using ASS technology there are many different languages in
use. The need for many different voices is perhaps less obvious. For database access appli-
cations (Sorin 1994) states that at least two voices per application are necessary, one for
welcome and guidance messages, the other for information delivery. The requirement then
increases many-fold since it would be undesirable to have the same synthetic voices used
in every database access system. It is also likely that manufacturers would wish different
products to have different voices. (Murray and Arnott 1993) cite the need for multiple
voices to avoid confusion when different people using T'TS systems as speaking aids are in
the same room. Finally, the voice mimicking applications described in Section 1.2 clearly
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Figure 1.1: The Human Speech Production System.

require specific voices to be produced.

In recent years, research has begun to investigate the use of data-based methods in
speech synthesis. Attempts to use data-based methods to solve the problems associated
with the conversion of text to synthesis units and prosodic parameters are described in
Sections 1.8.2, 1.9.1, 1.9.2 and 1.9.3. The use of data-based methods to select synthesis
units for use in a concatenation synthesiser is the principle subject of this thesis, and
previous research in this area is therefore discussed in detail in Chapter 2.

1.4 Synthesis Techniques

This section describes the human speech production system, and both historical and

present techniques for synthesising speech.

1.4.1 The Human Speech Production System

The human speech production system is illustrated in Figure 1.1. The vocal tract extends
from the vocal cords in the throat to the lips in the oral cavity, and the nostrils in the
nasal cavity. The shape is modified by the position of the articulators, namely the velum,
the jaw, the tongue, and the lips. The shape determines the transfer function of the vocal
tract response to an excitation signal. This transfer function is usually composed of a
number of resonances, known as formants, and occasionally of anti-resonances too.

Speech is produced by exciting the resonances and anti-resonances of the vocal tract
filter. The excitation either comes from the vibration of the vocal cords during wvoiced
speech, at the fundamental frequency, Fy, or from turbulent noise created at a constriction
somewhere in the vocal tract in the case of unvoiced speech. In some sounds both types
of excitation may be present at the same time.
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The positions of the articulators and the type of excitation signal vary during speech
production. It is believed that their positions/status are the result of a constant movement
towards a sequence of rapidly changing targets, subject to their dynamical constraints.
These targets are defined by the phonemes and the allophones of a given language.

Phonemes are linguistically defined units of speech. They are essentially labels given
to each group of vocal tract articulator targets which are considered to be functionally
equivalent by speakers of a given language. A working definition involves the use of
minimal-pairs. Two vocal tract configurations represent different phonemes if two words
can be found which differ only by the use of these two configurations. For example,
rice and lice differ only in their initial vocal tract configurations, but are different words,
and therefore contain different phonemes. The number of phonemes in a language varies
between about 20 and 60, with English having about 40.

Allophones represent finer configuration distinctions, which although not functionally
distinctive in a language, may be discriminated between by speakers of the language. For
example, lice contains a light /l/, and small contains a dark /I/, which have different vocal
tract configurations. Although producing each word with the wrong allophone would
sound strange, they would still be the same words, and hence the light and dark versions
of /1/ are not different phonemes.

Finally, phones are the acoustic realisations of phonemes, and vary considerably both
with context and between speakers. In this thesis the term phone is used slightly more
generally to refer to both realisations of, and classes of, speech sounds which may or
may not be true phonemes. For example, in Chapter 6, the phones /tcl/ and /tbst/ are
introduced to represent the closure and burst parts of the phoneme /t/.

For a more detailed description of the human speech production process see (O’Connor
1973), (Borden and Harris 1984), or any good book on articulatory phonetics.

1.4.2 An Introduction to Synthesis Techniques

The first attempt to synthesise speech was by Wolfgang von Kempelen in the 18th century.
His talking machine was a mechanical device powered by bellows. It had a mouth made of
india-rubber, nostrils, and an inflatable side bellows to simulate the expansion of the vocal
tract. Voicing was achieved by the vibration of a reed, and fricatives by allowing air to
escape in various ways. The device was operated by using levers, by covering the nostrils,
and by shaping the mouth, and could synthesise whole phrases in French and Italian.

Attempts to synthesise speech mechanically gave way, in this century, first to analogue-
electronic methods, and then to computer-based methods. The first electronic synthesiser
was developed by Dudley in the 1930s. His Voder was based on a channel vocoder, and
synthesised speech by using ten potentiometers to control the gains of ten fixed frequency
resonators, which were excited by pulses at the pitch frequency or by noise. The poten-
tiometers were controlled manually, to enable the synthesis of arbitrary speech. Research
into electronic methods of synthesising speech continued, both into making direct elec-
tronic analogues of the vocal tract, and into implementing both channel and formant syn-
thesisers electronically. For a thorough review of both mechanical and electronic methods
of speech synthesis see (Linggard 1985).



1. Introduction 6

In the second half of this century methods employing analogue-electronics to synthesise
speech were largely abandoned in favour of methods using digital computers. The broadest
subdivision of the strategies used to synthesise speech on computers is into system-models
which attempt to model the human speech production system, and signal-models which
attempt only to model the resulting speech signal. The system-model approach is known
as articulatory synthesis, and is discussed in Section 1.5. The signal-model approach is
perhaps the simpler of the two, and as such has been both more thoroughly investigated,
and more successful. It can be further subdivided into methods broadly described as
rule-based formant synthesis, and concatenation synthesis.

Rule-based formant synthesis systems were for many years the most successful methods
of synthesising speech, and are discussed in Section 1.6. Formant synthesisers use an
excitation signal to excite a digital filter constructed from a number of resonances similar
to the formants of the vocal tract (see Section 1.4.4). The separation of the vocal tract
transfer function and the excitation signal in this way is known as the source-filter theory
of speech production, and is described in Section 1.4.3.

Concatenation synthesis operates by concatenating appropriate synthesis units to con-
struct the required speech. Section 1.7 describes the various systems which have been
investigated, and the different types of synthesis unit which they have used. In these sys-
tems signal processing must be applied to alter the fundamental frequencies and durations
of the synthesis units to those required in the synthetic speech. Furthermore, unless the
units are selected very carefully, the signal processing must also be able to smooth away
spectral concatenation discontinuities between units. Two forms of signal processing, and
their variations, have been used extensively in concatenative systems. These are Linear
Prediction (LP) synthesis (see Section 1.4.5), and Pitch Synchronous Overlap and Add
(PSOLA) synthesis (see Section 1.4.6). LP synthesis is a source-filter based approach, but
PSOLA is not and operates simply by windowing and recombining existing synthesis unit

waveforms.

1.4.3 The Source-Filter Theory of Speech Production

The source-filter theory of speech production assumes that the excitation source can be
considered to be independent from the vocal tract response. In practice, the vocal tract
response is usually assumed to be linear, and the z-transform of the speech signal, S(z),
can therefore be synthesised as

S(z) = U(z)H(2) (1.1)

where U(z) is an approximation to the excitation signal, and H(z) the transfer function
of a digital filter representing the vocal tract response and the radiation characteristic of
the lips/nostrils.

In practice, H(z) is often analysed as V' (z)R(z), where V (z) is the transfer function of
the vocal tract, and R(z) the radiation characteristic. Furthermore U(z) is often analysed
as P(z)G(z), where P(z) is a pulse train and/or white noise, and G(z) (which is only
present for voiced speech) is the transfer function of the glottal waveform “filter”. For
voiced speech equation 1.1 then becomes
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S(z) = P(2)G(2)V(2)R(z). (1.2)

Thus in linear prediction (LP) synthesis, for example, the excitation signal used is often
just P(z), and the filter implied by the LP coefficients models the combined effects of the
shape of the glottal waveform, the vocal tract response, and the radiation characteristic.

In synthesis applications the digital filter which includes the vocal tract response is
usually updated only every 5 or 10 milliseconds. This represents an assumption that
speech can reasonably be represented by a single transfer function on such time-scales.
This assumption is usually valid, because the articulators of the vocal tract are usually
almost stationary over such time-scales. However, for very rapidly articulated sounds,
such as bursts, the assumption is more questionable.

The assumption that the source and filter are independent is only approximately true.
(Klatt 1987) reports that the resonances of the vocal tract lead to standing pressure waves
which can affect both the vibration pattern of the vocal cords, and the shape of the glottal
waveform. Similarly, the opening and closing of the vocal cords represents a varying
termination impedance for the vocal tract, and can affect its transfer function. These
effects are generally small, and Klatt postulates that they may only be of importance
during moments of voicing onset, and in causing small pitch-synchronous changes to the
first formant. In female voices the vocal cords usually spend a larger fraction of each pitch
period open, and with some voices this can lead to the vocal tract interacting with the
trachea. In this case the independence assumption is less reliable; indeed (Sorin 1994)
states that the assumption is “grossly inadequate” for female speech.

1.4.4 Formant Synthesis

Formant synthesis is a source-filter method of speech production, in which the vocal tract
filter is constructed from a number of resonances similar to the formants of natural speech.
It is therefore similar to the Dudley Voder described in Section 1.4.2, but uses a small
number of variable frequency resonators, instead of many fixed frequency resonators. Up
to three formants are generally required to synthesise intelligible speech, with four or five
being sufficient to produce high quality speech. Each formant is usually modelled using
a two pole resonator, which enables both the formant frequency and its bandwidth to be
specified. There are two methods of combining the formants to make a model of the vocal
tract. In the parallel formant synthesiser the excitation is applied to all the formants in
parallel and their outputs are summed, enabling individual gains to be specified for each
formant. In the cascade formant synthesiser the output of one formant is applied to the
input of the next. The two forms are shown schematically in Figure 1.2.

There has been much debate over which of the two arrangements in Figure 1.2 is
better. (Linggard 1985) summarises that the cascade type has been found to be better for
non-nasal voiced sounds, and the parallel type for nasals, fricatives and stops. Efforts to
improve on the simple systems shown in Figure 1.2 have also been made. In (Klatt 1980)
FORTRAN listings were published for a complex formant synthesiser which incorporated
both the cascade and parallel formant arrangements. It also had additional resonances and
anti-resonances to aid in the synthesis of nasalised sounds, a sixth formant for synthesising
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Figure 1.2: Generic Formant Synthesisers.

very high frequency noise, a bypass path to give a flat transfer function, and a radiation
characteristic. The system used a complex excitation model, and was controlled by 39
parameters, which were updated every 5ms. The synthesiser could synthesise very high
quality speech, and has since been incorporated into several TTS systems (see Section 1.6),
and been used by many researchers in their work.

With formant synthesisers, the digital filter specified by the formants usually seeks only
to represent the resonances of the vocal tract, and so additional provision is needed for the
effects of the shape of the glottal waveform and the radiation characteristic. The radiation
characteristic is often approximated as a simple +6dB/octave filter on the output. While
the glottal waveform is often approximated by a —12dB/octave filter, natural waveforms
often differ from this ideal. For example, spectral zeros are usually present, the open
period, abruptness of closure, amount of breathiness, spectral tilt and many other features
can vary between speakers and with time. This has led to the creation of complicated
voicing models, which enable many of these features to be varied, (Klatt 1987). However,
Klatt also stated that the rules necessary to control these complex models were still quite
primitive in 1987.

An important demonstration of the capabilities of formant synthesisers was reported
in (Holmes 1973). In this experiment people inexperienced in listening to synthetic speech
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were found to be unable to distinguish a natural utterance and a synthetic utterance
based upon it, even when using earphones. The synthetic utterance was generated by
manually tuning the control parameters of a parallel formant synthesiser to reproduce
the natural utterance. An inverse-filtered non-nasalised vowel waveform was used as the
voicing excitation. These results may at first seem to call into question the need for the
complex voicing models discussed above. However, (Klatt 1987) suggested that Holmes
had effectively modelled the change over time of the voiced excitation of the natural
utterance by careful control of the formant amplitudes.

Formant synthesisers are generally controlled by rule (see Section 1.6). Whilst they
are theoretically capable of being used in concatenative systems, they have rarely been so
because of the difficulties associated with estimating formant parameters automatically

from concatenation units.

1.4.5 Linear Prediction Synthesis

Linear Prediction (LP) synthesis is another source-filter method of speech synthesis. The
digital filter is estimated automatically from a frame of natural speech using a compu-
tationally efficient algorithm. LP synthesis has been used extensively in concatenation
systems, since it enables the rapid coding of concatenation units. It is not really suited
to rule-based systems, since rules are most easily specified in terms of formants, and the
relationship between the coefficients used to define the LP filter and formants is not a
simple one. LP synthesis was used in the current work, and the mathematical theory is
therefore described in some detail in Appendix D. This section presents an introduction
to the concepts involved, and a discussion of the limitations of the model.

The basis of linear prediction theory is the assumption that the current speech sample
y(n) can be predicted as a linear combination of the previous P samples of speech, plus a
small error term e(n). Thus,

e(n) = Za(z)y(n —1) where a(0) =1, (1.3)

and the a(i) are termed the linear prediction coefficients, and P the linear prediction
order. The LP coefficients, a(i), are found by minimising the sum of the squared errors
over the frame of speech under analysis. Two methods of performing this calculation
are commonly used, termed the covariance method and the autocorrelation method, which
differ in the range of n over which the error is minimised (see Appendix D). Coefficients
calculated using the autocorrelation method have the advantage that the filter they define
is guaranteed to be stable, (Markel and Gray 1976).

It can be shown that LP analysis is equivalent to matching the power spectrum of
the all-pole filter defined by the LP coefficients (see Appendix D) to the spectrum of the
speech signal. This matching is effectively weighted to achieve the most accuracy in the
vicinity of the formant peaks, (Markel and Gray 1976). The digital filter thus models the
spectral envelope of the speech signal, and the error signal e(n) (ideally) contains only the
harmonic structure of the speech and/or white noise (P(z) in Section 1.4.3). The speech
can therefore be re-synthesised at a different fundamental frequency by exciting the filter
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with a synthetic error signal, providing a new harmonic structure. The stylised excitation
often used consists of a simple pulse train at the new fundamental frequency for voiced
speech and white noise for unvoiced speech.

The autocorrelation method derived LP coefficients can be reversibly transformed into
related parameters called reflection coefficients, and area-functions, which are so named
because the autocorrelation approach can be shown to be analogous to modelling the vo-
cal tract as an acoustical tube of varying cross-section. The reflection coefficient form is
particularly useful, because these parameters have the property that a filter defined by a
set of reflection coefficients k, 1 < n < P is guaranteed to be stable if k&, < 1 Vn, (Markel
and Gray 1976). Parameter interpolation between stable filters is thus guaranteed to give
a stable filter. Reflection coefficients are therefore very useful in smoothing away concate-
nation discontinuities (see Section 5.6.1). Lattice filters (see Section 5.4) enable reflection
coefficients to be used directly, without conversion to their LP coefficient equivalents. For
more details on LP theory see Appendix D, (Markel and Gray 1976), or any good speech
processing textbook, for example (Parsons 1986).

Synthetic speech produced using linear prediction synthesis is far from perfect. (Klatt
1987) reports that autocorrelation method LP synthesis does not reproduce formant fre-
quencies and bandwidths correctly when speech is re-synthesised at a different fundamental
frequency to that which it had originally. Even when re-synthesising speech at the orig-
inal pitch, the speech quality is considerably degraded compared to the original. This is
because the stylised excitation used in synthesis is actually an over-simplification of the
true error signal, particularly for voiced speech. The true error signal contains additional
information to correct for the departure of the speech signal from the assumption of LP
theory that the speech within each frame can be modelled by a single all-pole filter. Re-
synthesising without this additional information therefore introduces degradation. The
most noticeable result is that the synthetic speech is produced with a characteristic buzz.
Alternative excitation models have been sought in the hope of reducing this effect, for
example, the current AT&T speech synthesiser uses a voicing source model which en-
ables both the spectral balance and the degree of aspiration to be varied, (Sproat and
Olive 1995). The all-pole assumption is particularly poor for nasals, and nasalised vow-
els, which contain spectral zeros, and hence these sounds are not well reproduced by LP
synthesis. The model is also particularly poor for many plosives, because the time-scale
of events within them can be shorter than the frame sizes used for analysis. They are
therefore often poorly reproduced when using a stylised excitation.

A development of LP theory, called multi-pulse linear prediction, (Atal and Remde
1982), can solve many of the problems described above. The method constructs a com-
plex excitation consisting of several pulses for each frame of speech analysed, which when
combined with the LP coefficients for that frame reproduces almost exactly the original
waveform. This is very useful for vocoding, and storage, since it enables very high quality
speech to be generated at a reduced bit rate. However, the source and the filter are no
longer separate, and hence difficulties arise in ASS applications with both altering prosody
and ensuring waveform and spectral continuity at concatenation unit boundaries. (Stella
and Charpentier 1985) used multi-pulse linear prediction to code their diphone inventory,
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using pitch synchronous frames. However, during synthesis the target utterance was syn-
thesised using normal multi-pulse LP synthesis, carrying over the LP filter memories at
segment boundaries. The synthesised utterance, which contained the intrinsic prosody of
its component diphones, was then subsequently transformed to have the required prosody
using a phase-vocoder. Hence, multi-pulse coding was only used as a form of database
compression. In contrast, (Varga and Fallside 1987) used multi-pulse methods, and an
automatically obtained pitch synchronous labelling, to exactly reproduce each pitch pulse
of each concatenation unit during synthesis. Pitch was lowered by allowing the filter as-
sociated with each pitch pulse to run on with no excitation, and raised by truncating
pitch pulses. Durations were altered by repeating and removing whole pitch pulses. The
boundaries between pitch pulses, and between units, were smoothed in the time domain
to produce a continuous signal. However, spectral smoothing at concatenation boundaries
was not possible. The authors claimed that the prosody modification technique gave ex-
cellent results when used for analysis-synthesis of whole utterances, and that good results
were obtained in concatenation synthesis.

Other extensions of LP synthesis are residual ezcited linear prediction (RELP), in
which the error signal, or residual, is used as the excitation signal, and codebook ezcited
linear prediction (CELP), in which one of a number of signals stored in a finite codebook
is used as the excitation signal. Both suffer similar problems to multi-pulse LP methods,
because the source and filter are no longer completely separated. Nevertheless, these
problems have been overcome, and RELP synthesis is used in L&H’s commercial TTS
system, (Lernout & Hauspie 1996).

1.4.6 PSOLA Synthesis

The Pitch Synchronous Overlap and Add (PSOLA) algorithm was developed by France
Telecom at CNET, (Charpentier and Stella 1986). The technique does not synthesise
speech itself, but merely enables pre-recorded segments of speech to be smoothly concate-
nated, while enabling the pitch and duration of the segments to be altered. It is therefore
of use in concatenation synthesis in place of linear prediction, which was traditionally used
to perform this role. The advantage of PSOLA synthesis over LP synthesis is that the
synthetic speech produced is of a much higher quality. The advantages and disadvantages
of the various versions of PSOLA which have been developed are discussed below.

All versions of the PSOLA algorithm work in essentially the same way. A natu-
ral speech segment is broken into many short-term (ST) signals, by Hanning windowing
pitch-synchronously through regions of voiced speech and at a fixed interval through re-
gions of unvoiced speech. The ST-signals are then re-combined to produce the synthetic
speech. The size of the Hanning window used has implications for the synthetic speech
quality, and is discussed below. The pitch is raised or lowered by altering the spacing
of the ST-signals during synthesis, and the duration simultaneously altered by repeating
or deleting ST-signals from the synthetic speech. The recombination is performed using
one of several overlap-add schemes which add together the new ST-signal sequence at the
new spacing. These schemes compensate for the number and amplitude of the Hanning
windows contributing to the synthetic signal at each point in time. The most complicated
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of these, the least-square scheme, goes further, and tries to minimises the error between
the ST-signal spectra and the corresponding short-time spectra of the synthetic speech.

The simplest version of PSOLA is time domain, or TD-PSOLA, which proceeds exactly
as just described. TD-PSOLA is the most computationally efficient version of PSOLA. Tt
was used in the work described in this thesis, and a detailed description of the implementa-
tion can be found in Section 7.3. The synthetic speech quality obtained with TD-PSOLA
synthesis is far superior to that obtained with LP synthesis. However, this improvement is
not without cost. All versions of PSOLA require large amounts of storage for the concate-
nation unit waveform databases used, although in practice this problem can be reduced by
compressing the speech, using, for example, multi-pulse coding. TD-PSOLA also has the
disadvantage, compared to LP synthesis, that spectral smoothing at concatenation unit
boundaries cannot be performed. Synthesis units must therefore be chosen very carefully
if formant discontinuities are to be avoided during synthesis.

As mentioned above, the speech quality obtained with TD-PSOLA is very good. How-
ever, it is not perfect, and localised errors can be quite distinct precisely because the general
quality is so good. A major problem occurs when significantly increasing the durations of
unvoiced sounds. The repetition of unvoiced ST-signals can result in a local periodicity
which is heard as a tonal noise. This problem can be largely overcome for purely unvoiced
sounds by reversing the time axis of the repeated ST-signal, but this technique cannot be
applied to voiced fricatives, which can suffer similar, though less severe, problems. Less
localised problems also exist. If large Hanning windows are used (containing multiple
pitch pulses), then a mismatch occurs during synthesis between the imposed synthesis
pitch frequency, and the inherent pitch frequency contained in each ST-signal. This re-
sults in selective alteration of the amplitudes of pitch harmonics in voiced speech, which
is heard as reverberation in the synthetic speech. Alternatively, if small Hanning windows
are used, these problems are much reduced. However in this case formant bandwidths are
broadened in the synthetic speech, since the estimate of the spectral envelope implicit in
each ST-signal has a poor frequency resolution due to the shortness of the analysis frames,
and the presence of the Hanning Window. Localised problems may also arise in the latter
case if the ST-signals are not centred on the moments of principle excitation of the vocal
tract (normally the moments of glottal closure).

Some of the problems just described can be overcome by using the frequency domain
version of PSOLA, FD-PSOLA. In this approach a global spectral envelope is obtained
for each ST-signal using, for example, LP techniques, and an estimate of the source spec-
trum obtained by dividing the Discrete Fourier Transform of the ST-signal by this global
spectral envelope. The source spectrum can then be modified to match the synthesis
pitch frequency required, in order to remove the mis-match described above. The spectral
envelope can also be modified to alter the voice quality, or smooth concatenation unit
boundaries. After the required modifications, the two spectra are recombined and an in-
verse Fourier Transform applied to generate a synthesis ST-signal, which is then treated
as before. FD-PSOLA requires considerably more computation than TD-PSOLA.

The LP-PSOLA technique is a hybrid of TD-PSOLA and LP methods. In this approach
the TD-PSOLA algorithm is applied to the LP residual, or to multi-pulse or CELP coded
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versions of it, instead of to the speech waveform. The chief advantage of LP-PSOLA is that
different window sizes can be used to estimate the spectral envelope (the LP coefficients)
than are used to perform the prosodic modifications. Large windows can be used to
estimate the spectral envelope in order to obtain accurate formant bandwidths. Small
windows can be used to define the ST-signals used to perform the prosodic modifications
in order to reduce the synthesis frequency mis-match problem. The use of small windows
for the ST-signals is sufficient because the excitation spectrum resonances are usually
very broad, and so are not degraded by the lack of resolution. LP-PSOLA also enables
the spectral envelope to be smoothed at concatenation unit boundaries. More details of
the TD, FD, and LP versions of the PSOLA algorithm can be found in (Moulines and
Charpentier 1990).

A later version of PSOLA, called Multi-Band Re-synthesis PSOLA, or MBR-PSOLA,
was developed by (Dutoit and Leich 1993). In this approach, the segment inventory
used in synthesis is altered using a computationally expensive Multi-Band-Excited (MBE)
analysis-synthesis procedure, in order to make it more suited for synthesis using the TD-
PSOLA algorithm. Specifically, all segments are re-synthesised to have the same constant
pitch, with the new pitch-marks, normally the moments in the speech signal correspond-
ing to the moments of principle excitation of the vocal tract, imposed by a phase reset
procedure. This removes the problem of trying to locate the pitch-marks in the segment
inventory, and reduces the discontinuity problems which can otherwise arise when con-
catenating spectrally similar segments of speech with very different pitches. Furthermore,
and perhaps most importantly of all, the constant pitch and phase reset procedure enable
spectral interpolation at concatenation unit boundaries to be achieved directly by the
simple interpolation of the time waveforms. This enables the concatenation discontinu-
ities associated with simple diphone inventories to be largely overcome without the use of
polyphone units (see Section 1.7.4). However, the speech quality is not as good as that
obtained with TD-PSOLA and well chosen units.

1.5 Articulatory Synthesis

Articulatory synthesisers attempt to produce speech by modelling the human speech pro-
duction system. They typically involve models of the human articulators and vocal cords.
These models are moved towards target positions for each phoneme using rules. The rules
reflect the dynamical constraints imposed upon the articulators by their masses and as-
sociated muscles. In order to generate speech the shape of the vocal tract defined by the
positions of the articulators is usually converted into a transfer function, for example by
estimating area functions or formant frequencies, (Coker 1976). The vocal cord model may
be similarly used to generate an appropriate excitation signal. The synthesis problem is
thus converted into one of specifying articulator targets for each phoneme, and accurately
modelling the articulators’ dynamics. (Klatt 1987) suggests that the latter is the major
problem with this form of synthesis, mainly due to a lack of data.

Although articulatory synthesis is perhaps the most satisfying method of speech syn-
thesis, since it models the human system directly, it has received less attention than signal
based methods and has not yet achieved the same level of success.
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1.6 Rule-based Formant Synthesis

Rule-based formant synthesis is a very successful method of synthesising speech. A set of
rules is used to determine the parameters necessary to synthesise a desired utterance using
a formant synthesiser. The rules are generally used in conjunction with a phoneme string
specification of the desired utterance. They determine which allophones to use in which
phonetic and wider contexts (for example, morpheme! boundaries, word boundaries, and
stress level may all have important effects), and specify exactly how these allophones, and
the transitions between them, should be produced.

The first attempt to construct a rule-based formant synthesis system was by (Kelly
and Gerstman 1961). A simple three-formant synthesiser was used together with rules
based on results from their own experiments with generating control signals by hand, and
“known results in speech perception”. Early success was also reported by (Holmes et al.
1964). In this system each phoneme was composed of one or more “phonetic elements”.
Synthesis parameters were stored for the steady state regions of these phonetic elements
in tables. The elements were ranked in order of their dominance during transitions, and
then the parameters of the dominant element used to calculate the synthesis parameters
required to produce transitions between elements. The synthesis parameters were used
to drive an electronic formant synthesiser via punched tape. The speech quality and
intelligibility of this system were reported by (Klatt 1987) as “remarkably good”, though
intelligibility tests were never conducted.

Research into rule-based formant synthesis continued, (see (Klatt 1987) for a good
review of work in this field) and eventually led to some very high quality TTS systems.
These included MITalk, (Allen et al. 1987), the Infovox SA-101, (Magnusson et al. 1984),
the Prose-2000, (Groner et al. 1982), and Klattalk, (Klatt 1982), which was licensed to
Digital Equipment Corporation to become DECtalk, (Bruckert et al. 1983). Note that
MITalk, the Prose-2000, Klattalk and DECtalk all used a (simplified in some cases) version
of the Klatt formant synthesiser, (Klatt 1980). The DECtalk system for English was for

many years, and possibly still is, the standard by which new systems are judged.

1.7 Concatenation Synthesis

In concatenation systems the existence of synthesis units is explicit, and one or more
representations of each unit is stored for use in synthesis. A trade-off exists between longer
and shorter units. Longer units are advantageous compared to shorter units because they
preserve naturalness over longer time-scales, and result in fewer concatenation points in
the synthetic speech. Furthermore, with many types of longer unit the concatenation
discontinuities which occur at these points are often relatively small. However, longer
units can also be very numerous, to the point of being prohibitively numerous in the case
of words, and therefore shorter units, which are much less numerous, are also attractive.
All forms of signal processing introduce degradation, the extent of which usually scales
with the amount of modification required. The ideal concatenation system would therefore
synthesise each utterance using the set of units which most accurately produced that

!Morphemes are the smallest meaningful units of language, see Section 1.8.2
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utterance, both spectrally and prosodically, without signal processing. This set of units
would comprise as many long units as possible, which would concatenate as smoothly
as possible, and preferably be selected from a database optimised to contain those units
which gave the best performance on the task for which the ASS system was being used.
Such a system does not yet exist, although the augmented diphone systems described in
Section 1.7.4, some of the automatic segment inventory construction algorithms described
in Chapter 2, and the work described in this thesis, all go some way towards this ideal.

Traditional approaches to concatenation synthesis used manually prepared sets of syn-
thesis units, usually all of the same class. These units were usually either words, syllables,
demi-syllables, or diphones, and are discussed below in Sections 1.7.1 to 1.7.4. The use
of phone and sub-phone units for concatenation synthesis is mentioned briefly below in
Sections 1.7.5 and 1.7.6, and examined in detail in Chapter 2.

1.7.1 Words

The most obvious synthesis unit to choose, and that most often suggested by people not
working in the field, is the word. The advantage of using words is that all the within
word co-articulation effects are captured in the stored units. Concatenating words is
then relatively easy, compared with sub-word synthesis units, because between word co-
articulation is usually weaker than within word co-articulation, (Linggard 1985). However,
simply concatenating the waveforms of words recorded in isolation produces speech which
is very difficult to understand. This is mainly due to the pitch and formant discontinuities
at word boundaries, and these problems can be largely solved using signal processing.
Further problems arise because words spoken in isolation are much longer than words
in sentences, and the acoustic realisation, and even the phonetic realisation, of words in
sentences varies with context. To achieve high levels of naturalness it may therefore be
necessary to record multiple versions of each word, spoken in different contexts.

(Rabiner et al. 1971) used formant synthesis to enable the pitch, duration, and inter-
word formant discontinuity problems to be solved, and reported encouraging results with
synthesising telephone numbers. A larger 300 word vocabulary was used in (Fallside and
Young 1978), in which LP synthesis was used to perform the signal processing. Multiple
versions of some words were stored, durations were shortened, pitch contours were applied,
and various techniques, including the smoothing of LP area coefficients, were used to over-
come the discontinuities at word boundaries. Again, encouraging results were reported,
though the speech was said to lack rhythm. Ten digits, or 300 words, neither present a
major recording problem, nor a major storage problem with current computer technology.
However, an ASS system requires a very large vocabulary, and in this case the recording
and storage problems become formidable. When proper names, foreign words, and new
words are included, the problems become insurmountable. It is this limitation which has
motivated researchers to look for shorter, less numerous, synthesis units.

1.7.2 Syllables

The use of syllables as synthesis units represents a halfway stage between words and
smaller phone-sized units. Again, as with words, the advantage is that the relatively long
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synthesis units preserve within unit co-articulation. However, unlike words, the between
unit co-articulation is not necessarily weaker than the within unit co-articulation, and so
smoothing across unit boundaries is not so easy. There are approximately 10,000 syllables
in English, which still presents significant recording and storage problems. Given that
difficult co-articulation problems must be handled anyway, it would seem sensible to seek
alternative units which are both less numerous, and/or more appropriate for concatenation.
(Allen et al. 1987) stated that there were no syllable-based concatenation synthesis systems
at that time.

1.7.3 Demi-syllables

Demi-syllables represent another step down in unit size, being the initial and final halves
of syllables. The advantage of demi-syllables is that only approximately 1,000 are needed
to construct the 10,000 syllables of English, (Lovins et al. 1979), and so recording and
storing them is both possible and reasonable. A demi-syllable based synthesis system
was presented in (Browman 1980) which used LP coded demi-syllables, and twenty rules
concerning pitch, duration, and boundary smoothing to concatenate them. Demi-syllables
have an advantage over smaller units because they preserve highly co-articulated syllable
internal consonant clusters. However, although syllable internal concatenation boundaries
are often easily smoothed, co-articulation between syllables can still be problematic. At
the time of writing at least one commercial system, the ORATOR TTS system (Bellcore
1996), uses demi-syllable synthesis units.

1.7.4 Diphones

A diphone is roughly the last half of one phone followed by the first half of the next.
Diphone units therefore preserve transitions between phones, which are otherwise difficult
to produce. The boundaries between diphones during synthesis thus occur in the middle
of phones. This tends to result in relatively small concatenation discontinuities because
the middles of phones are usually their most spectrally stable regions, and are often rela-
tively spectrally consistent across phonetic contexts. (Peterson et al. 1958) were the first
to suggest the use of diphones (dyads) in speech synthesis. In this system speech was syn-
thesised by reproducing each segment unaltered, and up to nine versions of each diphone
were required in order to properly model intonation. The authors estimated that a total of
approximately 8000 diphones would be needed for American speech. Although the authors
envisaged using an electronic synthesiser to reproduce the diphones, the implementation
described in (Wang and Peterson 1958) involved the manual splicing together of pieces of
audio tape.

A more practical implementation of diphone synthesis was reported in (Dixon and
Maxey 1968). A formant synthesiser was used during synthesis to enable diphone durations
to be modified, and a pitch track to be applied to the synthetic speech. As a result
considerably fewer diphones were needed than was predicted by (Peterson et al. 1958); the
authors estimated that the minimum number required was approximately 1000.

Another early attempt at diphone synthesis was made at Bell Labs. by (Olive 1977),
using an LP log-area parameter coding. In this system only the end points of the tran-
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sitions between pairs of phones were stored. During synthesis the transitions were then
recreated by linear interpolation between these endpoint values. The steady state of each
phone was produced by linear interpolation between the end of one transition and the
start of the next. Further simplifications were made for consonant to consonant transi-
tions, resulting in a total of only about 600 transitions to be stored. The durations of the
transition and steady state parts of each phone were specified in a pronouncing dictionary
for each word in the synthesis vocabulary. Rule generated amplitude and pitch contours
were imposed on the synthetic speech during synthesis.

Diphones synthesis systems were also investigated extensively by France Telecom at
CNET. (Courbon and Emerard 1982) described a system which used approximately 1200
LP coded diphones to synthesise French. Later, (Stella and Charpentier 1985) used the
same set of diphones in a system using multi-pulse coding and a phase-vocoder, described
above in Section 1.4.5. Later again, diphones were used in the first PSOLA based system,
(Charpentier and Stella 1986). Continuing research, both at Bell Labs. and CNET, sought
to supplement the established diphone inventories with selected longer units to improve
the synthesis of highly co-articulated phone sequences. These units were typically three or
four phones in length and were designed to ensure that rapidly articulated phones, which
did not reach their acoustic targets, were embedded between other phones which were
more precisely articulated, (Olive 1990), (Bigorgne et al. 1993). At the time of writing,
augmented diphone systems form the basis of many leading commercial and research TTS
systems, (Sorin 1994), (Sproat and Olive 1995), (Lernout & Hauspie 1996), and simple
diphone systems are used by many researchers in their work. In recent years investigations
have begun into the automatic segmentation of diphones, and this work is discussed in
Section 2.2.2.

1.7.5 Phones

Concatenation synthesis using phone-based segments of speech is difficult due to the large
amount of contextual variation in the acoustic realisation of each phoneme, and the con-
sequent problems in selecting appropriate units and ensuring concatenation smoothness.
However, automatic techniques to solve these problems have been investigated, with some
success, and this research is discussed in detail in Chapter 2.

1.7.6 Sub-Phone Units

In recent years sub-phone units have begun to be investigated for use in speech synthesis.
As with phones, these units are also subject to a large degree of contextual variation.
Their attraction is that speech generally becomes more acoustically self-similar on these
time-scales, and the synthesis units can therefore sensibly be represented by a single vector
of spectral parameters. This makes the units easier to work with, and means that state
based speech models, such as hidden Markov models (see Chapter 3), can be used. The
use of sub-phone units in speech synthesis is discussed further in Section 2.2.3.
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1.8 Text to Units

All Text-to-Speech systems require the conversion of arbitrary text into a sequence of syn-
thesis units, which in most practical systems are either phonemes or phoneme dependent.
The conversion usually required is therefore from arbitrary text to phonemes, although
context information such as morpheme or word boundaries may also be retained for use
in synthesis.

Even with the input text constrained to be a string of ASCII characters, text-to-
phoneme conversion is a difficult multi-stage operation, and perfect systems have not
yet been developed. The first stage of the conversion is usually a text normalisation
procedure to interpret such things as paragraphs, punctuation, numbers, and other non-
word characters (see Section 1.8.1). The resulting sequence of words and symbols may
then be altered by the addition of extra pauses inferred from the words of the utterance
by a phrase boundary placement system (see Section 1.9.1); this is one area where text-
to-unit and text-to-prosody conversion overlap. The sequence of words and symbols must
then be converted into a sequence of phonemes, as described in Section 1.8.2. Data-
based approaches to phrase boundary placement and phonetic pronunciation have been
investigated, and these are discussed in the appropriate sections.

1.8.1 Text Normalisation

The text normalisation stage of a TTS system converts the input text into a sequence
of words and symbols to be processed by the rest of the system. The symbols represent
non-word information such as punctuation, which, although usually realised as short pe-
riods of silence, retain their identities at this stage to aid in the generation of prosody.
For example, the beginning of a paragraph often necessitates a higher fundamental fre-
quency, and therefore paragraph identification is important. Often a tab indicates a new
paragraph, but (Klatt 1987) reports that this is not always reliable, and that DECtalk
therefore requires an explicit new paragraph marker in the text. Sentence identification is
also important. In many writing systems this is a trivial task, because a single symbol is
used exclusively for marking the ends of sentences, (Sproat and Olive 1995). However, in
many other writing systems, including that used for English, the end of sentence marker
(a period) can also indicate an abbreviation, an initial in a name, or a decimal point.
The problem of sentence identification is therefore often complicated by the problem of
abbreviation expansion, which is itself non-trivial. For example, St. can be expanded as
Saint or Street, N. can be an initial in a name, or an abbreviation for North or New, etc.
Often such ambiguities can be resolved by rules which look at the capitalisation of adjacent
words, but this is not always possible. Phrase identification is usually accomplished both
by interpreting other punctuation and by the use of phrase break placement algorithms
(see Section 1.9.1). Other punctuation, such as commas, question marks, quotes, etc.
are also relevant to these tasks, and so must also be interpreted. Apostrophes must be
interpreted carefully, since they may be part of a word, or they may be used as quotes.
Numbers require special treatment by TTS systems. The conversion of a number to
a string of words is relatively simple, but care is required to use the correct form of pro-



1. Introduction 19

nunciation. For example, times, dates, years, telephone numbers, amounts of currency,
and alphanumerics, must all be correctly identified, and then correctly pronounced. How-
ever, most of these distinctions can be handled with simple rules which check immediate
context, lack of commas, etc., (Allen et al. 1987). Finally, with specialist applications
additional problems may arise; for example, the expansion of chemical symbols, or of
electrical resistor values such as 2k7.

1.8.2 Word Pronunciation

Given the output of the text normalisation procedure, a pronunciation must be selected
for each word. In many languages there is a close correlation between spelling and pro-
nunciation, and so this task is relatively simple. In others, including English, this is not
the case, and the problem is considerably more difficult. In all cases, proper names, words
borrowed from other languages, and new words, cause further difficulties. Simply storing
pronunciations for all the words which might be encountered by a TTS system is not
possible for several reasons. Firstly, the number of possible words is infeasibly large. In
fact, even if new words and foreign words are discounted the number is still infeasibly
large; (O’Malley 1990) reports that the number of words that the average American high
school student might encounter has been estimated at five hundred thousand, and that the
1970 United States census listed more than two million different surnames. Secondly, the
pronunciation of the same set of letters can vary with context. The letters may become a
different conceptual word; for example, read can be /r iy d/ or /r eh d/, bass can be /b ae
s/ or /b ey s/. Though the former ambiguity can be resolved by a grammatical analysis
of the sentence to be synthesised, the latter can only be resolved by using wider semantic
information. Stress assignment may also affect the pronunciation of some words, with,
for example, unstressed vowels being reduced to a schwa; this is another area in which
text-to-unit and text-to-prosody conversion overlap. Thirdly, in continuous speech word
pronunciations can be affected by the phonetic context resulting from adjacent words.
For example the, which is normally pronounced /dh az/ becomes /dh iy/ if the following
word begins with a vowel. A list containing several examples of such cross-word effects
for English is given in (Giachin et al. 1991).

Early attempts to convert words into phonemes were based on letter-to-phoneme rules,
which attempt to assign phonemes to each letter, or group of letters, based on their context,
(Klatt 1987). However, particularly with English, the performance of such systems is
degraded by the large number of exceptions to the rules. In order to improve performance,
exceptions dictionaries were introduced, which typically listed a few thousand common
words for which the rules did not work. Klatt reported that this improved performance
from about 85% of words correct for a rule-only system to about 95-97%, when tested on a
random sample of words from a large dictionary. An alternative approach was used by the
MITalk system, (Allen et al. 1987), in which a morphemic decomposition of the input text
was performed. Morphemes are the smallest meaningful units of language, and morphs are
their letter string representations, being either prefixes, roots, or suffixes. For example,
houseboats can be split into the roots house and boat, and the suffix s. The decomposition
is often more difficult than this however, and rules are required to cope with spelling
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changes during morph combination and with words with multiple parses. The system
therefore comprised a set of rules and a lexicon listing the pronunciation of about 12,000
morphs. Words which did not follow the rules and led to incorrect parses were added to
the lexicon as a whole unit. This approach had several advantages. Firstly, the lexicon of
only 12,000 morphs enabled the system to cope with over 100,000 words, representing an
improved storage efficiency over a simple lexicon. Secondly, words like hothouse, which a
letter-to-phoneme rule system might consider to contain a /th/, are pronounced correctly,
and thirdly, morphemic decomposition yields part-of-speech information which is very
useful for determining prosody. The accuracy of the MITalk system was never properly
measured, although (Klatt 1987) estimated it to be about 95% words-correct.

The above approaches perform reasonably well with normal words, but have difficulties
with proper names; (Klatt 1987) reported that the best rule-based system in 1987 still
had a 20% error rate with names. This is because names can come from many different
languages, and the rules governing their pronunciation are often language specific. Fur-
thermore, exceptions dictionaries are less useful with names than they are with normal
words; whereas it takes only 141 words to achieve a 50% level of coverage of running text
with normal words, over 2300 names are required to achieve the same level of coverage
for names, (Coker et al. 1990). Research conducted at AT&T Bell Labs. addressed the
problem of names, and the wider pronunciation problem, in a radical manner, (Coker et
al. 1990). Instead of using a dictionary just for exceptions, a dictionary was used when-
ever possible, and letter-to-phoneme rules used only as a last resort. The dictionary used
included the pronunciation of 50,000 names. Many pronunciations could therefore be ob-
tained directly from the dictionary. Many more could be obtained using methods which
made use of the dictionary entries. These included looking for morphological decompo-
sitions of unknown words, and using rhyming techniques which used letter to phoneme
rules at the beginning of words (which is relatively safe) and then compared spellings with
dictionary entries for the rest of the word. These methods perform much better than pure
letter-to-phoneme rules. Such rules were used only when all the dictionary based methods
had failed to give a pronunciation, and this occurred with less than 0.1% of non-name
words and only about 2.6% of names. A pronunciation error rate was not given for this
system, but the authors claimed that it was at least an order of magnitude lower than
those of more traditional approaches. The cost of this performance was the large amount
of storage required for the dictionary.

Word Pronunciation : Data-based Methods

Some attempts have been made to construct data-based systems to perform the pronun-
ciation stage of text-to-phoneme conversion. However, unfortunately, these systems have
so far not performed as well as traditional rule-based approaches. (Lucassen and Mercer
1984) used a discrete hidden Markov model system to align letters to phonemes for about
70,000 words, producing over 500,000 context-phoneme pairs. Each context was described
in terms of a number of automatically determined features incorporating information about
the surrounding 8 letters and the preceding 3 phonemes. The context-phoneme pairs were
used to construct a decision tree in which each node was split by the feature which max-
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imised the mutual information with the phoneme distribution in the node. Finally, a
robustly estimated phoneme distribution was determined for each node by combining the
distributions in each of the nodes on the path from the root to the leaf using the method
of deleted interpolation (Jelinek and Mercer 1980). An arbitrary spelling could then be
converted to a phoneme sequence using a dynamic programming algorithm and the deci-
sion tree. In tests, the system correctly predicted 93.7% of phonemes, with approximately
half of the errors being only vowel stress errors. Later, a neural network system called
NETtalk, (Sejnowski and Rosenberg 1986), received widespread publicity. This system
used a 3-layer neural network with a hidden layer of 120 units and approximately 25,000
weights. The input layer consisted of 7 groups of units, each of which coded a single let-
ter, punctuation marker, or word boundary marker, from a 7 letter input window. Each
input was processed by the network to give an output in terms of 23 articulatory features,
stress level, and syllable boundary information, which referred to the pronunciation of
the central letter in the input window. The output phoneme was selected to be the one
whose vector made the smallest angle in the feature space with the vector output by the
network. After back-propagation training on a 20,000 word dictionary the performance
reached 90% of phonemes correctly predicted. Note that, with both these systems, the
performance figures refer to the percentage of phonemes correctly predicted, and imply

much lower performance figures with words.

1.9 Text to Prosody

The prosody of an utterance is a term used to describe its perceived pitch, stress, and
rhythm. TIts physical correlates are fundamental frequency, segmental duration, energy,
and to some extent phonetic and acoustic variation. In human speech, the prosody of
an utterance often depends not only on its words, but also on its intended meaning, its
intended audience, the emotional or physical state of the speaker, and many other factors.
Many of these factors are present even in read speech, because humans generally interpret
and understand the text that they are reading. Thus, it is likely that T'TS systems will only
perform as well as humans when they too can understand the input text, using some form
of artificial intelligence. Since, at the time of writing, this technology is many years away,
most current TTS systems attempt only an emotionless, declarative reading of the input
text. However, even this is very difficult, and no perfect solution has yet been found. The
following sections attempt to present an overview of the problems involved and briefly
describe both traditional approaches, and some more recent data-based approaches, to
their solution.

The conversion of text into prosodic parameters is essentially composed of three sub-
systems. These are, the placement of prosodic phrase boundaries (see Section 1.9.1),
the determination of segmental durations (see Section 1.9.2), and the specification of
fundamental frequency contours (see Section 1.9.3). Although the energy contour of an
utterance is prosodically important, it has been found that the energy contour implied by
the fundamental frequency of an utterance (energy scales with fundamental frequency),
combined with normal segmental energies, is often sufficient. In fact, including rules
to explicitly increase stressed vowel intensities, for example, produces artificially strong
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stressed vowels, (Klatt 1987). As mentioned in Section 1.8.2, prosodic concerns can cause
phonetic alterations to the pronunciation of an utterance, with, for example, unstressed
vowels being produced as a schwa. Prosodic concerns may also cause more subtle acoustic
variations, such as spectral alterations at different stress levels. Such alterations could be
encoded in the rules of a rule-based formant synthesiser, or associated with distinct units
in the case of concatenation synthesisers. However, both explicit prosodically motivated
energy alterations and acoustic alterations are relatively small effects, and are not discussed
further in this section.

1.9.1 Intonational Phrase Boundary Placement

From a prosodic point of view, natural speech can be considered to be composed of a
series of intonational phrase groups. These phrase groups are most broadly defined as the
regions within which a single intonational tune evolves, with the fundamental frequency
and energy being reset at the beginning of each new phrase group. The boundaries between
phrase groups often correspond to the moments when speakers draw breath, and are
therefore often associated with a short pause in the speech. The boundaries are often
marked by punctuation in the corresponding text, but they can also occur at clause or
syntactic boundaries which are not explicitly marked. The placement of intonational
phrase boundaries by TTS systems is important for two reasons. Firstly, they define the
regions within which individual pitch and energy contours should be applied. Secondly,
they break long utterances into phrases which could realistically have been spoken by a
human in one breath; their absence often results in listeners feeling short of breath. As
mentioned in Section 1.8, this is one area where the text-to-prosody and text-to-units
problems overlap, since pauses introduced at intonational phrase boundaries affect the
synthesis unit sequence.

The placement of phrase boundaries by TTS systems ideally requires a full syntactic
parse of the sentence to be synthesised, which is very difficult to obtain automatically.
Often, a missing phrase boundary just makes speech sound rushed, and is not as bad as
an extra phrase boundary, which can be distracting and confusing, (Klatt 1987). The
simplest solution is therefore to place phrase boundaries only where punctuation dictates.
A slightly more sophisticated solution is to store a list of function words, and use these
to detect the more obvious phrase boundaries not indicated by the punctuation. Klatt
reported that the Prose-2000 and the Infovox SA-101 T'TS systems used this approach, and
that DECtalk used a similar approach with an extended word list which included verbs.
The MITalk system was more ambitious, attempting to derive a syntactic parse of each
input sentence. Sentence internal pauses were inserted both as dictated by punctuation,
and at detectable clause boundaries. An additional algorithm was included to insert
extra pauses into very long stretches of unbroken speech. This operated by considering
the number of syllables on either side of a potential break and the strength of various
syntactic boundaries in the region. The system performed reasonably well but still made
a rather large number of errors, both failing to detect existing boundaries and inserting
inappropriate boundaries, (Allen et al. 1987).
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Intonational Phrase Boundary Placement : Data-based Methods

Some attempts have been made to develop data-based methods to place intonational
phrase boundaries. The current AT&T TTS system uses automatically constructed deci-
sion trees to determine the locations of its boundaries, (Wang and Hirschberg 1992). Nu-
merous experiments were conducted using Classification and Regression Trees (CARTS),
(Breiman et al. 1984), to cluster a labelled database on the basis of many different features.
The features investigated were speaker identity, sentence type, both time and word based
distance information, part-of-speech information, syntactic information, and pitch-accent
information. It was found that there was considerable redundancy amongst the features. A
tree constructed using only those features which could be automatically labelled from text
could correctly classify 89% of boundaries, only 1% below the best score obtained when
using both manually and automatically labelled features. In this tree, part-of-speech in-
formation and word-based distance information were found to be the most useful features.
More recently, (Sanders and Taylor 1995) investigated the use of a part-of-speech trigram
and word based distance measures to predict phrase boundaries. The probability of a
phrase boundary occurring between the second and third words of all trigram sequences
present in the training database was calculated, and various methods investigated to com-
bine this information with distance information to predict phrase boundaries. Similar
results were obtained to the CART methods just described, although manually obtained
part-of-speech information was used in this case. Both these investigations sought alter-
native scoring mechanisms to compensate for the fact that null-boundaries always heavily
outnumbered true boundaries. However, whilst these scores were undoubtably useful in
evaluating system performance, given that inserting a false boundary is generally percep-
tually less acceptable than missing a true boundary, it is not clear that these alternatives
were appropriate for speech synthesis applications.

1.9.2 Segmental Duration Prediction

Traditionally, segmental durations for speech synthesis were predicted using a set of rules.
These rules attempted to allow for all possible factors which could have a perceptually
important effect on the segmental durations. (Klatt 1987) reported that many different
rule systems were developed, all using slightly different approaches to successfully predict
the same phenomena. It was therefore almost impossible to determine which rule system
most accurately reflected psychological processes. Factors used in these systems included
phonetic context, word frequency, syntactic category, and phrase and clause boundaries,
amongst others. Some systems explicitly attempted to enforce rhythm in the synthetic
speech. The rules were formulated in terms of many different speech units, including
phones, syllables, and words. Indeed, Klatt reported that the size of unit best suited to
model different timing phenomena was one of the unsolved problems of duration prediction,
and the various data-based approaches described later in this section show that this is still
the case today.

One typical rule-based system was that proposed by Klatt, (Klatt 1979), which was
implemented in the MITalk system, (Allen et al. 1987). The duration of each segment
(phone) was calculated using the equation
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DUR = (INDUR — MINDUR) x % + MINDUR (1.4)

where INDUR and MINDUR were the inherent and minimum durations of a segment,
stored in a lookup table, and PRCNT was the percentage alteration determined by ap-
plying the system’s rules. Ten rules were applied, each of which adjusted PRCNT by a
multiplicative factor to adjust for the effects of phonetic environment, stress level, posi-
tion in word, clause or phrase, and emphasis, followed by one extra rule applied after the
calculation of DUR. The rules were suggested by work presented in the literature, but the
details of each rule were determined by trial-and-error, matching the output against man-
ually segmented speech read by Dennis Klatt. Testing the rules against new speech from
the same speaker showed that the predicted durations differed from the natural durations
by a standard deviation of only 17ms.

Segmental Duration Prediction : Data-based Methods

The major problem to be overcome by any data-based approach to duration prediction
is the data-scarcity problem. For all but the least context sensitive models, the training
data will, in general, contain only a very small fraction of the contexts which could occur
during arbitrary speech synthesis. Systems must therefore incorporate some mechanism by
which durations can be predicted for unseen contexts using only those contexts contained
in the training data. Many solutions to this problem have been investigated in recent
years, including statistical clustering based methods, neural network based methods, and
methods involving more application specific trainable models. Some examples of significant
research in this area are discussed below, in order to illustrate the problems involved and
various methods of solution.

Riley, (Riley 1990), (Riley 1992), used CARTS to automatically cluster phone durations
according to their context. Contextual effects included were stress level, position in word,
position in phrase, and phonetic context up to a distance of 3 phones in each direction.
Using individual phone labels to describe phonetic context would result in a serious data-
scarcity problem, and therefore each phone was described in terms of four broad features,
these being consonant manner, consonant place, “vowel manner”, and “vowel place”. The
tree was built to minimise the variance of the error when predicting the training data,
with tree-size being determined using cross-validation techniques. The training data used
comprised 1500 short sentences spoken by a single speaker. The author reported that the
tree predicted the training data with errors having a standard deviation of 23ms, which,
although much lower than the 35ms of a previous rule-based system, did not result in
noticeably better synthetic speech than the rule-based system. This was thought to be
due to the presence of occasional poor predictions, caused either by there being insufficient
training data for a particular context, or by the limited feature set of the model being
unable to capture some effects. A similar tree-based method to duration prediction was
used in the present work, details of which can be found in Sections 3.4.2, 5.3.1, and 8.3.

(Campbell 1992) investigated an alternative approach in which syllable durations were
predicted using a three layer neural network, with phone durations computed within the
resulting syllable framework. Neural networks represent an attractive solution to the
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problem of duration prediction because, hopefully, a neural network could learn something
of the underlying interactions between different contextual effects, and hence perform
well with unseen context combinations. The network was trained on a set of feature-
duration pairs, obtained by manually segmenting a 20 minute single-speaker continuous
read speech database. The durations were expressed as log durations throughout in order
to increase sensitivity for short syllables, where large relative changes in duration might
be small when expressed in milliseconds. The feature vector used to train the network
comprised information about syllable length, in terms of number of phonemes, the nature
of the syllabic peak, the position in tone-group, the type of foot?, stress level, and word
class, i.e. function word or content word. Within each syllable, phone durations were
assigned using the “elasticity principle”. Under this principle each phone is produced
with the duration occurring at approximately the same probability density in its duration
distribution, that is, phone %, with a mean duration yu; and standard deviation o;, is
produced with a duration u; + ko;, where k is common across the syllable. This principle
was shown to be generally applicable, except for sentence-final syllables, using phone level
durational data from a different database. The performance of the system could not be
expressed in terms of original database durations, since two different databases were used
in its construction. However, the author reported that the durations produced did result
in intelligible synthetic speech.

The current AT&T TTS system uses a method involving many “sums-of-products”
models, (van Santen 1994). A manually constructed decision tree is used to group phones
into categories, the members of each of which are similarly affected by the same contextual
factors. For each category, a sums-of-products model is selected and estimated from the
available data. Each model combines the various contextual factors, as a sum of a sequence
of products of terms associated with each form of context, to compute a log-duration. The
author claims that some sum-of-products model must be applicable to each category due to
the ordered structure of the data. The underlying systematic interactions captured in each
model should enable durations in new contexts to be accurately predicted by interpolation.
Log-durations are used for similar reasons to those described above. Perceptual tests
showed that the new system was superior to a previous rule-based system, when testing
sentences for which the predictions of the two systems were very different.

1.9.3 Fundamental Frequency Contour Prediction

The fundamental frequency (Fp) of a human utterance is determined by a combination
of many factors, from all levels of the human speech production process. At the lowest
level, unintentional localised segmental effects on Fj, producing what is often termed
micro-intonation, are caused by the physical dynamics of the human speech production
process. For example, high vowels often raise Fj, unvoiced obstruents often raise Fy on a
following vowel, and voiced obstruents and glottal stops often lower Fj, (Pierrehumbert
1981). The stress pattern of the desired utterance also affects the Fj contour. Syllables
may be stressed due to lexical, emphatic, or contrastive stress, as defined both by the

2A foot is a unit of speech containing one stressed syllable followed by a number (possibly zero) of
unstressed syllables.



1. Introduction 26

words of an utterance and its intended meaning. A stressed syllable may result in either a
raised Fp, or a lowered Fp, although it is widely reported that stressed syllables occurring
after the nuclear stress® do not affect Fp, (Pierrehumbert 1981). The Fy contour is also
affected by the intonation pattern of a phrase. This is the long range Fj pattern which
distinguishes, for example, a statement from a question. It also includes continuation rises,
which are often used to indicate that more speech is about to follow, and phrase final falls,
which usually indicate that the sentence is finished. Finally, the Fy contour is also affected
by such things as gender, physical and emotional state, and attitude. In addition to all
the influences already described, it has also been demonstrated that many Fj contours
implicitly include an overall declination in fundamental frequency over the course of each
intonational phrase. That is, Fy peaks occurring later in a sentence do not have to be
as high as those earlier in the sentence in order to be perceived as having the same
degree of prominence, (Pierrehumbert 1981). A full discussion of the various influences
and interactions involved in determining the Fjy contours of natural speech is beyond the
scope of this thesis; for one such discussion see (Cruttenden 1986). The remainder of this
section therefore limits itself to a description of some of the more prominent practical
systems which have been devised for use in speech synthesis.

The generation of Fjy contours for speech synthesis has usually been limited to provid-
ing only neutral, declarative intonation patterns for most sentences, with some additional
provision made for questions. As described in Section 1.9, no attempt is made to incor-
porate higher level effects, such as emotion and attitude, because they would require the
system to have a degree of understanding of the input text beyond that which is currently
possible. The Fj contours generated have also frequently not included lower level seg-
mental effects. Although this absence results in smoother contours than occur in natural
speech, this is not very important perceptually; ('t Hart et al. 1990) report that in exper-
iments comparing speech synthesised using heavily stylised Fy contours with and without
micro-intonation, the two contours could be distinguished only by trained listeners per-
forming direct pair comparisons, and only if they contained relatively long stretches free
from other intonational effects.

The MITalk system, (Allen et al. 1987), used the outputs of its syntactic parsing and
pronunciation modules to construct an Fy contour. Three intonational “tunes” were used
to define different global Fyy patterns for declarative statements, yes/no questions, and wh-
questions. Each phrase was accompanied by a rise in Fy on the first content word, and
a fall beginning on the last content word, with a phrase final continuation rise added if
the sentence was not finished. A rise-fall contour was produced on the stressed syllable
of each content word. The size of this was determined by the syntactic category of the
word, the number of syllables in it, and the position of the word in the sentence; peaks
were calculated relative to a declination line which fell gradually over the course of each
sentence. Further rules implemented a number of segmental level effects, and adjusted Fj
peaks according to their proximity to each other and their syntactic context.

(Pierrehumbert 1981) developed a linguistic description of Fy contours which consid-
ered each phrase to be constructed from a sequence of Fy targets which were either high

3The nuclear stress is the main stress of a phrase.
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(H) or low (L). The targets were associated either with stressed syllables, in which case
they were called pitch-accents, or with phrase boundaries and the nuclear fall, in which
case they were called boundary tones. The exact Fy values corresponding to each target
were seen as fractions of the distance between a baseline and topline, both of which de-
clined over each phrase. The only occasion on which the Fj contour was allowed outside
of this range was during the nuclear fall. Stressed syllables occurring after the nuclear syl-
lable could not have pitch-accents. The Fjy contour was calculated as transitions between
the target values, with the transition between an L target and any other being monotonic,
but the transition between two H targets involving an Fy sag. This description could be
applied to many different intonation patterns. In the case of neutral declarative intonation
all pitch-accents were H, and the phrase final tones either L_L or L_H. However, although
the model was very useful descriptively, in synthesis applications it was difficult to de-
termine which pitch-accents should receive what prominence. The solution described in
(Pierrehumbert 1981) was to assign the nuclear pitch-accent to the last content word of
each phrase, with a fraction of 1.0, and to assign pre-nuclear main word stresses alternating
values of 0.4 and 0.7.

Fundamental Frequency Contour Prediction : Data-based Methods

Unlike most aspects of TTS conversion, data-based methods for synthesising Fj contours
have been investigated for many years. A number of methods have been developed which
seek to generate an Fy contour as the output of a digital filter responding to a linguistically
motivated excitation signal. Perhaps the most well known of these is the Fujisaki model,
developed at the University of Tokyo. In the implementation described in (Hirose and
Fujisaki 1982) two critically damped second-order linear filters were used to synthesise
sentence length Fj contours. One filter was used to model the phrase level declination
typically observed in neutral declarative intonation, and was excited by pulses placed at
phrase boundaries. The other was used to model localised pitch accents, and was excited
by a series of step functions. The parameters of the filters were determined by minimis-
ing the mean squared error (in the log domain) between contours obtained from natural
speech and corresponding model contours. When both filter parameters and excitation
signals were optimised for each utterance the model could match natural Japanese Fj
contours very closely. The authors reported that there was no loss of naturalness when
fixed filter parameters were used, provided that the excitation signals were specified ap-
proximately correctly. However, the problem of determining these signals for arbitrary
text in speech synthesis applications was not discussed, and, as with the Pierrehumbert
system described above, was likely to be problematic. Nevertheless, a similar filter-based
approach was used in the Klattalk system, (Klatt 1982), (Klatt 1987). In this case a
single excitation signal was constructed, using rules, from a gradually declining baseline,
intonational “hat patterns” associated with syntactic units, localised impulses associated
with stressed syllables, and localised segmental perturbations.

A more recent approach, reported in (Ross and Ostendorf 1994), overcame some of
the difficulties of specifying a detailed excitation signal. A dynamical system model was
estimated to relate Fjy contours to a more abstract prosodic specification of each sentence,
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which was defined using labels from the TOBI labelling system, (Silverman et al. 1992).
The model incorporated phrase level, syllable level, and phoneme level (and hence segmen-
tal) effects on Fy. It was trained iteratively on a prosodically labelled database of radio
news broadcasts spoken by a single speaker. Listening tests demonstrated that the system
could out-perform a recent version of the AT&T TTS system when manually generated

prosodic labels were available to both systems for use in synthesis.

1.10 Scope and Structure of Thesis

The research described in this thesis was conducted with two principle aims. These were,
to build a hidden Markov model (HMM) based speech synthesis system which could syn-
thesise very high quality speech, and, to ensure that all the parameters used by the system
were obtained through training. The motivation behind the first of these aims was to de-
termine if the HMM techniques which have been applied so successfully in recent years
to the problem of automatic speech recognition could achieve a similar level of success in
the field of speech synthesis. The motivation behind the second aim was to construct a
system that would be very flexible with respect to changing voices, or even languages.

These two aims were realised in a system which used HMMs in conjunction with a state-
based clustering algorithm and segment selection algorithm to automatically segment an
acoustic unit inventory of HMM-state sized segments from a single-speaker continuous-
speech database for use in a concatenation synthesiser. During synthesis, the system could
convert a string of words, with known phonetic pronunciations selected manually from a
pronunciation dictionary, into intelligible, natural sounding speech. No explicit prosodic
modelling was undertaken, and the system therefore produced speech in a monotone, with
little noticeable durational prosody. However, prosody could easily be imposed on the
synthetic speech if the system were part of a larger ASS system.

This thesis is structured as follows. Chapter 2 reviews other work relevant to the prob-
lem of automatic acoustic unit inventory construction. Chapter 3 describes HMMs and
their application to speech problems, and the state-clustering algorithm used. Listening
tests were conducted periodically in order to evaluate the performance of the system, and
to provide information about its shortcomings. Chapter 4 reviews the various tests avail-
able, and describes in detail the testing procedure used during the course of this work.
The construction of the basic synthesis system is described in Chapter 5. This basic sys-
tem used an LP synthesiser, and an HMM system and clustering algorithm very similar
to those used in the HTK large vocabulary speech recognition system, (Woodland et al.
1994). Numerous shortcomings were identified in the performance of this basic system,
and many alterations were therefore made in order to improve its transcription, clustering,
and segmentation capabilities. These improvements are described in Chapter 6. In order
to further improve performance, the LP synthesiser was replaced by a TD-PSOLA syn-
thesiser, as described in Chapter 7. Chapter 8 presents a detailed analysis of the results
of the improved systems, and a discussion of the remaining problems. Finally, Chapter 9
describes some areas of possible future work, and presents the conclusions of the current
work. A description of the audio examples on the accompanying compact disc is given in
Appendix E.



Chapter 2

Automatic Acoustic Inventory
Construction

Automatic techniques have begun to be applied to the problems of transcribing, segment-
ing, and selecting acoustic units for concatenative speech synthesis in the last few years,
largely due to recent advances in the field of automatic speech recognition. The research
follows the success of concatenation based synthesisers using manually transcribed, seg-
mented, and selected units, and is aimed at enabling any or all of these procedures to
be performed both more efficiently and more effectively. The extraction of most types
of sub-word unit requires a knowledge of the phonetic transcription of the speech data-
base being used, and automatic methods investigated to perform this transcription are
discussed in Section 2.1. Automatic segmentation techniques have been investigated to
segment units from both manually and automatically transcribed databases, and this
research is discussed in Section 2.2. Research conducted into automatic unit selection
algorithms, including context clustering algorithms, is discussed in Section 2.3. Finally, a
brief description of the research described in this thesis, in terms of the issues discussed
in this chapter, is given in Section 2.4.

2.1 Automatic Phonetic Transcription

The databases traditionally used to prepare segment inventories for speech synthesis were
composed of isolated nonsense words, constructed specially to contain the required diphone
or polyphone segments. In theory this should mean that the phone sequence is known,
but in practice this is often not the case; (Boeffard et al. 1992) reported that even when
presenting the words at the recording stage as phonetic strings, some phoneme elision
and assimilation occurred, particularly during consonant to consonant transitions. These
problems are amplified by lazy speech, and (Boeffard et al. 1993) suggest that their rela-
tively poor performance with segmenting German diphones partly results from using real
words, which are produced in a lax manner, instead of using nonsense words. The recent
research into methods of automatic unit segmentation and selection has seen the increas-
ing use of continuous speech databases. With these, in general, only the word sequence
is known, and the phonetic transcription must be deduced. This is much more difficult
than with isolated word databases, since words may have many possible pronunciations,
and occurrences of assimilation and elision are considerably more widespread.

29
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Phonetic transcription has traditionally been performed by trained humans. However,
this is not ideal, particularly for the large databases often used by automatic segmentation
or selection algorithms, because it is both manually intensive, and prone to errors and
inconsistencies. The amount of time required to transcribe a new database could be
reduced by using more than one human, but then consistency problems become more
serious. For example, (Ljolje and Riley 1993) found that the phonetic transcriptions of 50
sentences produced by two humans resulted in 7% of the boundaries placed having one
or other of the phonemes labelled differently. It was thought likely that this figure would
have been much larger had automatic transcriptions not been provided to the humans as
an incentive to keep to a standard transcription. The need is therefore apparent for some
form of automatic phonetic transcription system, which, although not likely to be error
free, is likely to be more consistent, and much quicker, than a human.

At the time of writing, unconstrained phone recognition systems do not provide a rea-
sonable solution to the problem of phonetic transcription, and therefore alternative meth-
ods are required. Since the orthographic transcriptions of continuous speech databases are
often known, a likely phone sequence can be obtained by concatenating word pronuncia-
tions obtained from a pronunciation dictionary. This was the approach used by (Brugnara
et al. 1992), who obtained phone insertion, deletion, and substitution rates of 4.5%, 9%,
and 6% respectively, compared to a human transcription. Another possible solution is to
use the orthographic transcription and the text-to-phoneme converter of a TTS system.
However, both of these solutions do not access the acoustic data in any way, and so are
unlikely to give accurate results.

The most accurate automatic methods of obtaining phonetic transcriptions are prob-
ably those which use a phone recognition system to select between alternative pronuncia-
tions on the basis of the acoustic data. The alternatives can be obtained from a pronun-
ciation dictionary in the case of real words, or suggested by known assimilation or elision
rules in the case of nonsense words. This technique is often used in the training of phone
based speech recognition systems to ensure the correct model order during parameter re-
estimation. It is the method used in the work described in this thesis; for more information
see Sections 3.3.2 and 5.2.2. A similar approach for synthesis purposes was attempted by
(Ljolje and Riley 1991), who used a “phone realisation tree”, which had been trained on
thousands of transcribed sentences, to produce many alternative pronunciations for an ut-
terance. From these alternatives was generated a list of all possible three-phone sequences
which could exist for that utterance, which was then used as the constraint for an HMM
based phone recogniser. A transcription error rate of about 10%, with only 2% insertion
and deletion, was reported.

2.2 Automatic Segmentation

Research has been conducted into automatically segmenting both phones, and hence di-
phones, and also smaller, non-traditional units, often defined precisely only by the auto-
matic procedure used. The methods investigated to segment the former, more traditional
units, are discussed in Sections 2.2.1 and 2.2.2, and those involving non-traditional units
in Section 2.2.3.
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2.2.1 Phone Segmentation

Phone segmentation has traditionally been of interest for synthesis uses only as a stage of
diphone and polyphone segmentation, to produce units for use in diphone, and augmented
diphone, synthesis systems, such as those discussed in Section 1.7.4. For these uses,
phone segmentation acts only as a guide for the more accurate diphone or polyphone
segmentation to follow, and so only limited accuracy is required. Recently however, with
the introduction of the automatic selection algorithms discussed in Section 2.3, phone
length units have begun to be used as synthesis units in themselves, and hence the need
has arisen for both accurate and consistent phone segmentation.

Traditionally phone segmentation was performed by humans, but, for similar reasons
to those with phonetic transcription, this approach is non-ideal. The largest problem
with human segmentation is the huge amount of effort, and the correspondingly large
time delay, involved in segmenting a new database. An idea of the time-scales involved
can be obtained from (Taylor and Isard 1991), who report that it originally took three
months to manually segment CSTR’s diphone database. Another problem is the lack of
consistency inherent in human segmentations. This is particularly important for phone-
length unit concatenation synthesisers, where segment boundaries may occur in regions
of rapidly changing speech, and hence in which the consistent placement of boundaries in
all segments which may be adjacent during synthesis is essential to ensure concatenation
smoothness. Hence, the need for an automatic procedure is apparent.

Most recent attempts at automatic segmentation reported in the literature are based
upon the use of hidden Markov models (HMMs). These models formed the basis of the
work described in this thesis, and are described in detail in Chapter 3. Experiments
have been conducted to segment both single and multi speaker databases comprised of
both isolated words and continuous speech, using both automatic and manually generated
phonetic transcriptions. The performance of the automatic algorithms was usually quoted
in terms of how close the segmentation produced was to a human segmentation of the same
speech. However, these figures should be considered in the light of results obtained by
(Ljolje and Riley 1993), who investigated the segmentation of a single speaker continuous
speech database by several automatic systems and two humans. They found that 80% of
corresponding boundaries placed by the two humans were within approximately 8ms of
each other.

The multi-speaker American English TIMIT speech database was investigated by
(Brugnara et al. 1992) and (Ljolje and Riley 1991). (Brugnara et al. 1992) used a mono-
phone based system, and obtained 86.9% of their automatic boundaries within 20ms of
the manual ones (supplied with the TIMIT database), when manually segmented speech
was used to train the HMMs. This dropped slightly to 84.7% when using an automati-
cally generated transcription during testing, using only boundaries between corresponding
labels for evaluation. However performance dropped to only 75.6% when the HMMs were
trained without reference to any manually obtained boundary information. (Ljolje and
Riley 1991) used a more complicated context dependent system, and obtained 80% of all
boundaries within 15ms of the manual boundaries both when and when not using manually
obtained boundary information to train the HMMs. They also reported only a slight drop
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in performance, to 80% of all boundaries being within 17ms of the manual boundaries,
when using an automatically derived transcription during testing.

In order to construct a concatenation based speech synthesiser, a single speaker speech
database is usually required. This is actually advantageous, since speaker dependent
HMMs generally perform better than speaker independent ones. (Ljolje and Riley 1993)
investigated the segmentation of a single speaker continuous speech database using several
automatic systems and two humans. They found that there was little difference between
the results obtained using context independent or context dependent models, or between
models trained with and without reference to manually produced boundaries. Their best
result, of more than 80% of automatic boundaries being within 11.5ms of corresponding
manually produced ones, was obtained using context independent models trained using
manually produced phone boundaries. This compares well to their result quoted above,
of 80% of corresponding boundaries being within approximately 8ms of each other, when
comparing two human segmentations of the same speech.

The automatic segmentation of isolated word databases has also been investigated,
principally as a precursor to diphone or polyphone segmentation, which is discussed in
Section 2.2.2. The words, which are usually nonsense words, are specially prepared to
contain the required diphones and polyphones, usually in a neutral phonetic context.
Given a transcription, the knowledge of the word boundaries makes the segmentation
problem slightly easier than in the continuous speech case, but not drastically so. (Tay-
lor and Isard 1991) obtained 95% of phone boundaries within 30ms of manually placed
boundaries, using a simple monophone system trained using manually produced boundary
information. They also reported that vowel to semi-vowel, and vowel to nasal pairs were
the most difficult boundaries to place automatically. A similar system, but trained without
reference to manually produced boundary information, was used by (Boeffard et al. 1993),
who obtained 89.5% of boundaries within 30ms of manual boundaries for their French
system, with slightly lower scores for Spanish and German. The authors also reported
that boundaries between phones belonging to the same broad phonetic class were more
difficult to locate automatically than boundaries between phones belonging to different
phonetic classes; a similar result was obtained by (Ljolje and Riley 1993).

2.2.2 Diphone Segmentation

The traditional approach to diphone concatenation synthesis was to manually segment
diphones during system construction, usually placing boundaries in the relatively steady
state regions in the middle of pre-segmented phones. Here again, an automatic procedure
offers a much quicker, and more consistent, solution to the segmentation problem. In addi-
tion, an automatic procedure also enables an alternative solution to be adopted, in which
many boundaries are determined for each diphone to minimise the discontinuities resulting
from concatenating all possible diphone pairs. Automation is necessary for this approach
because the boundaries must either be computed during synthesis, or pre-computed for
all possible diphone pairs, of which there are a very large number.

In the system developed by (Taylor and Isard 1991), the whole two-phone pair associ-
ated with each diphone was stored, and the diphone boundaries placed during synthesis.
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The first algorithm investigated placed the transition between two diphones at the po-
sition in the rightmost phone of the first diphone and the leftmost phone of the second
diphone where the MFCC vectors were most similar, using a Euclidean distance metric.
However, this algorithm sometimes resulted in very short or very long phones, and so a
more complex algorithm was devised in which the sum of the distances between all aligned
frames was found for each possible alignment of the two phones to be concatenated. The
boundaries were then placed where the smallest distance occurred in the best alignment.
The authors went on to note that the algorithms compensated to some extent for errors
in the preceding phone segmentation, and also reported that informal listening tests had
showed that variable diphone boundaries resulted in synthetic speech which was preferable
to that produced using manually placed fixed boundaries. (Boeffard et al. 1992) inves-
tigated both fixed boundaries, placed at the moment of minimum spectral derivative in
each phone comprising each diphone, and a variable boundary placement algorithm. In
the latter, two sets of boundaries were computed for each diphone, for all possible left and
right neighbours. For each possible pair of diphones, a matrix was constructed containing
all the distances between the frames of the rightmost phone of the first diphone and the
leftmost phone of the second diphone, similar to the first algorithm investigated by Taylor
and Isard. However, this matrix was then smoothed before finding the minimum distance,
in order to avoid problems with local minima. The authors reported that the speech pro-
duced using the variable boundaries was not perceptually different to that produced using
the fixed boundaries.

2.2.3 Sub-Phone Unit Segmentation

The use of sub-phone units in speech synthesis has arisen largely because finite state
speech modelling methods, such as vector quantisation (VQ) and hidden Markov models
(HMMs), make use of such units. In VQ or ergodic' HMM systems, a large number of
states are used to model all the speech available as training data, by quantising the speech
into a finite number of acoustically self-similar states. With enough states, each state rep-
resents a pool of, usually, sub-phone length segments of speech, because speech generally
becomes more self-similar on such time-scales. These systems are directly applicable to
vocoding, or speech compression, since only the state sequence of the original speech must
be transmitted or stored. However, using such systems for ASS is less straightforward,
since the relationship between words or phonemes to states must be established, and this
is non-trivial. Nevertheless, ergodic HMM based systems have been used for ASS with
some success. The use of multiple model HMM systems, in which the relationship between
states and phonemes is explicit, has also been investigated, although only very recently.
Such a system also formed the basis of the work described in this thesis.

The first reported application of HMM techniques to speech synthesis appears to be
that of (Farges and Clements 1986). A system was developed which used a large 64
state ergodic HMM with 1024-observation discrete output distributions, as the basis of
a vocoder. The HMM was trained on a 15 minute single-speaker database. In use, the
system worked by transmitting the state sequence of the observed speech, determined

'Ergodic HMMs are those in which any state can transit to any other state; see Section 3.3.2.
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using the Viterbi algorithm. At the receiver the most likely observation sequence for the
transmitted state sequence was found, by maximising a function dependent both on the
output probabilities of the model, and a smoothness term. The results were found to be
superior to those obtained using a 6-bit (i.e. 64 state) vector quantiser based system, but
inferior to those obtained with a 10-bit (i.e. 1024 state) system. Furthermore the HMM
transition matrix had a lower entropy than the equivalent matrix computed using the 6-bit
VQ system, indicating that more compression was possible with the former.

(Falaschi et al. 1989) also used a 64 state ergodic HMM, but with continuous autore-
gressive Gaussian output distributions, (Poritz 1982), (Juang 1984), similar to the Linear
Prediction based distance measure derived in Appendix D. The ergodic HMM was trained
on about 8 minutes of speech, and then used to synthesise isolated words, somewhat indi-
rectly. The model was Viterbi aligned to a single occurrence of a word to be synthesised.
The state sequence obtained was used to construct a smaller left-to-right HMM, whose
observation vectors were composed of both autoregressive Gaussians, and other features
necessary to drive a speech synthesiser, namely energy, voicing, and pitch frequency. The
new HMM was then trained on multiple occurrences of the word to be synthesised. Fi-
nally, to synthesise the word, a sequence of feature vectors was calculated from the final
left-to-right HMM’s mean vectors, using weight functions based on mean state durations
to determine the contribution of each state to the feature vector at each point in time.
The authors stated that the method produced an intelligible and natural speech quality.

The work just described was extended by (Giustiniani and Pierucci 1991), who intro-
duced a mechanism by which speech could be synthesised from a phoneme string speci-
fication. An ergodic HMM, with either 64 or 256 states, and continuous autoregressive
Gaussian output distributions was trained on a single speaker speech database, as before.
In order to relate the acoustically defined states to phonemes, a set of discrete output
distributions were also defined, specifying the probability of observing every phoneme in
each state. The discrete distributions were trained using a frame synchronous phonetic
labelling of a subset of the acoustic training data. During synthesis a text processing mod-
ule, and a rule-based duration module, were used to construct a phoneme string in which
each phoneme was repeated a number of times to indicate its duration. This string was
Viterbi aligned to the states using the discrete distributions, to give a state sequence. The
LP parameters necessary to drive a synthesiser were then obtained from the autoregres-
sive output distributions of the states in the sequence, without, it appears, any parameter
smoothing. The system also included rule based pitch and amplitude determination mod-
ules. The authors claimed that spectrograms produced from speech generated by the
system demonstrated that it could correctly reproduce the main acoustic correlates of
each phoneme, and that co-articulation was handled well; however, they did not comment
on the intelligibility of the speech.

Later, (Sharman 1994) developed a similar system, which had the advantage that it
did not require the phonetic hand labelling of training data. A vector quantiser was
used to cluster the frames of the training data, comprising approximately 40 minutes
of speech from a single speaker, into 320 acoustically self-similar units, termed fenemes.
A global n-gram HMM was then constructed, in which each state was associated with



2. Automatic Acoustic Inventory Construction 35

an individual phoneme, with discrete output distributions modelling the probabilities of

every feneme being generated by each state. The n-gram?

was incorporated into the HMM
structure to enable the model to be constrained to long state sequences. For each sentence
in the training data, a phonetic transcription was obtained using the text-to-phoneme
module of the TTS system, and a time aligned feneme transcription obtained using the
vector quantiser. The HMM was then trained on the pairs of transcriptions, with the
n-gram structure ensuring that the state sequence matched the phonetic transcription
of each sentence. Once trained, the model was used to align the phonetic transcription
of each sentence in the training data to its fenemic transcription. The phoneme-feneme
alignments were then used to construct the inverse n-gram HMM, similar to that used
by (Giustiniani and Pierucci 1991), in which each state was associated with a feneme,
and the output distributions modelled the probabilities of every phoneme being generated
by each state. The new model also included durational constraints, enabling the feneme
sequence corresponding to an arbitrary phoneme sequence with arbitrary durations to
be generated during synthesis. Phoneme durations and a pitch contour were determined
by separate modules, and the synthetic speech generated by PSOLA concatenation of
waveform segments chosen to represent each feneme. The author stated that informal
listening had established that the speech produced was intelligible, and recognisably like
that of the original speaker.

Very recently the use of multiple model HMM systems for speech synthesis has begun
to be investigated, (Tokuda et al. 1995a), (Tokuda et al. 1995b). A set of multiple mixture
continuous output distribution 3-state left-to-right monophone HMMs were trained on a
database of Japanese speech recorded from a single speaker. The feature vectors used to
code the speech were calculated using a mel-cepstrum analysis developed by the authors
which enables speech to be re-synthesised from the cepstral coefficients. The first and
second differentials of the cepstral coefficients were also included in the feature vector.
During synthesis the monophone HMMs were concatenated in the order defined by the
sentence to be synthesised, to create a composite HMM. An approximation to the most
likely observation sequence to be generated from this model, using the most likely state
sequence, was then found using an iterative algorithm derived by the authors. Durations
were handled by including a duration probability term in the likelihood maximised by this
algorithm. When only static coefficients were included in the feature vector, the most
likely observation sequence was composed only of state means, which caused discontinu-
ities in the synthetic speech at the moments of transition between states. The inclusion of
dynamic coefficients in the feature vector, and hence the models, meant that the dynamic
coeflicients of the observation sequence generated in synthesis were constrained to be real-
istic, as defined by the parameters of the models. The result was a much smoother spectral
evolution of the synthetic speech. The authors did not comment on the overall quality
of the synthetic speech, other than to say it was quite smooth. However, demonstrations
played at Eurospeech’95 were very encouraging.

2 An n-gram is a grammar which specifies the probabilities of sequences of n items, in this case phonemes,
occurring.
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2.3 Automatic Unit Selection

Automatic selection algorithms have been investigated to select both phone-length and
variable-length units, from both manually and automatically segmented databases. The
work with phone-length units is discussed in Section 2.3.1, and that with variable-length
units in Section 2.3.3. The selection of phone-length units has often been approached using
context clustering algorithms, and these methods are discussed separately in Section 2.3.2.

2.3.1 Phone-Length Units

Concatenation synthesis was not traditionally attempted with phone-length units because
of the large variation in the acoustic realisations of phonemes in different contexts. The
variation meant that many realisations of each phoneme would have to be stored for use in
synthesis, and that these units would have to be segmented in such a way that they could
be concatenated smoothly. As described in Section 2.2.1 the latter is particularly difficult
for phone-length segments, since the points of concatenation may be in regions of rapidly
changing speech. Since selection and segmentation were generally performed by hand, the
diphone, which suffered these problems only to a much lesser degree, was often the unit
of choice. However, with the introduction of automated selection algorithms to determine
which phone-length segments to use in a particular context, and automatic segmentation
algorithms with their more consistent performance, phone-length unit concatenation sys-
tems have begun to be investigated. The potential advantage of such systems is that the
increased context sensitivity of the unit selection procedure should lead to the selection of
more appropriate units, and hence better quality synthetic speech.

The system developed by (Hauptmann 1993) used a large single-speaker speech data-
base of 3,253 sentences, occupying 360MB of disc-space, all of which was stored for use
in synthesis. The database was segmented into phones using a speech recognition system
with reference to the orthographic transcription of each sentence. Each of the 115,000
phones in the database was then labelled with context information, such as stress level,
phonetic context, and position within syllable, word and sentence. The segment used to
represent a particular phoneme during synthesis was selected by using an experimentally
determined heuristic to assign a context matching score to each realisation of the phoneme
in the database, and selecting the one with the best score. The rank order of importance
of the various context effects used in the heuristic was, stress > phonetic context > word
boundary context >> utterance boundary context. The selected segments were then con-
catenated using the PSOLA algorithm, leaving the pitch and duration of the segments
unaltered, apart from localised pitch smoothing at the concatenation boundaries. The
author reported that the synthetic speech produced by the system ranged from “nearly
indistinguishable from natural speech”, to “barely intelligible” in some places. Modified
Rhyme Tests (see Chapter 4) were conducted to evaluate the segmental intelligibility of
the system, and a respectable error rate of 11.3% obtained.

A similar system was developed by (Black and Campbell 1995), which was used with
both English and Japanese, and male and female, databases. In this system a dynamic
programming algorithm was used during synthesis to select the sequence of phone-length
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segments which minimised a cost function. The cost for each segment depended both on
the accuracy with which it matched the target specified, and on the continuity distortion
between it and the previous segment selected. The target cost was computed as a weighted
combination of phonetic context, duration, log power, and mean pitch frequency, and the
continuity cost as a similar combination of phonetic context and prosodic context, together
with an acoustic join cost. The concatenation points in adjacent segments were chosen
to be those points in each with the smallest acoustic join cost, with the search limited to
seven frames around the labelled segment boundaries. Thus the method was insensitive
to small segmentation errors, and was used with both manually and automatically deter-
mined segment boundaries. The weights of the cost function were optimised by removing
a sentence from the database, and then using that sentence to specify the targets during
synthesis. The synthetic sentence was then compared to the original by calculating the
mean Fuclidean distance between their time aligned cepstral vectors. The process was
repeated for several sentences for each of a large range of weight values, with weightings
performing well for many sentences considered good. This method was computationally
intensive, but produced better results than hand tuned weights. During synthesis, the
waveforms of the selected segments were concatenated either directly, with no additional
signal processing, or, more recently, using the PSOLA algorithm. Listening tests were
conducted to establish the correspondence between the human perception of quality and
that implied by the mean cepstral distance score. Interestingly, it was found that humans
tended to place more importance on continuity than accuracy, but the reverse for the cep-
stral distance measure. The authors stated that they were therefore seeking an alternative
to the latter.

2.3.2 Context Clustering

The systems described in Section 2.3.1 selected units by computing selection scores during
synthesis, by using a context weighting scheme to find the most appropriate unit from
the training database. The precise weighting given to different context factors during unit
selection was established either by trial and error, or by optimising the weights by syn-
thesising some test speech. The main drawback of the implementations of this approach
discussed above is that the entire training database had to be stored for use during syn-
thesis, although this could be reduced by, for example, synthesising some test speech and
discarding infrequently used segments from the database. More fundamental is that the
context weightings established were global, applying to every phone in every context. An
alternative approach to segment selection, which overcomes both these problems, is that
of tree-based context clustering. In this approach, the training data is clustered in a tree
fashion, by splitting each node into sub-nodes on the basis of the acoustic data, using
partitions suggested by the data’s context labels. This produces a number of clusters
each comprised of contextually and acoustically similar segments. The storage problem is
therefore reduced, since only some representation of each cluster must be stored in order to
be able to reproduce all the principle acoustic realisations of each phoneme. Furthermore,
the tree structure means that the most important context effects are determined for each
phone in each context, as the tree is built, instead of in a global fashion. The size of the
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tree, and hence the fineness of the modelling, can be set to match the segment inventory
size required. The cluster to use for a particular context during synthesis can then be
deduced either by descending the appropriate tree, or by using a context matching score
to compare the required context label to the available cluster context labels. The latter
is necessary if the trees are not stored for use in synthesis. Although this is effectively a
globally defined context matching scheme, it represents a considerable improvement over
the schemes used with non-clustered data, because the selection is only between clusters
with permissible context matches.

The first attempt at using a statistical clustering technique to build a phone-based unit
inventory for ASS was that reported in (Nakajima and Hamada 1988). A technique was
introduced which the authors named Context Oriented Clustering (COC), which clustered
all the versions of each phoneme available in the training data according to their phonetic
context. The clustering algorithm worked by building a binary decision tree for each
phoneme. Each node of the tree was split by examining all the pairs of possible daughter
nodes defined as the group of current node members with a new left (or right) context of
a particular phone, and the group of current members without this left (or right) context.
Since the parent node could already contain phones in a particular context, the context
labels of the daughters could therefore extend beyond the immediate phonetic neighbour.
The actual phonetic context used to perform the split was the one which gave the maximum
“split evaluation value”, defined as the difference between the inner-cluster variance of the
LP parameters of the segments in the parent node, and the average of the inner-cluster
variances of the daughter nodes. The clustering continued until there were no clusters with
more than some number (N,;,) of members, or until the average of all the inner-cluster
variances dropped below some threshold. When clustering was completed, all the members
of a particular cluster were time-warped to the average duration of that cluster, and then
the centroid of the LP parameters was stored for each point in time within the average
duration. Thus both segment duration information and within-segment transitions were
preserved. The result was a set of clustered segments, each with phoneme and context
labels, which were then concatenated during synthesis to produce an arbitrary phoneme
sequence by selecting for each phoneme the stored segment whose context label most
closely matched that required. The closeness was determined using a context matching
score which compared only the symbolic similarity of contexts, and had no knowledge of
methods of phoneme production, or acoustic similarity. The authors used about 5 minutes
of manually segmented single-speaker Japanese speech as training data, and clustered this
into 627 synthesis units. It was encouraging to note that many of the contexts selected
were essentially consonant-vowel pairs, which are the principle syllabic units in Japanese.
Several sentences were synthesised by concatenating the units with no interpolation across
boundaries. The authors claimed that the speech was highly intelligible and fluent.

The COC technique was later extended to include wider context information, (Naka-
jima 1993). Three stress levels were distinguished, as well as word-final position, and
sentence-final position. Context grouping was also used, to enable broad phonetic class
contexts to be used to split clusters. This grouping is advantageous when working with
English, where many of the possible phonetic contexts do not appear even in a large speech
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database, and it is necessary to infer cluster membership from similar contexts. A new
expression for the split evaluation value was also introduced, and in the cases of unvoiced
fricatives and unvoiced plosives the segment closest to the cluster centroid was used as the
synthesis unit, in place of the centroid vector sequence. During synthesis, each phoneme
was assigned a segment using a similar context matching score to that described above.
The resulting system, called Multi-Layered Context Oriented Clustering (ML-COC), was
then applied to English, using a 45 minute manually segmented single-speaker speech
database. Both the stress and word boundary contexts were found to be useful in defin-
ing distinct synthesis units. Interestingly they were much more important than phonetic
contexts beyond the immediate phonetic context.

Recently the ML-COC technique was used as the basis of a waveform concatenation
synthesiser, using the PSOLA algorithm, (Itoh et al. 1994). The clustering was carried
out as above, and then the waveform segment closest to each cluster centroid selected,
using a Mel-LSP? distance measure, to represent that cluster during synthesis. The pitch
and duration of the segments were altered during synthesis using the PSOLA algorithm,
with each phone duration being made equal to the average duration of that cluster. The
system was applied to an English single-speaker speech database similar to that described
above. Listening tests showed that the synthetic speech was much preferred compared to a
similar system using parametric synthesis; however, no intelligibility tests were conducted.

A similar system to ML-COC was investigated by (Wang et al. 1993). This system
built a binary decision tree for each phoneme by splitting each node using information
about the broad phonetic class of the contexts of the members of that node. For example
a node might be split according to the manner of articulation: plosive, nasal, fricative or
approximant. All possible class combinations resulting in a binary split were tried for all
context factors (eg. manner, place, etc.) across all nodes, and the best node to split selected
using a cepstral distance measure. Four time-normalised 11-dimensional feature vectors
were used to represent each segment for this procedure. Cross-validation experiments
were conducted which showed that stopping the tree building process only by insisting
on a minimum cluster occupation count led to over-fitting of the trees to the training
data, with a resultant drop in performance when clustering unseen data. Examination
of the cross-validation error could therefore be used to determine when to stop growing
the trees. During synthesis a phoneme in any context could be mapped to a segment by
descending the phoneme’s tree. A non-terminal node was used if on descending the tree
a node was reached where the context class required had not been seen in training, eg.
if a node was split according to manner of articulation of the previous phoneme, and no
segments at this node had had preceding nasals during training, then a phoneme with a
left nasal context would be assigned to this node. The authors noted that the articulation
manner and position of the preceding phoneme, and sometimes the stress of the current
phoneme, were the most important factors for clustering. They also noted that some
classes of consonants were insensitive to contextual variation. Unfortunately, the authors
did not report any attempt to use the system to generate synthetic speech.

3Mel scaled line spectral pairs; an LP derived parametric representation of the speech spectrum with
properties similar to those of formant frequencies and bandwidths, (Rabiner and Juang 1993).
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2.3.3 Variable-Length Units

Research has also been conducted into the automatic identification and selection of mul-
tiple-phone length units for use in concatenation synthesis. As discussed in Section 1.7,
longer units are desirable because they result in fewer boundaries, and hence fewer con-
catenation discontinuities, in the synthetic speech. The disadvantage is that a relatively
large number of units are required to synthesise arbitrary speech.

(Sagisaka 1988) introduced a novel solution to the unit length versus storage space
problem. His system used a speech database of 5240 words, and its phonetic transcrip-
tion, from which variable length units were selected during synthesis. A tree structured
Synthesis Unit Entry Dictionary was constructed to hold all the distinct phoneme se-
quences in the training data, and pointers to all the occurrences of each which could be
used as templates in synthesis. The dictionary enabled the rapid construction of a lattice
holding all the available unit combinations which could be used to produce the desired
utterance. A path through the lattice was then chosen by first reducing the number of
templates available for each unit, by retaining only those templates in suitable contexts,
and then by applying a number of criteria designed to reduce the number and size of
discontinuities resulting in the synthetic speech. These criteria included conserving CV
transitions, which form the bulk of syllables in Japanese, conserving transitions between
vocalic sounds, giving preference to longer units, and trying to use units with the maxi-
mum amount of overlap. The resulting system therefore used long units, often of CVCV
type structure followed by voiceless consonants, when they were available, and shorter
units otherwise. The system had a separate prosody control module, and used an LP syn-
thesiser, but the author did not comment on the quality of the synthetic speech produced.
Analysis of a Japanese dictionary and Japanese sentences showed that the most frequently
used 20% of three and four phoneme long sequences, accounted for about 80% of the oc-
currences of such sequences in the texts. This indicates that a high level of coverage with
longer units can be achieved, in Japanese at least, by storing only a small fraction of the
number of theoretically possible sequences.

More usually, researchers have sought to supplement diphone concatenation systems
with specific longer units. As described in Section 1.7.4, these units have usually been
selected manually in order to protect highly co-articulated phones. However, recently,
research has begun to be conducted with the aim of automatically identifying the most
frequently used longer units, in order to reduce the number of concatenation boundaries
during synthesis as much as possible with the minimum increase in storage requirements.
(Klavans and Tzoukermann 1994) examined occurrence frequencies of triphones in both
two machine readable dictionaries and two text corpora for French. The phonetic tran-
scription of the corpora was obtained using grapheme-to-phoneme conversion software.
The results showed that whilst the sets of the 1000 most frequent triphones in the two
dictionaries overlapped by about 35%, and those derived from the two corpora by about
29%, the overlaps between the sets from the dictionaries and those from the corpora were
only about half as much. This result demonstrates that dictionary based methods alone
are insufficient for determining which three-phone segments to store for ASS systems. The
authors did not report any attempt to use the selected units to synthesise speech.
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2.4 This Thesis

The work described in this thesis used a decision-tree state-clustered HMM based approach
to automate the construction of an acoustic inventory. The HMM system performed auto-
matic phonetic transcription, automatic clustering at the HMM-state level, and automatic
segmentation of the resulting clustered-states. Synthesis was achieved by concatenating
representations of these clustered-states. In order to facilitate the use of a waveform
concatenation synthesiser, an automatic algorithm was also developed to select individual
waveform segments to represent each clustered state. For further details see Chapters 3, 5,
6, 7, and, 8. The use of variable length units was not investigated during the course of this
work. However, a discussion of how the state-based approach could form the underlying
basis of a variable unit length system is discussed in Chapter 9.



Chapter 3

Hidden Markov Models

Hidden Markov model (HMM) based approaches to automatic speech recognition have
had a great deal of success in recent years, and at the time of writing, most leading speech
recognition systems are based on HMMs to some extent. As discussed in Section 1.10, a
motivation for the research described in this thesis was to determine if HMMs could bring
similar benefits to the field of speech synthesis. This chapter describes the underlying
theory of HMMs in Section 3.2, their application to speech problems in Section 3.3, and
the decision-tree state-clustering algorithm used in this research in Section 3.4. Firstly,
however, mention is made of the HMM toolkit used throughout this research.

3.1 The HTK System

HTK is a hidden Markov model toolkit which was developed over several years at Cam-
bridge University’s Engineering Department and is now sold through Entropic Research
Laboratory Inc., and Entropic Cambridge Research Laboratory Ltd. It consists of a suite
of tools enabling the definition, initialisation, re-estimation and editing of sets of continu-
ous mixture Gaussian HMMs. It also includes tools to perform speech coding, alignments,
model clustering, speech recognition, and waveform viewing. It supports a generalised
tying mechanism which enables the sharing of parameters between HMMs. This sharing
enables a balance to be struck between system complexity and data availability.

The HTK system was used extensively in this research. The code used was essentially
that from version 1.5, (Young et al. 1993), although some of the tools were modified
during the course of this work and additional code from an unreleased version of HTK
used to perform the tree clustering described in Section 3.4.2.1 The description of HMMs
presented in the remainder of this chapter refers to HTK style HMMs, although mention
is made where this differs from other styles described in the literature.

3.2 HMM Theory

This section introduces the basic structure of HMMs in Section 3.2.1, discusses HMM
training in Section 3.2.2, and describes the algorithm usually used to make use of a trained
HMM in Section 3.2.3.

'The tree clustering code is included in HTK version 2.0; see (Young et al. 1996) for details.

42
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Figure 3.1: A typical HTK style left-to-right hidden Markov model. S; and S5 are entry and
exit states. Output distributions are not shown.

3.2.1 HMM Structure

An HMM is a statistical model for discrete-time observation sequences. A model A is
composed of N states, a transition matrix A = {a;;}, and a set of output probability
distributions B = {b;(-)}.

In the HTK implementation states 2 to N — 1 are associated with an output proba-
bility distribution b;(0o;), specifying the probability density of observation vector o; being
generated given that the model is in state j. The distributions used in HTK version 1.5 are
continuous mixture Gaussians. However, (almost) all of the work described in this thesis
was conducted using single Gaussian distributions, and the discussion in this chapter will
therefore be limited to these. In this case,

bj(o) = 1 efi(otfui)lzi_l(oﬁp‘i), (3.1)
(2m)" (3]

where p; is the state mean vector, 3; is the state covariance matrix, and n is the di-
mensionality of the data. States 1 and N are defined to be entry and exit states. They
are not associated with output probability distributions, and are therefore often termed
non-emitting states. Note that in other styles of HMMs described in the literature all
states are associated with output distributions and the entry and exit states do not ex-
ist. Furthermore, other types of output distribution are also possible, including discrete
distributions.

The transition matrix A specifies the probability a;; of the model being in state j at
time ¢ + 1 given that it is in state ¢ at time ¢. In other styles of HMMs described in the
literature an additional distribution 7 = {7;} is used to specify initial state occupancy
probabilities, (Rabiner 1989). In the HTK implementation the use of entry and exit
states means that this information is contained in the transition matrix, and therefore an
additional distribution is not required. A typical left-to-right structure HTK style HMM
is shown in Figure 3.1.

In operation, an HMM is used to model a discrete observation sequence O = o1, ...,0p
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as follows. The model starts in state 1 at time 17, just before the observation of the first
vector o1. At time 1 the model moves from state 1 to any state allowed by the transition
maftrix, and the vector o7 is generated. This process is repeated at each time step until
the entire observation sequence has been generated, and the model ends in state IV at time
T+. Note that any observation vector may be generated while the model is in any state,
though with a different probability density. The observation sequence can therefore be
explained by many possible state sequences; hence the hidden in the name Hidden Markov
Model. The total likelihood of generating the observation sequence O given the model A,
can therefore be calculated as a sum over all possible state sequences X,

T
L(OIA) =Y a1(1)bz(1)(01) [H (s 1)2(t)ba(1) (Ot)] A(T)N (3.2)
X t=2

where z(t) is the state that the model is in at time ¢, and X represents the set of all
possible state sequences {1,z(1),z(2),...,z(t),...,z(T), N}. Alternatively, it can be ap-
proximated by only considering the most likely state sequence,

T
L*(O|A) = max {Z a12(1)ba(1)(01) lH Aar(t—1)ar(t) Dar(2) (Ot)] az(T)N} : (3.3)
X t=2

Given that any observation vector can be generated from any state, the fact that
HMMs have any use at all is because the HMM parameters can be adjusted such that
particular states are associated, via their output distributions, with particular features in
the observation vectors. Efficient training algorithms exist which enable this adjustment
to be performed automatically, and these are described in the next section.

3.2.2 HMM Training

In HTK (and normally in general) HMMs are trained to maximise the likelihood of gener-
ating the training data D given the model A, L(D|\). The maximum likelihood approach
is taken because an efficient training algorithm, the Baum-Welch (BW) algorithm, exists
to perform the maximisation. The algorithm was introduced by (Baum et al. 1970), and
extended to the case of vector observations and mixture distributions by (Liporace 1982)
and (Juang 1985) respectively. Given a model A, the BW algorithm estimates a new
model ), for which L(D|A) > L(DJ\), with the equality occurring when the likelihood has
reached a (possibly local) maximum. HMM training therefore involves first initialising the
HMM with a reasonable estimate of the model parameters, and then refining these using
the BW algorithm. Methods of initialising HMMs in speech applications are discussed in
Section 3.3.2

The BW algorithm calculates the parameters of the distributions of the new model
\as a weighted average of the parameters of the training data. The weights used are
the a posteriori probabilities of each training vector being observed when the model is in
each state, calculated using the old model A. In general D will comprise R observation
sequences O", 1 < r < R each comprising T, vectors of, 1 <t < T,. For the single
mixture Gaussians defined in equation 3.1, the BW formulae for the new state mean
vectors and covariance matrices are then,
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In these equations 7] (t) is a posteriori probability of the HMM being in state j when

(3.5)

generating the tth vector in the rth observation sequence. The new transition probabilities
are calculated using similar formulae given below in equations 3.20-3.22. The formulae
given extend readily to the case of mixture Gaussians, by considering the different mixture
components as states in parallel, with different transition probabilities due to the mixture
weights; see (Young et al. 1993) for details.

The number of possible state sequences through the HMM for each training sequence
is equal to the number of states to the power of the number of vectors in the sequence.
Therefore, to calculate ’y;-”(t) directly, by calculating the likelihoods of all possible state
sequences through the HMM, would require some multiple of this number of calculations,
which is impossible to compute for any realistic amount of training data. Fortunately an
efficient recursive solution to this problem exists, which is known as the forward-backward
algorithm. It works by calculating each fy;-“(t) as a product of two variables, both of which
can be evaluated using recursion formulae, one forward in time, and one backward in time.

For each observation sequence O, the forward variable, a;(t), is defined as the joint

likelihood of generating the sequence o1, ...,0; and being in state j at time ¢,
a;(t) = L(o1,...,04x(t) = j|A). (3.6)
The backward variable, [3;(t), is defined as the likelihood of generating the sequence
O¢+1,---,07, given that the model is in state 7 at time ¢,
Bi(t) = L(ogy1, ..., or|z(t) = j, A). (3.7)

Note that, although not shown, the forward variable also implicitly includes the condi-
tion that the model start in state 1 before the first observation, and the backward variable
the condition that the model ends in state N after the last observation. The asymmetry
in the definitions exists so that the product of two corresponding variables gives the joint
likelihood of starting in state 1, generating the whole observation sequence O, ending in
state N, and being in state j at time ¢, given the model,

a;(t)5;(t) = L(O, x(t) = j[A). (3.8)

This enables ~;(t) to be found, since,

2Strictly speakmg, ; should be calculated in terms of the new means fi;, and not the old means p;.
However, HTK version 1 5 uses equation 3.5 as given; see (Young et al. 1993) for details.
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vi(t) = L(z(t) = j|O,A) (3.9)
L(O,=z(t) = j|A)
(O] (3.10)
a;(t)5;(t)
E(T‘J/\). (3.11)

The only problems remaining are to find the values of «;(t), §;(t), and L(OJX). The
first two of these quantities can be found by recursions through time, and the third as a
by-product of either of these recursions.

By considering the definition of a;(t) in equation 3.6, it can be seen that «;(t) can
be calculated as a sum of the likelihoods of being in each possible previous state at time
t — 1, weighted by the transition probability of moving to state j, and generating o, while
in state j. Mathematically,

N-—1
ozj(t) = lz ozz-(t — 1)&@'] bj(ot), 1<t<T, 1<j<N, (3.12)
1=2

with initial condition,
ij(l) = aljb ( 1) 1<j7<N. (3.13)
A similar recursion exists for the backward variable, namely

N—
Z i(0641)8;(t +1) 1<t<T. (3.14)

Strictly, the recursion should terminate at 7' — 2, with 3;(T — 1) defined to be

Z a;jbj(or)a;n, (3.15)

since (3;(T) is ill defined in terms of equation 3.7. However, §;(T') is required to compute
equations 3.4, 3.5, 3.20 and 3.22, and therefore it is useful to let the recursion terminate
at T — 1, and define

Bi(T) = ain 1<i<N, (3.16)
to maintain consistency.
Finally, note that,
N-1
L(O|\) = Z L(O =il\), (3.17)
=2

which, substituting equation 3.8, and setting ¢ = T" becomes,
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N-1
L(O]\) = ai(T)3:(T) (3.18)
=2
N-1
= a;(T)a;n- (3.19)
=2

Thus L(O|A) can be computed using only the forward variable (or, by setting ¢ = 1, only
the backward variable).

Having defined the forward and backward variables, the re-estimation formulae for the
transition probabilities can now be given. They compute the new transition probabilities
as a weighted average of the probability of a transition occurring between two states given
that the model is in the first state. Again, the weights used are the a posteriori probabilities
of each training vector being generated when the model is in each state. Mathematically,

R T.—1
v AT (t)as b (o) (t+1)/6r(t
by = r=1 2at21 Vi (}z)a] J;OH—l)ﬂ]( )/ 55 (t) 1<ij<N, (3.20)
Y1 2217 ()

1 R
mj = > 7%0) 1<j<N, and, (3.21)
r=1

R r
17 (T

T

3.2.3 Viterbi Alignment

In many applications, it is useful to be able to align a single state sequence to an observa-
tion sequence. The forward-backward algorithm cannot be used, since this determines a
probabilistic state alignment, in which each observation vector could have been generated,
with different probabilities, from many states. However, a closely related algorithm, called
the Viterbi algorithm (Viterbi 1967), can be used to compute the maximum likelihood state
sequence X*, as defined in equation 3.3.

The Viterbi algorithm makes use of two variables ¢;(t) and 1;(t). ¢;(t) is the likelihood

of the most likely state sequence ending in state j having generated vectors oq,..., 04,
¢j<t) :i,I%?_X)L(Ola"'aotam(t) :.77|)‘) (323)

where X (t7) represents the set of all possible state sequences before time t. ¢;(t) can
be computed using a recursion similar to that used for the forward variable, in which a

maximisation is performed instead of a sum,

6;(t) = max [6;(t — 1)aig] bj(or) 1<t<T, 1<j<N. (3.24)

The initial condition for this recursion is

¢J(1) = a1;01 1<j<N. (325)

From the definition of ¢;(¢) in equation 3.23 it can be seen that
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L*(0[A) = max [¢i(T)ain]- (3.26)

The other variable, 1;(t), is required to keep track of which previous state maximised

equation 3.24 for each state j at each time ¢, thus

¥;(t) = argmax [¢i(t —1)as]. (3.27)
1<i<N

After the whole observation sequence has been generated, the maximum likelihood state

sequence X* can then be recovered as,

z*(T) = argmax [¢i(T)a;n] (3.28)
1<i<N
.’E*(t) = w(z*(t—kl))(t + 1) 1<t<T, (3.29)

with of course z*(17) =1 and z*(Tt) = N.

3.3 HMDMs and Speech

This section first discusses the applicability of HMMs to modelling speech in Section 3.3.1,
before describing how they have been applied to speech problems in Section 3.3.2.

3.3.1 HMM Assumptions

HMMs are useful for modelling the speech signal because their doubly stochastic structure
allows them to model both the temporal and spectral variations inherent in the realisation
of speech sounds. Their use does however imply a number of assumptions about the

structure of the speech signal. These assumptions are,

e That the speech signal can be accurately represented as a sequence of observation

vectors in time.

The observation vectors usually used are the spectral parameterisations of consecu-
tive, possibly overlapping, frames of speech of the order of 10ms long. As discussed in
Section 1.4.3, speech can usually be considered to be stationary on such time-scales,

and therefore this assumption is approximately true.

e That the speech signal can be modelled using a finite number of mixture Gaussian

probability distributions.

Although the acoustic realisation of phonemes varies considerably, realisations in
similar contexts often are spectrally similar, especially when considering the speech of
a single speaker. Speech can therefore be considered as a concatenation of segments
selected from a finite number of segment distributions; a view exploited by many
speech synthesis systems. However, representing each of these segment distributions
by a mixture Gaussian of mean spectral parameters is a further approximation,
which may be particularly poor if the segments all contain large highly correlated
formant transitions, for example. In an attempt to improve this situation, dynamic
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features, calculated over several frames, are often included in the parameterisation
of each frame, and hence modelled by the state Gaussians. This assumption is thus
fair, but not good, since the parameter distributions used cannot accurately model
the segments associated with each state.

e That the observation vectors are independent.

In an HMM, given the current state, the likelihood of generating an observation
vector depends only on the output distribution associated with the state; previous
and subsequent observation vectors do not affect the likelihood. This assumption is
manifestly untrue; human speech has a high degree of continuity, due to the physical
inertia of the articulators in the vocal tract. This situation can also be improved
to some extent by including dynamic features in the speech parameterisation, since
they hold information about the local signal context.

e That the probability of transition from the current (assumed) distribution to the next
(assumed) distribution does not depend on any previous or subsequent (assumed)
distributions.

That is, in an HMM, the transition probability from state ¢ to state 7 depends only
on states ¢+ and j. This assumption is also untrue, and means that HMMs cannot
take account of long range state sequence probabilities.

Thus some of these assumptions are approximately true while others are completely
false, but nevertheless HMMs do perform very well when applied to speech problems.

3.3.2 HMM Applications

HMMs have been used principally in speech recognition, but also in speech coding, and,
more recently, in speech synthesis.

As discussed in Section 2.2.3, most HMM-based coding and synthesis systems have
used a single global ergodic HMM. An ergodic HMM is one in which all states can be
reached from every other state in a finite number of transitions. They are typically large,
with 64 or more states, and are used to model all the training data. These models are
often initialised by using a vector quantisation algorithm to cluster the training data into
the required number of states. Once trained, they are used to determine the maximum
likelihood state sequence for either the training data or for new data. In coding applications
it is not necessary to identify individual states with linguistic labels. However, in synthesis
applications it is, and this can be difficult to achieve.

HMM-based recognition systems, and very recently some synthesis systems (including
the system described in this thesis), have used multiple HMMs. In these systems many
small HMMSs, usually with a left-to-right structure, are used to model small units of speech,
such as phones or words. Each model thus has a direct correspondence to a linguistic label,
thus avoiding the identification problem which occurs when using an ergodic HMM.

In continuous speech modelling, individual (usually phone-sized) HMMs are concate-
nated to form composite HMMSs, which can model whole utterances. This is the reason
for the entry and exit states in the HTK implementation — they are used to glue the
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individual HMMs together. The composite models so formed have non-emitting states
in model-internal positions, and this complicates slightly many of the formulae in Sec-
tion 3.2.2; see (Young et al. 1993) for details.

Multiple model systems are often initialised using manually segmented speech examples
corresponding to the linguistic labels associated with the individual models. A typical
procedure is to split all the speech examples associated with a particular model into
N equal sized segments, and use the frames of corresponding segments to estimate the
appropriate distribution in an N state model. The model may then be improved by
Viterbi aligning the training examples, and using the frames aligned to each state to re-
estimate the distributions; a process which can be repeated several times. Alternatively,
with continuous speech modelling, it is possible to initialise every distribution in every
model to the global mean and variance of the training data. Training using composite
models defined by the orthographic transcription of the training database in conjunction
with a pronunciation dictionary usually results in reasonable model parameters after only
a few iterations.

The use of composite models also requires changes to the Viterbi algorithm described
in Section 3.2.3. In HTK the Viterbi algorithm is implemented using the Token Passing
Model, (Young et al. 1989), in which moveable tokens are used to determine the maximum
likelihood individual model sequence (and if required the state sequence too) through a
network of possible model sequences. During training the network is constructed from the
orthographic transcription of the training database, in conjunction with a pronunciation
dictionary. It enables an accurate phonetic transcription of the database to be determined,
in which alternative word pronunciations are chosen appropriately, and inter-word silences
inserted. In recognition the network is constructed from a pronunciation dictionary and a
word grammar; a detailed discussion of which is beyond the scope of this thesis. Both the
forward-backward calculation and the Viterbi calculation are pruned using beam search
techniques, a process which can significantly reduce both memory requirements and ex-
ecution times with negligible effects on performance. For further details of all the above
see (Young et al. 1993).

3.4 Context Dependent HMMs

As described in the last section, when using HMMs to model continuous speech a set
of phone-sized HMMs is usually used. In simple systems only one model per linguistic
phoneme may be used. However, phonemes differ considerably in their acoustic realisation
in different contexts, and therefore using only one model per phoneme can result in very
blurred models, even for speaker dependent systems.

The use of Gaussian mixture distributions solves this problem to some extent, since
each mixture component can model a different acoustic realisation. This is useful in recog-
nition, since the mapping required is from these different possible realisations to a single
linguistic label (although a context label might be more useful). However, in synthesis the
reverse mapping is required, and since individual mixture components are not associated
with specific linguistic labels, there is no way of determining which mixture component
to use in which context. Alternative mixture component means (or segments associated
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with them through a maximum likelihood mixture alignment) could be selected to ensure
smoothness during synthesis. Or, as described in Section 2.2.3, mixture distributions of
static and dynamic parameters could be used to generate the maximum likelihood vector
sequence corresponding to an HMM state sequence, (Tokuda et al. 1995b). However, these
methods were not pursued in the current research.

As described in (Schwartz et al. 1984) and (Lee 1990), another solution to the acoustic
variation problem which has been investigated is the use of larger sub-word units, such
as diphones, demisyllables, or syllables. The arguments involved are similar to those
described in Section 1.7 regarding the choice of units to use in concatenation synthesis.
The advantage of larger models is that the states in their interiors are less affected by a
model’s contextual environment, and hence their output distributions are more precise.
The disadvantage is the large number of models required for arbitrary speech, and the
resulting difficulty in obtaining sufficient training data. In synthesis the additional benefit
of greater concatenation smoothness associated with many longer units is also important.
However, in recognition this is less important, and the longer units were essentially being
used to capture the effect of phonetic context. These considerations led (Schwartz et
al. 1984) to return to phone-sized HMMs, but to use several context dependent models
per phoneme; a solution which had been investigated earlier by (Bahl et al. 1980). This
solution now forms the basis of most high performance speech recognition systems, where
it is used in addition to mixture Gaussians.

The use of several context dependent models per phoneme is a more useful solution to
the acoustic variation problem for synthesis applications than using mixture Gaussians.
This is because each context dependent model is associated with a distinct linguistic label.
It was the solution used in the current work, and is therefore the subject of the remainder
of this chapter. The data scarcity problem which arises when building context dependent
models is discussed in Section 3.4.1, and the method used in the current work is described
in detail in Section 3.4.2.

3.4.1 The Data Scarcity Problem

Many types of context can be used to construct context dependent HMMs. Possibilities
include various levels of phonetic context, word or phrase boundary information, stress
information, other prosodic information, etc. The number of possible models rises very
rapidly with the amount of context information included. For example, in English, with
perhaps 45 phones, extending to just a right phonetic context (biphones) could involve
2,025 models, and using both left and right phonetic contexts (triphones) could involve
91,125 models. Many of these contexts may not occur even in large training databases, and
those which do occur may not occur in sufficient quantity to robustly estimate Gaussian
distributions. Both of these problems must be overcome if arbitrary speech is to be
synthesised or recognised.
Methods which solve both of the above problems are

e Backing off

Context dependent models are estimated only where sufficient training data exists.
When unavailable context dependent models are required, reduced context or mono-
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phone models, for which sufficient training data was available, are used instead.
This is acceptable in recognition applications, since it results only in a less accurate
likelihood calculation for the backed-off phone. However, in synthesis applications
the use of inappropriate synthesis parameters or segments for the backed-off phone
could cause serious localised problems in the synthetic speech.

e Top Down Clustering

Tied models (or states) can be created by clustering context dependent models (or
states) in a top-down fashion, using decision trees and context questions. The trees
generated can then be used to determine the appropriate model (or state) to use in
any context, including those not seen in training. Furthermore, clustering stopping
criteria can be used to ensure that each tied model (or state) can be robustly esti-
mated. This was the method used in the current work, and it is described in more
detail in the next section.

Several techniques exist which enable better use to be made of the training data than
the simple scheme in the first method described above. These are

e Parameter smoothing

Techniques such as deleted-interpolation, (Jelinek and Mercer 1980), enable the pa-
rameters of poorly trained context dependent models to be smoothed with those of
robustly trained reduced context or monophone models.

e Bottom-up clustering

Acoustically similar context dependent models can be clustered and tied to form a
single model, which then can be more robustly estimated, (Paul and Martin 1988),
(Lee 1990). Alternatively, the clustering and tying may take place at the state level,
(Hwang and Huang 1992), (Young and Woodland 1993).

However, these methods do not provide models for contexts not seen in training, for which
backing off is still required.

3.4.2 Decision Tree State Clustering

Decision tree clustering of phonetic contexts for speech recognition was developed at a
number of sites in the late 1980s and early 1990s. Sagayama, who had previously worked
on the Context Oriented Clustering technique for speech synthesis (see Section 2.3.2),
clustered manually segmented phone segments for use in a template-based speech recog-
niser, (Sagayama 1989). Clustering at the phone level was also developed by (Bahl et
al. 1989), (Lee et al. 1990) and (Bahl et al. 1991) for HMMs with discrete output dis-
tributions, and (Odell 1992) and (Downey and Russell 1992) for HMMs with continuous
distributions. (Hwang et al. 1993) extended the method to the state level for models with
discrete output distributions.

The decision tree clustering method used in this research operates at the state level
with continuous output distribution HMMs, (Young et al. 1994), (Odell et al. 1994), (Odell
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1995). Although the method is extendible to many forms of context, and indeed was so
extended during the course of this work, the following description involves only phones
and their immediate phonetic contexts, including contexts across word boundaries, which
are known as cross-word triphones.

Initially, a set of monophone models are created and trained on the available data.
These models are then cloned to produce a triphone model for every distinct triphone
in the training data. The transition matrix is not cloned, but remains tied across all the
triphones of each base phone. The triphone models are then re-estimated, using a variance
floor to prevent variances from dropping to zero in the models of those contexts which
occur only a few times in the training data. In the final re-estimation, state occupation
counts (F 52T 7; (t)) are saved for use in the clustering procedure.

For each set of triphones derived from the same base phone, corresponding states
are clustered using automatically constructed decision trees. Given the use of maximum
likelihood model training, the trees would ideally be constructed to maximise the likelihood
of generating the training data D given the set of tied distributions S in the leaf nodes of
the tree, L(D|S). Unfortunately, calculating this figure exactly (using a forward pass of
the BW algorithm) for every possible tree structure would be extremely computationally
expensive. Instead, a sub-optimal greedy algorithm is used to maximise the increase in an
approximation to L(D|S), namely £ (defined below), at each node in the tree.

Initially, all the states to be clustered are tied to form a single Gaussian in the root node
of the tree, and the value of £ calculated. Each of a large list of clustering questions, which
use phonetic knowledge to group different contexts according to their phonetic similarity,
is then used to suggest a binary splitting of this node into two daughter nodes. The change
in £ which would result from each of these splits is calculated, and the question which
causes the largest increase in £ selected to perform the split. The splitting process is
then repeated at the new nodes, terminating when either of two stopping criteria are met.
These criteria are thresholds which specify the minimum number of frames of speech that
must be assigned to each node, and the minimum increase in £ which must be achieved
for a node to be split. The former threshold ensures that sufficient data is associated with
each leaf node to properly estimate a Gaussian (or mixture Gaussian) distribution. The
latter ensures that nodes are not split for negligible gain.

The likelihood £ is a computationally efficient approximation to L(D|S). Its use re-
quires the assumption that the assignment of observation vectors to states is not altered
during clustering, and that the transition probabilities can be ignored. (Odell 1995) claims
that in practice any changes in the assignment of observation vectors to states are not sig-
nificant. Given this, the transition probabilities can be assumed to be constant during
clustering, and hence ignored because the clustering algorithm is only concerned with
changes in likelihood. The final assumption required is that the log-likelihood of observa-
tion vector o} being generated from S can be calculated as an average of the log-likelihoods
of it being generated from the states s € S weighted by the state occupancy probabilities,
~2(t). This is true if the values of 4% (¢) are either 0 or 1, but is an approximation when

using probabilistic state assignments. Given these assumptions
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R T
L= In[L(o}|ps; Zs)]7s (1), (3.30)

r=1t=1seS
where 7 (t) is the a posteriori probability of the tth observation vector in the rth obser-
vation sequence being observed while the model is in clustered state s. Under the above
assumptions this can be calculated as

7 (t) =D (), (3.31)
JjEs
where j are the states of the unclustered triphone models tied to form s, and ~; (t) is as
defined in Section 3.2.2. For single Gaussian distributions in each clustered state s, it can
be shown that

1 R T
L= 2 —5(n+ in[(2m)"[3s]]) Zl t;%"(t)’ (3.32)

which can be calculated without accessing the training data, by using the unclustered
state Gaussian parameters and occupation counts saved from the preceding re-estimation
to calculate ¥, and Y2 | ST 47(¢).

After the stopping criteria are reached, similar leaf nodes from different parents are
merged if the resulting reduction in £ is less than the minimum increase in £ used as
the clustering stopping criteria. The tied Gaussians in the final leaf nodes of the tree
become the Gaussians of the new clustered states. Finally, the state-clustered models are
re-estimated, and the number of Gaussian mixtures in each state increased if so desired.

The clustering procedure is illustrated in Figure 3.2, which shows the construction of
a tree for the middle state of the /aa/ base phone. The HTK notation X—Y+Z is used to
indicate the base phone Y with a left phonetic context of X and a right context of Z. The
question @Q: R_Nasal means Is the right phonetic context a nasal?, and is defined to be the
set of triphones {* — * + n,* — % + m, * — * + ng}, where * indicates any base phone.

As mentioned in Section 3.4.1, the decision trees can be used to determine which clus-
tered states to use to construct models for phones in any context, including those not
seen in training. This is successful because many of the questions used refer to linguis-
tically motivated broad class contexts, (Odell 1995). The trees are therefore saved after
construction for use in synthesis or recognition.

The decision-tree state-clustering procedure has been shown to give superior recog-
nition performance to a similar model-based clustering procedure, (Young et al. 1994),
(Odell et al. 1994). It has also been shown to give comparable recognition performance
to bottom-up, data-driven, clustering methods, when both are used to build similar word-
internal triphone systems in which unseen triphones are not required. The system was used
(with various levels of context information) in the HTK large vocabulary speech recogni-
tion system, which achieved some of the lowest error rates in the November 1993, 1994,
and 1995 ARPA evaluations, (Woodland et al. 1994), (Woodland et al. 1995), (Woodland
et al. 1996).
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Figure 3.2: An illustration of the decision-tree state-clustering procedure. The middle states of

all HMMs modelling the base phone /aa/ are clustered using the questions at the tree nodes
into the groups listed under each leaf node.



Chapter 4

Performance Testing

Measuring the quality of synthetic speech provides a mechanism by which different syn-
thesis systems can be compared, both with each other and with natural speech. It can also
provide information about the deficiencies of the synthetic speech produced by a system,
which can help direct future research effort to those areas of the system most in need of
improvement. Given these benefits, it is perhaps surprising how many papers on speech
synthesis contain only subjective remarks, such as “produced intelligible speech”, and re-
port no quantitative results. This may in part be due to the absence of a set of universally
agreed tests. Indeed, as Klatt suggests, (Klatt 1987), many of the tests which are in use
are not particularly well designed, and are used only because of the lack of any better
alternatives.

With analysis-synthesis schemes, it is possible to calculate objective distortion mea-
sures between the original speech and the re-synthesised equivalent, (Deller et al. 1993).
However, with ASS the equivalent original speech does not usually exist, and so perfor-
mance must be analysed subjectively, by performing listening tests with groups of humans.
To be useful, subjective measures of speech quality must be obtained in such a way as
to give reliable and repeatable results. Whilst subjective testing might at first seem less
appealing than an objective measure, in the end it is the human assessment of any syn-
thetic speech which matters; (Deller et al. 1993) state that the performance criterion for
an objective measure of speech quality is its correlation with subjective measures.

The quality of synthetic speech includes both its intelligibility and its naturalness.
Intelligibility is a measure of how well listeners can recognise the words encoded in the
speech. Naturalness is a rather nebulous concept which is not easily defined but includes
(amongst others) issues of pitch, duration, and smoothness. This chapter first discusses
the many different types of listening tests which have been used to test different aspects
of synthetic speech performance, before describing in detail the test procedure selected for

use in the current work.

4.1 Types of Listening Tests

This section begins by discussing intelligibility testing, and then goes on to other issues
such as comprehension, cognitive load, naturalness, and the measuring of individual ASS

sub-system performance.

56
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4.1.1 Intelligibility Tests

The intelligibility of synthetic speech generated from an ASS system is dependent on many
factors. These include the quality of the phonetic pronunciations generated by the system,
the segmental quality of the synthetic speech, the speaking rate, and, in fact, the prosody
of the synthetic speech (Silverman et al. 1993). Most listening tests test intelligibility
to some extent, since all speech generated by an ASS system will include the system’s
intelligibility deficiencies. However, this section describes those tests which have been
developed to test segmental intelligibility in particular.

Isolated-Word Tests

Isolated-word listening tests are attractive for several reasons. The lack of context infor-
mation makes the tests very sensitive to segmental errors in the synthetic speech, and
makes it relatively easy to determine the precise cause of errors, enabling the tests to
be used diagnostically to improve the synthesis system. The tests are quick and easy to
perform, even with untrained listeners. The results are directly relevant to the recognition
of digits, letters, or unfamiliar names, which might be spoken in isolation in real-world
applications. Finally, the rank ordering of synthesis systems implied by isolated-word test
scores has been shown to correlate well with the results of performing many other types
of intelligibility test, (Logan et al. 1989).

The most commonly used isolated word tests are the Diagnostic Rhyme Test (DRT),
(Voiers 1977), and the Modified Rhyme Test (MRT), (House et al. 1965). In both cases
the listener hears a sequence of isolated words, and, for each word, must select the word
heard from a number of rhyming alternatives given on an answer sheet. Both tests focus
upon consonants, because consonants have generally been found to be more difficult to
synthesise than vowels, (Klatt 1987). The answer sheet for the MRT lists six responses for
each word, each of which differs in an initial or final consonant. The MRT has also been
run in an open-response mode, in order to gather more information about the confusions
occurring. The answer sheet for the DRT lists only two options for each word, which differ
by only one distinctive feature in an initial consonant. The DRT is so named because the
results, whilst providing less information about possible confusions than those from an
MRT, do enable the test to be used as a very precise diagnostic tool, (Voiers 1968). In
both cases the words used are monosyllabic, of CVC or CV structure, and contain only
singleton consonants, not consonant clusters. The direct implications of the results of
these tests for the real world cases mentioned above is therefore somewhat limited.

Sentence-Level Tests

Two popular sentence-level tests are those involving the Harvard sentences, (Egan 1948),
and the Haskins sentences, (Nye and Gaitenby 1974).! The Harvard sentences are a
collection of meaningful sentences, whose phonetic balance is similar to that of English
as a whole. Test results that analyse the intelligibility of each content word thus reflect

'The Harvard sentences are listed in (IEEE 1969), and examples of both Harvard and Haskins sentences
listed in (Allen et al. 1987).
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the likely intelligibility of the system in normal use when synthesising continuous speech.
However, for good synthesis systems this does mean that the test is not very sensitive
to segmental errors, since the context present enables very high scores to be obtained.
Furthermore, the results are probably also influenced to some extent by the sentence
prosody, and so no longer reflect solely the segmental quality of the speech. The Haskins
test is more useful, since it uses meaningless sentences of the form “The (adverb) (noun)
(verb) the (noun)”, and therefore has a higher error rate for a given system and is a more
sensitive test. Interestingly, the rank order of systems determined using these methods
correlates well with the results of isolated word tests, (Klatt 1987).

4.1.2 Comprehension Tests

It has been suggested that the deficiencies of synthetic speech in intelligibility and natural-
ness mean that listeners have to devote more concentration to decoding synthetic speech
than natural speech, and that this extra cognitive load results in less overall comprehension
of the speech. Numerous experiments have been conducted in order to test this theory,
and to establish the performance of synthetic speech as an information delivery tool in
general.

(Allen et al. 1987) and (Klatt 1987) report various stages of a listening comprehension
experiment conducted with two TTS systems, natural speech, and a visual presentation of
the same information. After one presentation of the information the subjects were asked
to answer multiple-choice questions relating to the passages they had heard or read. The
results obtained with the TTS systems were approximately the same as those obtained
with natural speech, all of which were slightly worse than those obtained with the readers.
Thus, the results seem to indicate that the synthetic speech was as comprehensible as the
natural speech. However, although this result is encouraging, it may simply mean that the
test was not difficult enough to be sensitive to any difference in comprehensibility. One
interesting result, which has been observed elsewhere, (Klatt 1987), is that the subjects
performed significantly better on the second half of the listening tests with synthetic speech
than on the first half, despite having had no feedback on their earlier results.

(Klatt 1987) also reports the results of experiments which required listeners to respond
immediately to the content of synthetic speech or natural speech. In these experiments
it was indeed shown that the human processing of synthetic utterances is slower, and
the responses less accurate, than for natural speech. Klatt also reports that it has been
demonstrated that the capacity of short term memory for earlier items in a list can also
be reduced with synthetic speech.

4.1.3 Naturalness Tests

In addition to testing intelligibility and comprehension, it is also possible to compare
systems for their overall perceived quality, which is largely a measure of their naturalness.
Tests can be conducted by presenting pairs of sentences to listeners, each synthesised from
a different system, and asking them to indicate a preference for one or the other, (Klatt
1987). Alternatively, listeners can be asked to describe their impression of the quality
of some synthetic speech in terms of a number of categories, for example, labels ranging
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from “unsatisfactory” to “excellent”. For each system, the Mean Opinion Score (MOS)
can be calculated over all listeners to enable comparison between systems. Including
reference signals in the tests can help normalise the MOSs, to enable some comparison
to be made between results obtained with different listeners or at different times, (Deller
et al. 1993). The pairwise comparison and categorisation methods described here in fact
formed the basis of the three methods recommended by the IEEE for making speech
quality measurements, (IEEE 1969).

4.1.4 Individual ASS Sub-System Performance

Some of the listening tests described above, such as those using isolated-words and per-
haps those using Haskins sentences, can provide useful diagnostic information about the
segmental quality of the synthetic speech produced by a system. However, none of them
is likely to provide such information about the phonetic pronunciation, duration predic-
tion, and pitch track generation sub-systems of an ASS system. The problem is that it
is impossible to test these aspects of system performance in isolation from the effects of
the other components of the system; something which is (approximately) possible when
testing segmental quality, through the use of isolated monosyllabic words.

An example of the inseparability of the different aspects of ASS system performance
was demonstrated by the experiment reported in (Silverman et al. 1993). This experi-
ment examined the performance of various TTS systems when synthesising names and
addresses, and might therefore appear to be principally a test of the phonetic pronuncia-
tion and segmental quality aspects of the TTS systems involved. However, it was found
that performance was also very strongly affected by the prosody of the synthetic speech,
to the extent that a mid-performance system was transformed to be the best-performing
system by the application of a domain-specific prosodic pre-processor.

An isolated analysis of the performance of the different ASS sub-systems can be ob-
tained by numerically comparing the parameters they produce with parameters extracted
from natural speech. This approach has the disadvantage that it is not clear how to score
such comparisons in a perceptually relevant way, but nevertheless such comparisons are

useful.

4.2 Listening Tests Used

The principle aim of the work described in this thesis was to produce an automatic HMM-
based segment inventory construction system. A test was required which reflected this
aim, and therefore one of the segmental intelligibility tests described in Section 4.1.1
was appropriate. In fact the Modified Rhyme Test was selected for use for the following
reasons. Firstly, (Logan et al. 1989) listed MRT results for 10 synthesis systems, including
both leading research systems and commercial systems, and gave a detailed description
of the experimental method followed to obtain them. Secondly, MRTs provide detailed
information about the nature and location of segmental errors, unclouded by context
effects. Thirdly, the tests can be easily and quickly performed with untrained listeners,
and finally, the tests can be used again and again with the same group of listeners (this
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System Error Rate (%)
Natural Speech 0.53
DECtalk 1.8, Paul 3.25
DECtalk 1.8, Betty 5.72
Prose 3.0 5.72
MITalk-79 7.00
Amiga 12.25
Infovox SA 101 12.50
TSI-Proto 1 17.75
Smoothtalker 27.22
Votrax Type’n’Talk 27.44
Echo 35.56

Table 4.1: The Modified Rhyme Test error rates obtained by (Logan et al. 1989).

final point is discussed further below).

In order that the results obtained should be as comparable as possible with those listed
in (Logan et al. 1989), shown in Table 4.1, the MRTs were conducted using a very similar
experimental setup. Six speech files were prepared, each of which consisted of a brief
introduction to the task, followed by the test words separated by 4 second intervals of
silence. The sequences of test words used were exactly as given in the wordlists in (House
et al. 1965). Each speech file was prepared digitally, and played directly from memory
through the D-to-A converter of a Silicon Graphics Iris R4400 Indigo computer. High
quality closed-back headphones were used, and the tests conducted in the CUED speech
group’s quiet rooms. Two answer sheets were provided, each of which contained 25 groups
of 6 words (see Appendix A). The subjects were asked to put a line through whichever of
the 6 words on the answer sheet they thought they had heard for each test word played.
They were asked to provide only one answer in each case, and to guess if they were not
sure.

The major differences between the experimental setup and that used in (Logan et al.
1989), were that Logan et al. recorded their speech onto tape, played it back at exactly
80dB sound pressure level (SPL), mixed the speech with broadband white noise presented
at 55dB SPL during playback, used different audio equipment, and used native American
English speakers. However, none of these technical differences were thought likely to be
very significant. Native British English speakers were used for the tests reported in this
thesis, but this was thought appropriate since the systems tested all had British accents,
whereas the systems tested by Logan et al. are thought to all have had American accents.

With the exception of the final evaluation of the system (see Section 8.5.4), all of the
MRT results reported in this thesis were obtained using groups of just six listeners. The
results obtained were useful both diagnostically and comparatively. However, the small
number of listeners used meant that statistical significance tests between the MRT scores
of different systems were generally not useful. Systems which were clearly of different
performance levels on the basis of wider informal listening were often judged as not sig-
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nificantly different from each other, at the 5% level, on the basis of their MRT scores.
Significance tests are therefore not used in this thesis.

The sets of listeners used in the initial tests reported in Table 5.2 were inexperienced.
In all subsequent tests the six listeners used were experienced, having previously performed
at least one test. It was assumed that the tests could be repeated with the same group
of listeners because no feedback was given to them about their individual performance.
Furthermore, each listener was played a different set of words from the others on each
test, thus removing the possibility of the listeners conferring between tests. However, as
was discussed in Section 4.1.2, some degree of listener adaptation to synthetic speech can
occur despite an absence of feedback. Such adaptation was observed during the course of
this work (see Section 8.5.4) and therefore the results using experienced subjects should
be treated with some caution. In order to establish a more reliable figure for the final
system to enable it to be compared with the results in Table 4.1, a large scale test with
inexperienced listeners was conducted with this system (see Section 8.5.4).



Chapter 5

The Basic Synthesis System

This chapter describes the building of a basic speech synthesis system based on a set of
state-clustered triphone HMMs trained on a single-speaker speech database. The system
used the clustered states of the HMMs as its synthesis units, and generated synthetic
speech using linear prediction synthesis. The system was essentially the same as that
reported in (Donovan and Woodland 1995a).

5.1 Training Speech

Several speech databases were used during the course of this work, each comprising approx-
imately one hour of speech recorded from a single speaker. The speech was in the form
of several hundred sentences, or groups of short sentences, read from prompts. These
prompts were also used as word-level transcriptions during system training. Although
small numbers of reading errors were likely to be present in all the databases used, the
word-level transcriptions were not corrected to reflect these. A detailed description of the
databases used, and of the recording procedure, is given in Appendix B. The M1 database
was used in the construction of the basic system described in this chapter.

A single-speaker database was used so that the LP parameters representing each state
during synthesis (see Section 5.3.4) were well defined, free from the inter-speaker variation
which would result from using multi-speaker databases. One hour of speech was thought
likely to be the minimum requirement for building a state-clustered HMM system. The
reading material used was the Hitch Hiker’s Guide to the Galaxy, (Adams 1979), which
is fairly conversational in style. It was not thought necessary, or in fact wise, to use a
phonetically balanced database, because it was probably beneficial to train the system
on the same style of speech that it was likely to synthesise. This automatically ensured
that contexts required in synthesis were likely to have appeared in the training data.
Furthermore, it also provided a distribution of data which ensured that contexts required
most frequently during synthesis were likely to have occurred most frequently in training.
These contexts were therefore those in which the models were most finely clustered, and
hence the modelling, and resulting synthesis, most accurate.

The speech was coded using frames 25ms long, with a shift between frames of 10ms,
hereafter referred to as a 25/10 coding. The speech in each frame was pre-emphasised,
Hamming windowed, and coded into 12 mel frequency cepstral coefficients, to which cep-
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stral mean subtraction was applied. The normalised log-energy of each frame was also
calculated. Finally the first and second differentials of these parameters were appended,
to create a 39 dimensional feature vector.

5.2 HMM Construction

5.2.1 Dictionary

The dictionary used during this research was the British English Example Pronunciations
(BEEP) Dictionary, which was developed at CUED while the work described in this thesis
was in progress. The dictionary was based largely on the computer usable version of
the Oxford Advanced Learner’s Dictionary. At the time of writing, BEEP contained
approximately 160,000 words, including the inflected forms of many words, and alternative
pronunciations for many words. It also included lexical stress information for many words,
though the coverage was somewhat patchy. Various versions of the dictionary were used
during the course of this work. The phone sets of these different versions varied slightly;
the phone set of the most recent version to be used, BEEP-0.6, is given in Appendix C.

5.2.2 Monophone Training

Initially, estimates were made of the mean and diagonal covariance matrix of the parameter
vectors of the whole database, using the parameter vectors of one typical sentence. A set
of diagonal covariance matrix monophone HMMs was then created using these global
estimates to initialise the output distributions. This set comprised a three-state left-to-
right model to represent each phone in the dictionary, a similar model for long silences, and
a one-state model for short inter-word silences. A phonetic transcription was generated
using BEEP and the word-level transcriptions, selecting between multiple pronunciations
at random. The HMMSs were then trained using embedded re-estimation. They were then
used in a Viterbi alignment, to select between multiple pronunciations, and introduce
inter-word silences where appropriate. Using the revised transcriptions, the HMMs were
then re-trained again, and the whole process iterated until the log-likelihood of the data
being generated by the models had reached a plateau.

5.2.3 Triphone Training

The final monophone models were used to obtain a final monophone transcription, and
then this transcription used to obtain a list of all the triphones (i.e. phones in a particular
immediate phonetic context) present in the training data. For each of the triphones in
the list, a model was created by cloning the appropriate monophone model. The only
exceptions were the silence models, which remained monophone models. The new models
were then re-trained.

Corresponding states of triphones derived from the same base phone were clustered
using the HTK decision tree clustering algorithm described in Section 3.4.2. The question
set used was converted from a set developed for use in the HTK large vocabulary speech
recognition system, (Odell 1995), to refer to the BEEP phone set. The clustering stopping
criteria required a minimum of 25 frames per state, and a minimum increase of 50 in
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log-likelihood for a node to be split. A total of 99,405 triphones were logically possible,
of which only 8,898 occurred in the training data. The 26,694 states of these models were
clustered down to only 6,412 clustered states. A single Gaussian was used as the output
distribution for each clustered state. A single Gaussian was considered to be adequate
since the models were only used for alignment, not recognition, and the speech from only
a single speaker was being modelled. Furthermore, the use of Gaussian mixtures would
require more training data per state, and it was desirable to keep the amount of training
data required to a minimum. Finally, the state-clustered models were re-trained, and
used to obtain a time alignment of the clustered state sequence corresponding to the final
phonetic transcription of the database.

5.3 Synthesis Parameters

The state alignment was used in conjunction with the original speech database to obtain
synthesis parameters for each clustered state.

5.3.1 Duration Parameters

All the occurrences of a particular clustered state in the state alignment were pooled, and
the average duration and standard deviation of the duration for that state were found.
During synthesis each state was synthesised for a duration given by:

Synthesis duration = average duration + scaling factor x std. dev. of duration  (5.1)

With the basic system described in this chapter, the scaling factor was usually set to
0.5. This slowing of the speech was necessary because the durations extracted from the
database were those of fluent natural speech, and synthetic speech produced using them
was often too fast to understand due to its poor quality.

Equation 5.3.1 ensured that when the speaking rate was altered during synthesis, those
states which were seen to vary most in duration in the database were varied the most,
and those states which were seen to have fairly constant durations in the database were
varied the least. This approach would be justified if all the duration variation seen for
a particular state in the database was due to local variations in speaking rate, since the
deviation figure would then simply reflect this variation. In practice, the deviation figure
undoubtably also reflected the different durations associated with the different contexts
clustered into each state, in which case equation 5.3.1 was perhaps less appropriate. How-
ever, despite this caveat, the method seemed to work well. An analysis of the variability
of the durations of clustered states is presented in Section 8.3. The actual duration stretch
factors corresponding to different scaling factors are discussed in Section 8.5.2.

5.3.2 Energy

All the speech labelled as belonging to a particular clustered state was pooled to calculate
the average short term energy per sample (s.t.e.p.s.) for that state. During synthesis each
state was scaled to have the appropriate s.t.e.p.s. for that state.
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5.3.3 Voicing

It was assumed that each clustered state was composed of speech of only one voicing
type. Although this assumption was poor for phones of mixed voicing, such as voiced
fricatives, it was often quite reasonable (in a temporal sense) for other phones, because
the HMM system tended to segment states this way. The type was determined very simply
by thresholding the average zero crossing rate of the speech labelled as belonging to each
clustered state. In synthesis a pulse train excitation (with zero mean) was used for voiced

states, and a Gaussian noise source for unvoiced states.

5.3.4 LP Coefficients

The LP coefficients for each state were calculated by pooling all the speech labelled as
belonging to that state into a single autocorrelation vector, and calculating the LP coef-
ficients from this vector using the autocorrelation method. This can be shown to be the
way to calculate LP coefficients from multiple segments in order to minimise the total
prediction error over all the segments (see Appendix D). Since the speech was sampled
at 16kHz, an LP order of 20 was used, (Markel and Gray 1976). An assumption was thus
made that each state could be represented by a single set of LP coefficients. This resulted
in the spectral quantisation of the synthetic speech into state sized chunks in time, and
can clearly be seen in the spectrograms in Figure 5.2.

5.4 Synthesis

During synthesis the words of the utterance to be synthesised were first converted to a
phone string by dictionary lookup. Where multiple pronunciations existed one was chosen
manually. The only text processing included was to interpret question marks, exclamation
marks, full stops, and commas as short durations of silence. The phone string was then
converted to a sequence of triphones, and this to a sequence of clustered states using the
decision trees. As described in Chapter 3 the decision trees enabled clustered states to be
assigned to all possible triphones, whether or not they were seen in the training data.

The clustered state sequence was synthesised using the lattice filter shown in Figure 5.1.
The lattice structure enables the speech signal X (z) to be synthesised from the excitation
signal EI’," (2), using the LP parameters in their reflection coefficient form, k; ... k,. This is
useful because, as mentioned in Section 1.4.5, ensuring that k, < 1 Vn guarantees a stable
filter. The use of a lattice filter was probably not necessary in the current work, since the
LP coefficients were calculated using the autocorrelation approach, which itself ensures
filter stability, and were stored to high accuracy as floating point numbers. However,
its use did enable instability concerns to be dismissed completely, and also simplified
the coefficient smoothing experiments described in Section 5.6.1. For a derivation of the
equations implemented in the filter see (Parsons 1986).
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Figure 5.1: The lattice filter used in synthesis.

5.5 Variations on the Basic System

The basic system outlined so far had several parameters which were set at somewhat
arbitrary values, and so experiments were conducted to investigate the effects of varying
these parameters. The parameters investigated were the clustering stopping criteria, the
frame rate, and the number of states in each model.

Alternatives were also sought to the pooling method of estimating the LP coefficients.
Whilst this method did produce the set of LP coefficients which most accurately repre-
sented the pool as a whole, the coefficients were often blurred by the pooling of dissimilar
speech. The result was broadened formant bandwidths, resulting in over-damped and
buzzy synthetic speech. A number of ways of selecting a single piece of speech to base the
LP coefficients of each state upon were therefore investigated.

5.5.1 Parameter Variation

The three state left-to-right models of the original system combined with the 10ms frame
shift effectively enforced a minimum duration of 30ms for each phone. In an effort to
determine whether more time resolution was necessary, five state models were created,
and in order to keep the minimum duration at 30ms the frame shift was reduced to 6ms.
Subsequently three state systems were also ran with a 6ms frame shift. Various stopping
criteria were tried with all combinations of parameters.

The results of the various parameter combinations are shown in Table 5.1. The first
three columns of the table show the control parameters of the various systems. The next
two columns show the resulting number of clustered states per model position (i.e. the
total number of states divided by the number of states in each monophone model), and
the average amount of speech clustered into each state. Note that the minimum amount of
speech clustered into each state is given by multiplying the minimum number of frames per
state by the frame shift. The last column shows an informal ranking of the performance
of each parameter set. The two systems ranked lowest were substantially worse than all
the other systems. This was almost certainly due to an insufficient amount of data in



5. The Basic Synthesis System 67

Clustering
frame | states Parameters Average | Clustered | P
shift per speech states rank
(ms) | model | min. frame min. | /state /model
occupancy AL (ms) position
10 3 25 50 561 2139 10
6 3 25 50 404 2966 4
6 3 42 0 573 2092 3
6 3 42 84 591 2030 1
6 3 42 168 883 1358 5
6 3 64 128 886 1354 2
6 3 128 256 1879 638 6
6 5 1 1 92 7843 12
6 5 5 10 143 5042 11
6 5 25 25 348 2066 8
6 5 25 50 350 2058 9
6 5 42 84 534 1348 7

Table 5.1: Columns 1-3 give the control parameters used in each experiment, columns 4 & 5
give the resulting system statistics, and column 6 gives the rank order of the performance of
the systems using the pooled LPC method.

each clustered state to properly estimate a Gaussian distribution. The audible differences
between the other configurations were small, and the rank order assigned to them was
not very precise. Highly ranked configurations generally had less artifacts than those with
lower ranks.

The principle conclusion of these experiments was that clustering too finely led to poor
performance, because too little speech was clustered into each state to robustly estimate
the parameters of a Gaussian. A minimum of 25 frames per state appeared to be enough;
a minimum of 5 definitely was not. It was also clear that 3 state models performed better
than 5 state models, and that a 6ms frame shift was better than a 10ms frame shift.
Finally, there was some suggestion that not clustering finely enough was also detrimental

to performance.

5.5.2 LP Coefficient Estimation

Four methods of estimating the LP coeflicients to represent each state were tried. The
first of these was described above, and involved pooling all the speech associated with each
state into a single autocorrelation vector. This method will henceforth be referred to as
the P-method. The F-method considered every frame of speech within the regions labelled
as belonging to each clustered state as possible candidates for selection. The frame with
the highest log-likelihood of being associated with the clustered state Gaussian was then
selected, and then a 25ms Hamming window centred on the centre of that frame used to
calculate the LP coefficients. The C-method was similar to the F-method, except that
only the frames at the centre of each occurrence of each clustered state were considered
as candidates in an attempt to prevent frames close to the boundary regions, which might
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not have been representative of that state, from being selected. Finally, the I-method did
not use the state Gaussian, but instead compared the speech in a 25ms frame at the centre
of each state occurrence to the P-method LP vector using a distance measure similar to
the Ttakura-Saito distance, described in Appendix D. Note that, at this stage, no attempt
was made to use multiple LP vectors to produce each clustered state, and in the three
alternative schemes considered the single vector used was estimated from a short segment
of speech to reduce the effect of pooling on the formant bandwidths.

The results of the F and C methods were very similar. Whilst the speech was less buzzy
than the P-method, it contained numerous artifacts, which made the speech sound poorer
overall. The I-method contained less artifacts than the F and C methods, but it was still
not clear that it was actually an improvement. Analysis of the artifacts seemed to show
that they were either caused by the selection of frames which did not well represent the
speech of that particular clustered state, or that a reasonable frame was selected, but that
speech synthesised using the LP parameters estimated from that frame did not sound like
that frame. The latter could occur particularly with states representing transient signals
such as bursts. Here the P-method averaged together many poor sets of coefficients to
calculate a very neutral, but audibly acceptable sound, whereas the other methods selected
one particular frame, and hence calculated more specific, but poor, LP parameters. The
superiority of the I-method can perhaps be explained by considering that the frame selected
was the one most likely to have been generated by the LP parameters of the P-method,
and hence it’s LP parameters were likely to be similar to those of the P-method, which
were generated using pooled data. In contrast the F and C-methods selected the frame
on the basis of an MFCC coding, and then merely assumed that the LP parameters of
the selected frame were both reasonable and representative of the pool, which was not
necessarily so. Furthermore, both the parameters used for the MFCC coding, and for
the LP parameter estimation, were based on a single frame, which was not always very
reliable. From this discussion it may appear that the best solution would have been to use
an LP coding to code the original database and build the HMMs, and then select frames
on the basis of the log-likelihood. However this approach was not pursued since the use
of an LP synthesiser was known to be only a temporary measure.

5.6 Results

Modified Rhyme Tests (MRTSs), as described in Chapter 4, were conducted for both the
P-method and I-method versions of the top ranked configuration in Table 5.1, and also
the P-method version of the top ranked configuration with 5 states per model. Tests
were also conducted for natural speech, and for re-synthesised natural speech. The latter
was generated by performing standard autocorrelation method LP analysis using 25/6
frames, and re-synthesising the speech at a constant fundamental frequency. Voicing was
determined by thresholding the zero crossing rate of each frame, and was used to select one
of the excitation signals described in Section 5.3.3 during synthesis. This speech represents
the best that the current system could hope to achieve.

The results of the MRT's are shown in Table 5.2. The results showed that the P-method
was slightly more intelligible than the I-method, as expected, and that there was no real
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System Mean Error Rate (%)
natural speech 0.7
re-synthesised natural speech 3.3
rank-1 P-method synthesis 33.0
rank-7 P-method synthesis 34.0
rank-1 I-method synthesis 37.3

Table 5.2: Modified Rhyme Test results for variations on the basic system, re-synthesised
natural speech, and natural speech. The ranks refer to the informal speech quality rankings
given in Table 5.1.

advantage in moving to five state models. As discussed in Chapter 4, none of the scores
were significantly different in a statistical sense, since this is hard to achieve with such
small samples. Analysis of the MRT results show that 74% of the errors with the top
ranked P-method system were due to poorly synthesised plosives. The reasons for these
errors are discussed in Section 5.7.

Figure 5.2 shows wideband spectrograms of the sentence fragment “vast Atlantic”,
taken from the utterance “When a sailor in a small craft faces the might of the vast

i

Atlantic Ocean today...”. The speech in Figures 5.2(a) to 5.2(d) were generated using
the F, C, I and P method versions of the top ranked system in Table 5.1. The speech in
Figure 5.2(e) is re-synthesised natural speech, and that in Figure 5.2(f) is natural speech.
All the synthetic speech was synthesised in a monotone at 116Hz, which is approximately
the average pitch frequency of the speaker used, using a duration stretch factor of 0.1.
This stretch factor resulted in the speech being a little too fast to be easily understood,
but was used so that the speech was comparable with later, better quality, speech. The
speech that these spectrograms were generated from is available as examples 2-5, 7, and
36, on the accompanying compact disc.

The overall sound of the synthetic speech was surprisingly fluent, and the durations
were particularly good. The spectral quantisation resulting from the use of a single set
of LP parameters to synthesise each state can clearly be seen in the spectrograms. As
expected, in Figure 5.2(a)-(c), where the LP coefficients were based on a single speech
segment, the formant bandwidths were slightly narrower, and hence the speech slightly
more resonant, than in Figure 5.2(d).

The biggest problem with the speech, as revealed by the MRT's, namely the poor repro-
duction of plosives, can clearly be seen in the spectrograms. The speech in Figure 5.2(d)
makes no real distinction between the closures and the bursts of both the /t/ in “vast”
and the first /t/ in “Atlantic”, the second of which also suffers a voicing error. The second
/t/ of Atlantic was better produced, with only a small amount of noise in the closure, plus
a two pulse voicing error just before the burst. The closure and burst of the final /k/
of “Atlantic” were also reasonably distinct, except that the burst was produced with the
wrong voicing. The speech in Figures 5.2(a)-(c) suffers similar problems.
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Figure 5.2: Wideband spectrograms of the sentence fragment “...vast Atlantic...”. The syn-
thetic speech was produced using the F, C, | and P method versions of the top ranked config-
uration of the basic system presented in Table 5.1, and by re-synthesising natural speech.



5. The Basic Synthesis System

71

8000

6000

4000 f

2000

+ | Ium““ B
NI 4/

8000_|| L L

6000 |

2000 [

8000 -I [} L [ [ [}
6000
4000}

2000 [

4000

(f) Natural speech

Figure 5.2 (continued): Wideband spectrograms of the sentence fragment “...vast Atlantic...”.
The synthetic speech was produced using the F, C, | and P method versions of the top ranked
configuration of the basic system presented in Table 5.1, and by re-synthesising natural speech.



5. The Basic Synthesis System 72

8000 7 T T T T T K N A L L L L L
N VR L R B

(ha Y
N

60005— + h {{jsstl ‘; ::I:" m»’mr...“ It ”l|,- |_|_.

Ligs ;

— rar

e N i 1

2000 '—|— : AL

oé. “ “[ ([ “”“'““J Hluui"(“ o 111

06 07 08 0.9 1
(a) Synthesis using the P-method

8000||| LR B L L T N A L L L L
2 R E IS R N L

} NUH e e

6000 h{[ i

2

2000f- 1}
: Liadl
Oél Illﬁl bqlllL l'lilllll IIIII.I IIilil‘lL
0.4 0.5 0.6 0.7 0.8 0.9 1
(b) Synthesis using reflection coefficient smoothing
Figure 5.3: Wideband spectrograms of the sentence fragment “When a sailor in a...". The

synthetic speech was produced using the standard P-method and by smoothing the P-method
reflection coefficients between the centres of consecutive clustered states.

5.6.1 Parameter Smoothing

An experiment was conducted to determine whether the spectral quantisation, and
the consequent formant discontinuities present at state boundaries during synthesis, were
causing significant degradation to the quality of the synthesised speech. The reflection
coefficients used to generate the speech during synthesis were smoothed by using the P-
method values at the centre of each clustered state and linearly interpolating them between
consecutive centres. Smoothing was only applied to coefficients between clustered states
representing voiced, non-silent phones. Although the spectrograms appeared more natural
(see Figure 5.3) the resulting synthetic speech, available as example 6 on the accompanying
compact disc, was audibly indistinguishable from speech synthesised using the standard
P-method. Note that this negative result did not mean that formant discontinuities are
not a problem in general, but only that the degradation they introduced into the basic
system was insignificant compared to other problems present. Later, in Section 8.5.1,
when the system was much improved, it was demonstrated that formant discontinuities
are indeed undesirable.
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5.7 Discussion

The MRTs made it clear that the system was very poor at synthesising plosives. Exami-
nation of the database and the state alignments suggested several possible reasons for this
poor performance.

It was found that many plosives specified in the phone level transcriptions were either
partially missing (i.e. unreleased), or even completely missing from the speech of the data-
base. The latter was due mainly to lazy, imprecise speech on the part of the speaker used
to record the database. The former was also amplified by the laziness of the speech, but it
is likely that this effect would still be present to some extent in the fluent speech of even
a careful speaker. Completely deleted phones caused problems because the corresponding
model was then aligned to the speech of another phone. This degraded the quality of
both the model of the phone in question, and the models of neighbouring phones. Unre-
leased plosives caused less of a problem provided that they were consistently unreleased
in the same immediate phonetic context, in which case all three states could model the
closure. However, this was not always the case, and occurrences of both the released and
unreleased forms of plosives were found in the same immediate phonetic context. In this
case the system tried to model both with the same triphone, resulting in blurred model
parameters.

The examination also suggested that the time-scale of the speech events present in
plosives relative to the frame size was important. The duration of closures in the database
was found to be approximately 30-70ms. When present, the following release either took
the form of a burst of turbulent noise lasting 20-60ms, followed by a further 10-30ms of
aspirated noise, in the case of voiceless plosives (/t/, /k/, & /p/), or of a burst lasting
15-40ms followed by formant transitions into the adjacent vowel, in the case of voiced
plosives (/b/, /d/, & /g/). Given these short time-scales, it is clear that the treatment of
the speech signal as stationary 25ms frames undoubtably caused some degradation of the
synthesis parameters. The high quality of the re-synthesised natural speech shows that the
framing effect on its own leads to only a small degradation. However, it is likely that the
framing effect combined with the averaging involved in estimating the HMMs amplified
the effect, resulting in poor models.

The effects discussed above resulted in poor quality plosive models, which led to poor
plosive alignments, and hence poor synthesis parameters.



Chapter 6

Modelling Improvements

This chapter presents the improvements to the basic system made in the areas of automatic
phonetic transcription generation, automatic segmentation, and state clustering. Many of
these improvements were made whilst still using an LP synthesis scheme, but the need for
some of the improvements only became apparent once the transition to a PSOLA synthesis
scheme had been made. The implementation of the PSOLA scheme is described in the
next chapter.

6.1 Improvements in Transcription & Segmentation

As discussed in Section 5.7, the MRT results of the basic system indicated that major
improvements were required in the treatment of plosives. This section describes the im-
provements made in both transcription and segmentation, which were largely in this area.

6.1.1 Optional Bursts

Both the released and unreleased forms of some plosives were found in the same phonetic
context. For example, /n-t+sp/ was seen to be released in instances of “Dent”, “descen-
dent” and “opponent”, but unreleased in instances of “important” and “don’t”. When
not present the states of the model representing the burst were forced to align to some
other part of speech, and so the burst states were degraded.

To solve this problem two possible solutions were considered. The first involved altering
the transition matrix of the plosive models, to make it possible to skip the burst states
during both re-estimation and alignment. The second was to split the plosive into two
separate models, one for the closure and one for the burst, which was made optional.
Though both methods were likely to give equally good monophone models, the second
method was chosen since it would also aid clustering by allowing a context of a burst to be
distinct from a context of a closure. For example, consider the effect on the /iy/ of “eat”
in the word pair “don’t eat” if the /t/ of “don’t” is either released or unreleased. With
the first method the /iy/ triphone is always /t-iy+t/, but with the second the distinction
can be made between /tbst-iy+tcl/ and /tcl-iy+tcl/.

In addition to the plosives /t/, /p/, /k/, /d/, /b/, and /g/, the models of the af-
fricates /ch/ and /jh/ were also split into separate closure and burst parts. This was done

74
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since these phonemes are often analysed phonetically as consisting of the plosive-fricative
combinations /t sh/ and /d zh/ respectively, (Klatt 1987).

Initially the original three state models were split such that the closure had one state
and the burst had two states. However, on retraining the system (with no bootstrapping)
it was found that the first burst state could choose to model the closure instead of the
burst. The “burst” model would then always be present, but with a very short alignment
for the second state when the burst was not actually there. To rectify this situation all
burst models were also made to be one state models. This alteration also greatly improved
the system’s ability to accurately place boundaries between the closure and burst parts of
plosives.

The introduction of separate closure and burst models meant that the left phonetic
context of bursts was always the associated closure. This represented a waste of a context
label, which could then perform no useful role during clustering. It meant that it was
impossible to distinguish, for example, the short unaspirated burst of “stained”, from the
longer, aspirated burst of “ascertained”, since both were /tcl-tbst+ey/. To rectify this
situation the left context of bursts were set to the phone before the associated closure.

The introduction of split plosive models and one state burst models, combined with
the variable frame size & rate codings discussed in the next section, led to a substan-
tial improvement in the modelling, clustering, and segmentation of plosives. However,
the accuracy of the determination of the moment of burst onset was still limited by the
resolution imposed by the use of frames. With the PSOLA system, closure and burst
waveform segments which were not previously adjacent were concatenated during synthe-
sis, and therefore it was important to ensure consistency in the placing of closure-burst
segment boundaries relative to the moment of burst onset during system construction. If
this was not done then, for example, a closure segment ending with a burst onset could
be synthesised adjacent to a burst segment beginning with a closure, resulting in a double
burst. The coding used for plosives was 6ms frames with a 4ms frame shift, and so to
avoid the resolution problem all closure-burst state boundaries were shifted 4ms earlier in
the final state alignment, ensuring that (nearly) all burst segments began with a moment
of closure.

6.1.2 Variable Frame Sizes & Rates

The short time-scale of the speech events in plosives means that relatively long 25ms
frames lead to poor models. To understand why, consider a typical burst of, for example,
40ms duration. With a 25/6 coding only three frames lie wholly within the burst region,
with approximately six more straddling its boundaries. The state Gaussian, calculated
by the BW algorithm, is then likely to be composed of large contributions from the three
frames inside the burst, and smaller contributions from the other six frames. The low ratio
of frames fully inside the burst to frames straddling its boundaries results in a blurring of
the parameters of the state Gaussian.

A system was introduced in which shorter, more numerous frames were used to code
plosives, fricatives and silence. A first pass was performed using a 25/6 coding to es-
tablish which parts of the database corresponded to which types of speech sounds. The
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database was then recoded using frames of a different size and rate depending on which
class of phone was aligned during the first pass. A 25/6 coding was maintained for voiced
sounds, since it was desirable that each frame should average over several pitch periods
to avoid any additional variation in parameters due to frame placement effects. For un-
voiced speech these considerations did not apply, and the lower limit was that frame size
below which so little frequency information could be extracted from each frame that the
resulting parameters did not enable different phones to be distinguished. Somewhat arbi-
trarily a frame size of 6ms was selected, which analysis showed was above this lower limit;
i.e.boundaries were accurately placed between adjacent fricatives and bursts. A 4ms frame
shift was used for fricatives and silence, and a smaller 2ms frame shift for plosives in an
effort to better determine the moment of burst release. The exact sizes used were not
extensively investigated, and could perhaps be further refined. Looking again at the 40ms
burst discussed above, a 6/2 coding places eighteen frames wholly inside the burst region,
and only about four frames straddling its boundaries.

Care was needed to ensure that the parameters obtained when using shorter frames
were compatible with those obtained when using longer frames. If this was not the case,
then the boundaries between different classes of coding would become effectively fixed
after the first recoding, because a model trained on one coding would be very unlikely
ever to be aligned to speech coded differently. To ensure energy compatibility, the speech
in each frame was scaled to have as much energy as it would have had if it had come from
the largest frame being used anywhere in the current coding, that is, the speech samples

were scaled by a factor of \/mazimum frame size/current frame size.

The steps taken to ensure MFCC compatibility between codings are most easily ex-
plained by first describing the method used to calculate these parameters in some detail.
The coding was performed using the appropriate tool from HTK Version 1.5. The speech
frame was first zero padded up to the next smallest frame with a number of samples equal
to a power of two, to enable a radix 2 Fast Fourier Transform (FFT) routine to be used
to obtain the Discrete Fourier Transform (DFT) of the signal. It can be shown that zero
padding prior to taking a DFT does not change the shape of the spectrum obtained, but
merely produces an interpolated spectrum with more points. As shown in Figure 6.1, the
magnitude spectrum was then pooled into, typically 24, mel bins using triangular filters.
The filters were defined by their centre frequencies, which were equally spaced in mel-scale
frequency between 0 and the mel-scale equivalent of half the sampling frequency. The mel
frequency scale is a perceptual scale derived from experimental research into how humans
perceive pitch, (Parsons 1986). The equation used in HTK to approximate the relation-
ship between linear frequency (Hz) and mel-scale frequency (mels) is given in Figure 6.1.
Finally, those mel bins whose contents were less than one were set equal to one, logs were
taken, and a cosine transformation performed to calculate the MFCCs.

From Figure 6.1 the effect that using a different FF'T size in the analysis would have
can be appreciated. Since the sampling frequency is fixed, if the number of mel bins used
remained the same, then the only thing which would change would be the number and
spacing of the FFT spectral components. However, this new spacing would alter both
the number and the weights of the components being pooled into the mel bins, the effect
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Figure 6.1: The calculation of MFCCs within HTK Version 1.5.

of which could be significant for the lower order bins which only have a few contributing
components. Therefore, in order to avoid these quantisation effects, every speech frame
was zero padded up to the size of the largest FFT required for any frame in the current
coding. The number and weight of the components pooled into each mel bin was then
the same for every frame size, with only the amount of interpolation effectively employed
to estimate the FFT components varying between frame sizes. By Parseval’s Theorem,
the above energy scaling also ensured that the average power spectrum of the speech was
independent of the frame size, before the magnitude spectrum was pooled into the mel
bins. This arrangement was seen to ensure that both MFCCs and energy parameters
obtained from the same region of speech were very similar when coded either with 25ms
or 6ms frames.

The delta and acceleration parameters were calculated for each frame using itself,
and the two nearest frames on either side. No alteration was made to this arrangement
when the data was recoded, and so the deltas and accelerations therefore referred to
changes on a much shorter time-scale when smaller frame sizes and shifts were used. The
new coding was used to re-estimate the HMMs, and obtain new phonetic transcriptions
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and alignments. The change in frame size and shift was transparent to the HTK re-
estimation and alignment tools, because they worked only with sequences of parameter
vectors, and did not use any information about the source of these. The only exception
to this was the alignment times produced, which needed to be corrected to reflect the
underlying framing scheme. The recoding procedure was repeated several times during
the monophone training stage of the system’s construction.

When the HMMs were re-estimated on the new coding it was found that log likelihoods
per frame generally decreased. However, whilst that of silence decreased by 8.0, and
those of fricatives by an average of 5.7, those of bursts and closures only decreased by an
average of 2.0. (A typical log likelihood was about -70). The fall in log likelihood can
be explained by considering that long frames represent an average over more speech than
do short frames. Parameters obtained from long frames therefore tend to be more similar
to each other than those obtained from short frames. Gaussians constructed from them
therefore have smaller variances, and hence higher log likelihoods. The resultant drop in
log likelihoods when moving to shorter frames was offset by the fact that the models were
improved due to the framing effects discussed above. The relatively small drop seen in
the log likelihoods of closures and bursts is therefore thought to be due to substantial
improvements in the quality of the models. The fricative and silence models saw larger
drops because the improvement in model quality was much smaller, due to the longer
average durations of these sounds.

As described above, the use of different coding schemes was determined entirely by
the class of phone aligned on a first pass. This was not ideal, since many examples of
nominally voiced speech being produced unvoiced, and vice-versa (particularly with /hh/)
have been observed. Using a voicing determination algorithm to assign coding schemes
would perhaps be preferable. Introducing pitch synchronous frames for voiced speech
might also be beneficial.

6.1.3 Silence Modelling

In the basic system two silence models were used, one with three states, and the other
with one state. The presence of two silence models was largely historical. In the HTK
recognition system the one state model was used for short inter-word silences, where its
presence was ignored in describing the context of neighbouring phones. It was in fact a
so called ‘tee’-model, having a skip transition from entry to exit state, enabling it to be
skipped completely during re-estimation. However, in the basic system this feature was
largely redundant since the models were inserted optionally by Viterbi alignment, rather
than always being present at word boundaries. Furthermore, the one state model was
not ignored in describing the context of neighbouring phones. It therefore performed no
additional task to the three state model, and so the two silence models were merged into
one.

An analysis of the silences present in the M1 database was conducted to establish
the most appropriate minimum duration for the silence model, principally to investigate
whether a one state model was necessary. The first 10 (approx.) silences aligned to the
data with durations of 6ms, 12ms, 18ms, ..., 54ms were examined (using a 25/6 global
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Present Present, but
Silence Duration (ms) | No. in Database M1 | Checked | with stated | with longer
duration duration
6 10 10 1 1
12 15 15 2 0
18 40 10 0 2
24 48 10 1 4
30 47 10 0 2
36 28 10 1 3
42 30 6 0 1
48 16 6 1 4
54 20 6 1 2

Table 6.1: Analysis of silences present in the M1 database. Columns show silence duration,
total number of such silences, number checked, number of those checked present with stated
duration, and number of those checked present, but with longer duration.

coding). The results of the analysis are shown in Table 6.1.

As can be seen from the table, only a very small proportion of the aligned silences which
were shorter than 48ms in duration were actually present in the database. Furthermore,
most of the silences referred to in the last column of the table, which were actually present
but with a longer duration, were above 40ms or so in duration. The analysis therefore
demonstrated that a short single state silence model was not required, especially when
using a 6/4ms coding, since there were only a handful of genuine silences shorter than
40ms in the entire M1 database. Furthermore, since many of the silence insertion errors
occurred precisely because a short silence could be inserted where there was none, a 7
state left-to-right silence model was adopted, which had a minimum duration of 28ms on
a 6/4 coding.

An analysis of the locations of the misplaced silences was also instructive, and led to
improvements in the quality of the phonetic transcriptions. A very large number of the
silences aligned in error were placed either in the initial closures of words beginning with
a plosive, in the final closures of words ending in an unreleased plosive, or in the double
closure formed by two such words together, such as “ape descended”. These extra silences
were degrading the transcriptions, since the aligned phone at these points should be the
relevant closure(s). The effect of this degradation was to deny appropriate speech to the
closure models of some contexts, to lead to an under estimation of closure durations, and
to give incorrect contexts to many phones. From Table 6.1 it can be seen that it is likely
that there were at least 200 such errors in the database, with possibly many more longer
silences being placed in double closures. Although this represented possibly less than one
error per sentence, it was thought to be important because it would significantly affect
models and durations in some contexts. The following heuristic was therefore employed
to remove such silences from the database:
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e Remove all silences (sp), from:
— /xcl sp *cl/ if the combined duration is less than 140ms
— /*cl sp/ if the combined duration is less than 100ms

— /sp #cl/ if the combined duration is less than 100ms

where *cl represents any closure. The duration at which a closure becomes a pause is
something of a subjective decision. It may also vary with speaking rate and perhaps
between speakers. The duration thresholds used were determined from examination of
the M1 database by one person, and as such were both speaker dependent and subjective.
However, they would undoubtably correct many hundreds of errors in the short closures
of any speaker, and would be likely to cause only a fraction of this number of rather
subjective “errors” in those cases with closure durations near the thresholds.

It was also realised that the durations of closures adjacent to other closures or silence
were inherently unreliable, and so these were no longer used to estimate closure durations.
This was achieved after converting the monophones models into context dependent models
by replacing such closures with a context independent dummy model, /cl/. Performing the
conversion before replacing the models ensured that the original contexts were maintained
for the neighbouring phones, and that contexts of /cl/ were not introduced. This alteration
did mean that the durations of double closures were never properly estimated, but since
the system released all bursts during synthesis these were never needed.

6.1.4 Phone Deletion

From an analysis of the phonetic transcriptions generated by the system it became clear
that some phones present in the transcriptions were not actually present in the database.
This was because the phonetic transcriptions were generated using a dictionary, which only
contained citation form pronunciations. Experiments were therefore conducted with the
aim of automatically identifying such deleted phones. The obvious experiment, of making
all phones optional, was tried but failed completely, with many phones clearly audible in
the database not being aligned. Other, less drastic, approaches were therefore sought.

It was reasoned that phones which were absent from the database should have very
short alignments if the database was aligned to a transcription in which they were present.
The experiments therefore examined those phones with “suspiciously short” alignments.
To amplify the effect, the transition matrices of all phones were altered to enable skip
transitions prior to producing an alignment. Any phone which was not present could then
be aligned to as little as one frame of speech (a minimum enforced by the HTK alignment
tool). “Suspiciously short” was defined as closures and fricatives shorter than 6ms, and
voiced sounds shorter than 10ms, using the codings described in Section 6.1.2. Bursts were
not examined since these were already present optionally. The experiment was repeated
using both 2 and 3 Gaussian mixture monophones, and a 3 mixture set which had been
re-estimated using the skip transition matrices.

All the experiments yielded very similar results. In all experiments about 3,900 phones
were marked as suspiciously short, of which about 1600 were closures, 600 /ax/, 300 /ih/
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and 260 /1/. In all cases it was found that, of those phones marked as suspiciously short,
only approximately 50% of the sample examined (about the first 18 phones) were not
present. Removing the marked phones from the transcriptions would therefore be likely
to cause as many problems as it would solve. Making the marked phones optional in future
alignments was not attempted due to the failure of the experiment where all phones were
made optional.

However, it was noticed that the success rate in identifying missing closures seemed
to be higher than for other phones, and so this possibility was investigated. The first
16 closures in the 1 mixture and 3 mixture cases were examined, and in both cases 75%
were found to be absent. Since closures were only one state models, another experiment
was conducted in which the skip transitions were not introduced, and still 75% of the
marked closures were found to be absent. Removing these closures from the transcriptions
would therefore have solved three times as many errors as it would have introduced,
and so this was thought to be worthwhile. Rather than removing them, the closures
were at first made optional, similar to the way in which all bursts had previously been
made optional, which had worked quite well. However, problems arose with the PSOLA
system when closures were incorrectly omitted and the adjacent bursts selected for use in
synthesis. An alternative scheme was therefore adopted in which the marked closures were
swapped for a dummy model /cl/ which would never be used in synthesis, or to estimate
synthesis durations. During the conversion to context dependent models, /cl/ remained
a monophone, and since the closure was likely to be absent, all right and left contexts
of other phones which were specified to be /cl/ were altered to refer to the first adjacent
phone which was not /cl/.

Many of the identification errors with /ax/, /ih/, & /1/ were found to be with very
short occurrences, of only 2 to 4 pitch pulses in duration. This indicated that a very
short alignment did not necessarily mean that a phone was absent. It also suggested that
perhaps some phones other than plosives should have fewer than three states, or different
model structures, and that a pitch synchronous coding might be more successful.

6.1.5 Stressed Vowels

The work in the literature referred to in the introduction by (Nakajima 1993) and (Wang
et al. 1993) showed that stress can be an important clustering feature. Although stress
information for the database was not available, the pronunciation dictionary used did
contain lexical stress information. Lexical stresses were not necessarily realised in the
speech of the database, and furthermore, other non-lexical stresses may have been present.
However, it was likely that using a label based on lexical stress was better than making no
stress distinction at all, since the clustering algorithm would only use the label when the
presence and absence of the label corresponded to a significant difference in the acoustic
realisation of the phone in question.

Vowels with primary stress, secondary stress and no stress were distinguished in the
dictionary. In order that pronunciations which differed only in stress level could be assigned
to the database by the system, distinct monophones were required to model different
stress levels. For each vowel, where sufficient data existed, deemed to be more than 50
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occurrences of each stress level, all three monophones were distinct. Where only the
combined occurrences of primary and secondary stresses exceeded 50 the stressed phones
were tied, and there were only two distinct models, and finally where there was insufficient
data even for this, all three models were tied. The models were used to determine the
phonetic transcription of the database, and then untied before the conversion to context
dependent models.

6.1.6 Syllable Effects

The determination of syllable boundaries is a difficult, and somewhat imprecise subject.
The Longman Pronunciation Dictionary, (Wells 1990), describes three methods for per-
forming syllabification which are currently in use, each of which gives slightly different
results. Some variation also seems to occur in deciding which phones are truly syllabic,
and which are associated with an adjacent schwa. The phonetic pronunciations comprising
the BEEP dictionary were compiled from many sources, and unfortunately pronunciations
were not always consistent regarding the latter point (BEEP gives no explicit syllable
boundary information). For example, the pronunciation of “button” was given as /b ah t
n/, but that of “Aston” as /ae s t ax n/ and that of “bottom” as /b oh t ax m/. A degree
of normalisation was eventually introduced in an effort to improve this situation, but the
following discussion refers to unaltered BEEP pronunciations and phones.

Problems were experienced with the PSOLA system with the synthesis of /l/s. In
English the phoneme /1/ exists in at least two, and possibly three, different allophones,
being the “light” syllable initial /1/ of “left”, the “dark” syllable final /1/ of “small”, and
the syllabic /1/ of “bottle”. The different allophones can occasionally occur in exactly
the same immediate phonetic context, for example the dark /1/ in “militant”, and the
light /1/ in “belittle”, which are both in the same triphone /ih-14+ih/. Note that not even
the word initial / word final labelling discussed in Section 6.2.4 would enable these two
cases to be distinguished. The lack of an appropriate label to enable the separation of
the different allophones led to problems in synthesis with the PSOLA system. Different
allophones with similar phonetic contexts were pooled into the same clustered state, and
then during synthesis the segments concatenated to construct the /1/ required were selected
from both allophones. This resulted in formant discontinuities between adjacent segments,
which were heard as glitches in the synthetic speech. The errors were compounded in the
synthesis of words containing the phone sequence /ow 1/, since in modern British English
an /ow/ with a following dark /1/, as in “sold”, is pronounced very differently to an /ow/
with a following light /1/, as in “solo”. Note that again, the same triphone /s-ow+l1/ is
present in both words, and that some form of syllable marking would enable the two cases
to be distinguished.

Similar cases can be made for the syllabic and non-syllabic forms of /1/, /n/ and /m/.
For example, “evilest” usually contains a syllabic /1/ and “livelihood” does not, but both
contain the /v-1+ih/ triphone. In “buttoning” the /n/ is syllabic, and in “witness” it
is not, but both contain the /t-n+ih/ triphone. Syllabic /m/s were usually represented
in BEEP as /ax m/, but the same problem could still occur, as demonstrated by the
examples “intermix” and “welcoming”, both of which contain /ax-m+ih/, but only the
second of which is syllabic in nature.
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Although the cases described above are perhaps the most important occasions on which
a knowledge of syllable boundaries would be useful, it is possible that other smaller gains
would also be achieved if syllable information was widely available.

It is clear that, in addition to a consistent transcription of syllabics (with regard to
schwa), a general marking of syllable boundaries would be very useful as a clustering
feature. However, due to the inconsistencies between the various approaches described
in (Wells 1990), the difficulties experienced by (Jones 1994) in implementing an accurate
automatic syllabification system (11.5% of the words in his lexicon were deemed to have
an incorrect number of syllables), and a lack of time, the simpler task of trying to decide
only when /1/, /m/, and /n/ were dark, light, or syllabic was attempted.

The dictionary constructed by merging the Dragon Wall Street Journal Pronunciation
Lexicon and the Dragon Resource Management Lexicon, was used to automate the proce-
dure as far as possible. This dictionary, which is for American English, has both separate
phones for syllabics, and marks to indicate syllable position. It was assumed that, if the
number of /1/s, /n/s and /m/s in a word was the same in American English as in British
English, then the syllabic nature of these phonemes was unlikely to change between lan-
guages. Syllabics in the Dragon dictionary, marked /ul/, /un/, and /um/, were used to
update the corresponding phonemes in the BEEP pronunciations to /11/, /nl/, and /m1/.
Where a schwa was present in the BEEP pronunciation to the left of the phoneme now
marked as syllabic, it was removed. Syllable final /1/s in the Dragon pronunciations were
used to update the corresponding /1/s in the BEEP pronunciations to /12/. Since BEEP
was much bigger than the Dragon dictionary, not all words in BEEP were updated. There-
fore all the words occurring in the training data containing /1/s, /n/s, or /m/s, which had
not been updated by this procedure (several hundred), were checked by hand. An attempt
was also made to correct words containing dark /1/s in a non syllable final position, such as
“gold”, which had all been missed by the automatic procedure. Correcting only the words
in the training data did mean that new words could be synthesised with the wrong type
of sound, but they were at least synthesised without serious formant discontinuities. The
new pronunciations were used to train separate monophone models where sufficient data
existed, which was determined using a similar method to that described in Section 6.1.5
for stressed vowels.

6.1.7 Phone Substitution

Phone substitution has not been found to be nearly as widespread as either phone insertion
(mainly extra silences), or phone deletion (mainly bursts and closures). However it is a
well known phenomenon, and so undoubtably occurred in the database. For example,
vowels have a tendency to be reduced to schwa, particularly in lazy speech. There are also
many cross word effects which can result in a different phone sequence to that expected
by simply concatenating individual word pronunciations. A list of such cross word effects
is given in (Giachin et al. 1991), an example of which is the frequent conversion of a word
final /d/ followed by a word initial /y/ to a single /jh/.

Such effects will be handled well by the system provided that within a single context the
same substitution is always occurring. For example, if the vast majority of the occurrences
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of a vowel in a particular context are reduced, then the clustered states representing that
vowel will model the schwa sound instead of the labelled vowel sound. In synthesis this
will result in vowels in such a context being produced as schwa, without the phone string
used having to explicitly state that the vowel is reduced, which is very useful. Indeed,
it has been noticed that the clustering question “C_No_Stress”, meaning “Is the central
phone unstressed?” was often asked very high up the tree when clustering vowels. It is
suggested that this was because there was a significant acoustical difference between the
stressed and unstressed occurrences of the vowel because it was often reduced, to some
degree, when it was unstressed.

However, in other cases, phone substitution may not be consistent within a context, and
then, unless one form is clearly dominant, problems can be expected. One possible solution
is that rules, such as those given in (Giachin et al. 1991), could be included both during
system construction, to provide alternative pronunciations to the transcription system, and
then also during synthesis, to allow a choice between the different pronunciations to be
made. Another possibility would be to introduce some new clustering feature(s) to enable
the different substitutions to be distinguished, in much the same way that “unstressed”
may be acting as a label for vowel reduction. However, it is not clear what these feature(s)
might be.

No solutions to the problem of phone substitution have been incorporated into the
system described in this thesis. This is principally because no problem has yet been found
to be caused by phone substitution, and hence the problem is thought to be a relatively

minor one.

6.1.8 Coding Alterations

After all the improvements described in the previous sections had been implemented it
was still found that the system was making some errors with bursts, closures, and silences.
Specifically, it appeared that the system had difficulty distinguishing closures and silences
from neighbouring sounds. These errors were easily seen by examining the labelled wave-
form files, due to the large difference in energy between the parts of the speech signal
which were wrongly labelled. It was thought that such errors were possible because the
single Gaussian representing energy information in the models was dominated by the 12
MFCC Gaussians encoding the frequency information. Several alternative coding systems
were therefore tried, principally to examine whether giving the energy term more weight
relative to the MFCC terms was beneficial.

The first 13 such errors in the M2 database (contained in the first three and a half
utterances), were listed, and the effect upon them of alternative codings examined. The
results of the experiments are presented in Table 6.2. Mean subtraction (m.s.) involved
subtracting the mean value of a parameter over each utterance from each value of the
parameter within that utterance. The term normalisation is used to describe the process
of making each sentence’s maximum log energy be the same value.

Both experiments 1 and 3 introduced only one new error into the speech under exam-
ination. If the performance on the sentences analysed was typical of the whole database,
then it is likely that over 800 errors were corrected in the M2 database using the codings
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Expt. No. | MFCC Parameters | Log Energy Parameters | Errors Corrected (/13)

0 12 m.s. 1 absolute 0
1 12 m.s. 1 absolute, 1 m.s. 10
2 12 absolute 2 absolute 5
3 12 m.s. 2 normalised 9
4 12 m.s. 1 normalised 1

Table 6.2: Coding experiments conducted to enhance closure, burst, and silence identification.
For definitions of m.s. (mean subtraction) and normalisation see text.

of experiments 1 and 3. The coding scheme of experiment 3 was selected for use, since the
result was not significantly worse than that of experiment 1, and it was more consistent
with previous work and normal practice with HTK. Note that all the errors still occurring
in experiments 1 and 3 were problems associated with /ch/ and /jh/. These phones had
previously been seen to be difficult to segment, and this suggests that perhaps it was not
appropriate to treat them as plosives for this purpose.

In fact, although the coding of experiment 3 was used to determine the phonetic
transcription of the database, the synthetic speech was judged to be slightly inferior to
that of experiment 0. Therefore, the second energy term was removed from both the coded
speech data and the models after the phonetic transcriptions had been fixed, before the
conversion to context dependent models. The synthetic speech then produced was judged
to be better than that in experiment 3. Although these judgements were only carried
out by one person, and were probably highly subjective, the alterations carried out have
introduced the notion that perhaps different codings are appropriate for the transcription
and clustering stages of the system’s construction. That is, at the transcription stage
the coding is required to provide the maximum level of discrimination between different
phones, whereas at the clustering stage the coding is required to group those states within
a phone which are audibly the most similar, and that the optimum codings in these two
cases are not necessarily the same.

6.2 Improvements in Clustering

This section describes the improvements made to the clustering procedure used in the
system. The improvements were introduced either to fix problems observed in the synthetic
speech produced by the system, or to include clustering criteria which were reported to
be useful in the literature.

6.2.1 Stopping Criteria

As described in Section 5.2.3, the basic system used two stopping thresholds to terminate
the clustering procedure. One of these specified the minimum number of frames of speech
required to be in each leaf node, and the other the minimum increase in log-likelihood
required to cause a node to be split. In order to model the speech as accurately as
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No. Occurrences Threshold | No. Clustered States
10 6034
12 5200
16 4129
20 3435
40 1854
60 1272

Table 6.3: The number of clustered states resulting from using different number of occurrences
thresholds during clustering, with a one hour speech database.

possible the thresholds were set to produce a large number of clustered states, typically
about 5000. However, this resulted in problems, due to the limited amount of training
data available. Even with the minimum number of frames threshold set as high as 64,
some states were seen to occur only 1 or 2 times in the database. This low number of
occurrences was undesirable for several reasons. States which only occurred 1 or 2 times
were not subject to the usual constraint that state parameters must reflect a large number
of different occurrences. As a result such states could model sounds which did not wholly
correspond to the phone label attached to them, resulting in problems when occurrences
of these states were used in synthesis. A low number of state occurrences could also give
unreliable state duration information, especially state duration variances. Finally, a low
number of state occurrences did not offer many candidates for selection for use in the
PSOLA system.

The clustering algorithm was therefore altered to use a minimum number of state
occurrences threshold instead of a minimum number of frames. Note that the new sys-
tem automatically enforced the old, since at least once frame had to be associated with
each state occurrence. The minimum change in log-likelihood threshold was set to zero,
since once the minimum number of occurrences of each state had been enforced it was
thought desirable to have as many states as possible, in order to obtain the maximum
possible number of independent durations. Several occupancy thresholds were tried, and
the number of clustered states resulting is shown in Table 6.3.

As can be seen from the table, the number of clustered states produced dropped off
rapidly as the threshold increased. The desire for a large number of states was offset by
a requirement that there be enough speech frames associated with each state to properly
estimate a Gaussian distribution. Therefore the threshold was set at 12 occurrences in
order to produce a similar number of states as before, whilst still ensuring a reasonable
minimum number of frames were associated with each state. Note that, since each state
occurrence usually contained many frames, the number of frames associated with each
state was usually many more than this minimum figure.

As discussed in Section 2.3.2, the work done by (Wang et al. 1993) demonstrated that
the over-fitting of decision trees to data can occur if simple minimum occupancy stopping
criteria are used. It is therefore possible, and indeed quite likely, that the above stopping
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criteria do lead to over-fitting of the trees to the data. Such over-fitting might, for example,
split a node into two sub nodes on the basis of contexts which were seen during training,
neither of which were then appropriate to synthesise a new context which was not seen
in training, for which using the more neutral unsplit node would have been better. A
backing off arrangement, which used higher nodes for synthesis if the exact context to be
synthesised had not been seen in training might at first seem an attractive solution to
this problem. However, given that there were eventually over 23 million possible context
labels, and that only about 13,000 of these were present in the training data, such a
solution might mean that descending a tree during synthesis often never moved off the
root node. A more advanced stopping criterion, such as the cross validation techniques
used by (Wang et al. 1993), is probably the best solution to the problem. No such scheme
was incorporated into the system described in this thesis, principally because, although
over-training may well be occurring, no problem in the synthetic speech produced by the
system has yet been found to be caused by it.

6.2.2 Stress Level

As described in Section 6.1.5, where sufficient data was available, three separate mono-
phone models were trained for each vowel, to represent vowels with primary, secondary
and no stress. The models were tied at the monophone stage if there was insufficient
data for them to be distinct, but then untied at the transition to context dependent mod-
els. After further re-estimation, the models were clustered. A single tree was built to
cluster corresponding states of the context dependent models of each base phone. Base
phones were defined as the central phones of each context dependent label, with stress
information (and later syllable information and position in word information) removed.
Additional clustering questions were added to the question list used in clustering to ask
about the stress levels of both central phones and adjacent phones. In this way separate
clustered states existed for the different stress levels of a phone only when such a split
caused the biggest increase in the log-likelihood of the acoustic data fitting the tree at
that point; when the acoustic difference between stress levels was relatively unimportant,
such splits were not made, and separate states did not exist.

An analysis of the questions actually selected by the system to build the trees showed
that stress often was an important clustering label, sometimes even being the first question
to be asked when constructing a tree. As discussed in Section 6.1.7 it is suspected that

the “unstressed” label may be acting as a marker for some degree of vowel reduction.

6.2.3 Syllable Effects

As described in Section 6.1.6, where sufficient data existed, different monophones were
trained for the light, dark, and syllabic allophones of /1/, and for the normal and syllabic
allophones of /n/ and /m/. At the conversion to context dependent models the mono-
phones were untied if necessary, and then re-estimated prior to clustering, in the same
way as with stressed vowels. Again, a single tree was built for each base phone, and
clustering questions were added to enable the different allophones to be distinguished if
required. Specifically, questions were asked to establish whether the central phone was a
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dark/syllabic /1/, or any other specific allophone, as well as whether adjacent phones were
syllabic, or a dark/syllabic /1/, or a syllabic nasal, or any of the individual allophones.
Again, the new questions were often found very high up the trees, both of the /1/, /m/
and /n/ phones themselves, and also of many vowels.

The lack of agreement on a general syllabification scheme, as discussed in Section 6.1.6,
suggests that perhaps the very notion that speech can be broken into distinct syllables
is fundamentally flawed. Although syllable nuclei undoubtably exist, and their location
can be agreed upon, it is not clear that the notion of precise syllable boundaries is always
justified. This suggests that perhaps human imposed syllable boundaries are a non-ideal
solution to the problems presented by syllable dependent allophones, and that perhaps
some form of data-driven approach would offer more flexibility. For example, it is possi-
ble that clustering on the basis of wider phonetic context could enable different syllable
dependent allophones to be separated, without the need for explicit syllable boundary
specification. These ideas have not been explored further with the system described in
this thesis, but do remain an area for possible future work.

6.2.4 Word Level Effects

A labelling scheme was introduced which caused word final, word initial, and word internal
phones to be labelled differently. This was done partly because there was no mechanism
in the basic system to enable a cross word triphone to be distinguished from the same
triphone in a word internal position, and partly because the research of (Nakajima 1993)
showed that word boundary information, particularly the ability to distinguish word final
vowels, was useful in clustering. The existing monophone models were cloned into word
final, word initial, and word internal monophones just prior to the conversion to context
dependent models. Including the other changes discussed above, this led to 286 mono-
phones, 284 of which could form any part of the subsequent triphone models, one of which
(silence) remained a monophone, but could appear as a context of other phones, and one
of which (/cl/) remained a monophone and was not allowed to appear as a context of any
other phone. After re-estimation the clustering was carried out as before. Note that the
expanded monophone set meant that over 23 million different context labels were logically
possible. Additional questions were added to the clustering question list to ask about
the position of phones within words. Specifically, questions were added to ask whether
the central phone was in a word initial, mid, or final position, and whether the adjacent
phones were in initial, mid, or final positions. In addition every previous question about
all forms of context was repeated in four forms, one in which the phone position within a
word was not an issue, and three in which the set of contexts the question referred to was
formed by the intersection of the original question and one of the possible phone positions
within a word. This resulted in a question set numbering 1928 questions, though some of
these could undoubtably have been expressed more compactly.

Again, an analysis of the questions actually selected by the system to build the trees
showed that questions either wholly or partially regarding the position of phones within
words were being asked, and were occasionally very high up trees. For a more detailed
analysis of which questions were found to be important during tree construction see Sec-
tion 8.2.



Chapter 7

Incorporating TD-PSOLA

The TD-PSOLA algorithm was incorporated into the system in order to improve the qual-
ity of the synthetic speech produced. For a discussion of the limitations of the LP synthesis
scheme, as used in the basic system, and a justification for using an alternative scheme, see
Section 8.4. TD-PSOLA was selected in preference to either multi-pulse LP techniques,
residual excited LP techniques, or formant synthesis, since it appeared to offer the possi-
bility of very high quality synthetic speech, and to be the simplest scheme to implement.
The only difficulties in implementing the algorithm were to select which waveform seg-
ments to use in synthesis, and to determine the moments of principle excitation of the
vocal tract within these segments. The solutions which were adopted to these problems
are described below, followed by a detailed description of the TD-PSOLA implementation
used in this work, including a demonstration of the performance of the implementation
when re-synthesising natural speech.

7.1 Segment Selection

As described in Section 1.4.6, TD-PSOLA does not synthesise speech in itself, but merely
enables waveform segments to be smoothly concatenated, whilst altering their pitch and
durations. The system described in this thesis had at least 12 occurrences of each clustered
state in the database, and therefore in order to incorporate the PSOLA algorithm it was
necessary to select one of these occurrences to represent each state during synthesis. Note
that although one particular occurrence must be selected each time a state is synthesised,
this does not mean that the same occurrence must always be selected. It would be possible,
for example, to select occurrences dynamically during synthesis to satisfy some other
criterion, such as to reduce segment concatenation discontinuities, the presence of which
can seriously degrade the quality of all concatenation synthesis systems. Such approaches
were not implemented during the course of this work, but are discussed as possible future
work in Section 9.1.3. The algorithm developed in the course of this work selected only
one state occurrence to represent each state whenever that state was synthesised. The
algorithm consisted of three stages:

Stage (i): Discard all the occurrences of a state which have a duration shorter than
80% of the average duration for that state.

This was beneficial for two reasons. As discussed in Section 6.1.4, phones in the pho-
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netic transcriptions which were aligned with very short durations were often not actually
present in the speech database. Including a duration threshold in the selection criteria
therefore helped to ensure that the states of such deleted phones were never selected for
use in synthesis. The threshold was also useful because, although TD-PSOLA enables the
duration of segments to be altered, it is wise to attempt to keep any duration lengthening
to a minimum, and certainly duration stretches above a factor of two are to be avoided.
As described in Section 8.5.2, each state was synthesised for a duration typically averaging
either 1.04 or 1.22 times its average duration, when synthesising continuous speech or iso-
lated words respectively. An 80% threshold therefore meant that even when synthesising
isolated words, stretching factors averaged less than 1.52. The figure of 80% therefore
represents a compromise between the desire to keep the average stretching factor low, and
the desire to let as many occurrences as possible remain available to the later stages of
the selection algorithm. Note that this figure also affects the size of the segment inventory
which needs to be stored for use in synthesis.

Stage (ii): Discard all the occurrences of a state which have an average short term
energy per sample (s.t.e.p.s.) lower than 80% of the average s.t.e.p.s. of the speech from
all the occurrences still under consideration.

The occurrences selected to represent each state were selected from all parts of the
database, and so were not necessarily similar in energy. As a result, energy levels could
fluctuate wildly from one segment to the next during synthesis. Each segment was therefore
scaled to the average s.t.e.p.s. of the state it represented during synthesis, in order to reduce
these fluctuations. This effectively ensured a degree of energy smoothing, and improved
the quality of the synthetic speech. However, problems arose when energies were scaled up
by large factors, since both speech irregularities and non-speech sounds could be scaled to
energies far higher than those at which they were normally produced, introducing glitches
into the synthesised speech. The 80% threshold was therefore introduced to ensure that
segments were generally attenuated during synthesis. Again, the desire to set a high
threshold, to ensure that segments were always attenuated during synthesis, was offset by
the desire to let as many occurrences as possible progress to the next stage of the selection
algorithm. The figure of 80% was thus another compromise, though its precise value was
not thoroughly investigated.

As described in Section 1.9, energy scales with fundamental frequency (Fp), and there-
fore the s.t.e.p.s. figure of each state occurrence was dependent on its Fy. The average
s.t.e.p.s. of all the speech aligned to a state in the database was (probably) an average
over many values of Fj. It might therefore have been more appropriate to use the s.t.e.p.s.
that each state occurrence would have had if synthesised at an average Fj, in place of the
simple occurrence s.t.e.p.s. The energy scaling factor calculated during synthesis would
then have resulted in a segment being synthesised at its state’s average s.t.e.p.s. if it were
synthesised at an average Fj, which would have been more consistent. However, this idea
was not pursued in the current work.

Stage (iii): Select the occurrence still under consideration which has the highest
average log-likelihood per frame in the state alignments.

This ensured that the segment selected was that most likely to be observed using the
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state Gaussian. (Note that this was not necessarily the one most representative of the seg-
ment distribution defined by the state occurrences.) This was probably beneficial, since it
was likely to prevent very unrepresentative segments from being selected. However, it was
not necessarily the best segment to select. As suggested above, concatenation continuity
considerations probably also have an important role to play in segment selection. These
considerations were not investigated in the current work, but are discussed as possible
future work in Section 9.1.3.

7.2 Pitch-Mark Identification

As discussed in Section 7.3.1, the TD-PSOLA implementation used in this work used short
Hanning windows, of twice the synthesis pitch period in duration. For good performance
these windows must be centred on the moments of principle excitation of the vocal tract.
When this relationship is not maintained the quality of the synthetic speech changes
and eventually becomes hoarse when the windows are misplaced by more than 30% of
a pitch period (Moulines and Charpentier 1990). The determination of the moments of
principle excitation, to produce what are termed the analysis pitch-marks, was therefore
an important part of the TD-PSOLA implementation. Two methods were used to perform
this determination in the current work, and these are discussed in Sections 7.2.1 and 7.2.2.

7.2.1 LP Residual Based Methods

As described in Section 1.4.5, and more thoroughly in Appendix D, linear prediction (LP)
analysis assumes that each sample s(n) of a speech frame can be calculated as a weighted
sum of the previous P samples, plus a small error term, e(n). The structure of the error
signal, e(n), termed the LP residual, gives information about the predictability of the
speech signal at each point in time. It is usually found, during voiced speech, that the
LP residual is small for most of each pitch period, with one concentrated burst of activity
corresponding to the moment at which the speech signal begins what is, to the eye, clearly
the start of another pitch period. As an example, some speech and its LP residual are
shown in Figure 7.1.

One method of locating the pitch-marks of voiced segments is therefore based on
analysing their LP residuals. However, the structure of the LP residual is often consider-
ably more complex than that in Figure 7.1, especially with fricatives and voiced fricatives
(see Figure 7.2), and bursts. Although pitch-marks can often be easily identified by eye,
performing the analysis automatically is non-trivial. An automatic procedure must ensure
that only one peak is chosen within each pitch period, that pitch periods are deemed to
have realistic separations, and that pitch periods are not assigned to regions of unvoiced
speech. In short, the problem is to implement an LP residual based pitch tracking algo-
rithm. Many of the problems involved are therefore problems common to all pitch tracking
algorithms, into which a great deal of research has been directed in the past, (Hess 1983),
but to which perfect solutions have not yet been found.

The method used in the current work was to analyse the LP residual of each sentence
in the database using a computer program called epochs, which is commercially available
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Figure 7.1: Part of the speech and LP residual of the phone /aa/, taken from the word “far”
in the M2 database.

from Entropic Research Laboratory, Inc. The program implements an algorithm similar to
that described in (Secrest and Doddington 1983). It uses dynamic programming to find the
most likely path through a sequence of possible candidates, deemed to be those samples of
the residual above a certain fraction of the local r.m.s. value. The optimisation is carried
out with respect to a set of rewards and costs for desirable and undesirable behaviour.
For example, there is a heavy cost associated with frequency doubling or halving, the false
detection of which is a problem often suffered by pitch tracking algorithms.

The algorithm successfully found most of the true pitch-marks for the speech of the
M1 database, but, using the default cost settings, also assigned pitch-marks through many
regions of unvoiced speech. This problem also occurred with the female speech of the F1
database. For this speech many choices of the cost settings were tried, and although the
situation was improved, no choice of settings could be found which solved the problem
completely. The problem could be largely overcome by incorporating a voicing determi-
nation algorithm (VDA) into the procedure, although this was not done in the current
work. In fact, such a solution has been demonstrated, (Talkin 1995), although difficulties
were still experienced with regions of creak (vocal fry), where the VDA, which was based

on periodicity, made errors.

7.2.2 Laryngograph Based Methods

During voiced speech the vocal tract is excited by the vocal cords, with the moment of
principle excitation usually corresponding to the moment of glottal closure. A laryngo-
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graph enables vocal cord activity to be measured more directly than by observing its effect
on the speech signal. Two electrodes are placed on the outside of the throat either side of
the windpipe, held in place by a velcro strap around the neck. The impedance between
the electrodes is measured, which gives information about the status of the vocal cords.
When the vocal cords are open, the impedance is high, and vice-versa. The differential
of the laryngograph signal therefore reflects the rate of change in the status of the vocal
cords, and the maxima of this signal therefore correspond to the moments of most glottal
excitation. An example of some speech, its laryngograph signal and corresponding differ-
ential are shown in Figure 7.2, along with the LP residual of the speech for comparison.
The advantages of the laryngograph (differential) approach over the LP residual approach
are that the pitch-mark candidates are usually much more prominent, and that voicing
determination is usually trivial.

Laryngograph signals were recorded as part of the M2, M3 and F2 databases, and
with some test sentences recorded by the female speaker used in the F1 database. The
signals were processed by first differentiating them, and then removing all samples smaller
in amplitude than 1.6-2.0 times the r.m.s. value of the signal over the sentence. This was
done to remove noise from the signal, to reduce the number of candidate peaks passed on
to the next stage of processing. The exact value of the threshold was found to be important
only for the female speech of the F2 database, where the glottal signal was sometimes quite
weak, and the signal to noise ratio in the laryngograph differential therefore sometimes
quite small. The epochs program was then run using the remaining samples as the pitch-
mark candidates, to find a set of pitch-marks at reasonable spacings. The result was a
very accurate determination of pitch-marks with speech from the speakers used in the M2,
M3 and F1 databases, and respectable results with speech from the F2 database. Errors
typically numbered a handful per sentence for speech from the first three speakers, but
rather more for speech from the F2 database. With the former, the errors were usually
associated with the first, weak, pitch pulse of voicing onsets, though with the latter they
were distributed more widely.

The pitch-mark times obtained using this method had to be corrected for the de-
lay between the laryngograph signal measured at the vocal cords, and the speech signal
measured at the microphone. This delay was due to the sound propagation time from
the vocal cords to the microphone. The use of a head mounted microphone meant that
this distance was constant, and therefore the delay was also approximately constant for a
particular speaker. The delay could therefore be accounted for by adding a constant cor-
rection term to the pitch-mark times. The delay was measured as varying between 560us
and 690us for the male speaker used to record the M2 database, and between 500us and
560us for the female speaker used to record the F1 database. The shorter delay for the
female speech was expected since women have shorter vocal tracts on average than men.
These delays were significant enough to require correction, since they represented as much
as 8% and 12% of a pitch period at the speakers’ average fundamental frequencies. At
higher frequencies, the percentage error could therefore have come close to the 30% level
at which (Moulines and Charpentier 1990) report that the performance of the PSOLA
algorithm becomes seriously degraded. Since the corrections necessary were small and
fairly similar, a single correction of 562.5us (9 samples at 16kHz) was used in all cases.
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Figure 7.2: The speech, LP residual, laryngograph, and laryngograph differential signals of the
phone sequence /ay z ax s/ from the words “lies a small” in the M2 database.
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7.3 TD-PSOLA Implementation

This section describes the details of the implementation of the TD-PSOLA algorithm.
The results of experiments to re-synthesise natural utterances with different fundamental
frequencies and durations are then presented in order to demonstrate its performance.

7.3.1 TD-PSOLA Implementation Details

As explained in Section 1.4.6, TD-PSOLA works by breaking the speech segments to
be concatenated into short-term (ST) signals and then recombining these signals during
synthesis to obtain the required Fj and duration in the synthetic speech. The following
discussion initially assumes that the speech to be processed is all voiced, leaving the com-
plications introduced by unvoiced speech and segments with multiple voicing transitions
until later.

At the heart of the PSOLA algorithm is a mapping between the analysis pitch-marks
in the original segments and the synthesis pitch-marks in the synthetic segments. In this
system, the original segments were those selected by the algorithm described in Section 7.1
to represent each clustered state, and the analysis pitch-marks were located using one of the
methods described in Section 7.2. The synthetic segments are the desired reproductions of
the original segments in the synthetic speech, as defined by the duration and Fy generation
components of the ASS system concerned. In this system, synthetic segment durations
were specified using the equation described in Section 5.3.1, and Fj was set to the average
for the speaker concerned.

Figure 7.3 shows the pitch-mark mapping between an original segment, with an Fj
which rises from left to right, to a synthetic segment of longer duration, with an Fyy which
falls from left to right. The ratio of the durations of the synthetic and original segments is
used to warp each synthesis pitch-mark time into a corresponding analysis time, as shown
by the dotted lines. The analysis pitch-mark closest to each warped synthesis pitch-mark
time is then chosen as the analysis pitch-mark associated with that synthesis pitch-mark,
as shown by the dashed lines. An ST-signal is obtained for each analysis pitch-mark by
multiplying the original speech segment by a Hanning window centred on that pitch-mark.
The synthetic segment is then constructed by adding together all the ST-signals associated,
via the mapping, with each of the synthesis pitch-marks, centring each ST-signal on the
appropriate synthesis pitch-mark. In Figure 7.3 this procedure results in the repetition of
some of the ST-signals in the synthetic speech. If the synthetic segment had been shorter,
or had a lower Fp, then it is likely that some of the ST-signals would have been deleted
from the synthetic speech.

The effects of Hanning window size on TD-PSOLA synthesis were discussed in Sec-
tion 1.4.6. In this work short windows (twice the synthetic pitch period) were used, in
order to reduce the effect of mis-matches between the synthesis Fy and the inherent Fy of
each ST-signal. This was possible because the moments of principle excitation of the vocal
tract were known from the methods of Section 7.2. The resulting formant broadening was
not a major concern, since (Moulines and Charpentier 1990) had shown it to have very
little audible effect.
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Figure 7.3: Original to synthetic segment pitch-mark mapping in the PSOLA algorithm.

As described in Section 1.4.6, a number of adding schemes are available to re-combine
the ST-signals to form the synthetic speech. In this work the ST-signals were simply
added together at their new spacings. This scheme accounted for the number and weight
of the various contributions to the synthetic speech signal at each point in time because
the Hanning window sizes used were always twice the synthetic pitch period. An energy
scaling factor was applied equal to the ratio of the average s.t.e.p.s. of the state concerned
to that of the original segment. Energy therefore scaled with Fy in the synthetic speech,
which was desirable (see Section 1.9). However, as discussed in Section 7.1, it would have

been more consistent to use a scaling factor equal to the ratio of the average s.t.e.p.s. of
the state to that of the synthetic segment synthesised at an average Fy.

The discussion so far has assumed that speech is all voiced, which of course it is
not.

Although the Fj modification capability of the PSOLA algorithm is not required

. Origina segment

Synthetic

for unvoiced speech, the algorithm is still used in order that durations can be modified

during synthesis. The algorithm requires that some form of “pitch-marks” are specified
for the regions of unvoiced speech to be processed. These pitch-marks (U-marks) have
traditionally been uniformly spaced through regions of unvoiced speech, although this

does not necessarily have to be the case. There may be some grounds for spacing U-marks
at the pitch period of any adjacent voiced speech, both in the original and synthetic
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segments. Such a scheme would be likely to correct small errors made in determining
the exact moment of voicing transition. However, such a procedure would also quantise
unvoiced sounds on the time-scale of pitch periods, which for low-pitched voices could
result in unwanted side effects, such as, for example, repeating the release of a burst ten
milliseconds or more after it was first released. For this reason a small (4ms) uniform
U-mark spacing was used in this work.

Unvoiced speech was identified as any length of speech which had no voicing pitch-
marks (V-marks) assigned to it for 20ms or longer. This figure was a compromise between
trying to select a duration longer than the largest spacing likely to occur between genuine
V-marks, but as short as the shortest likely duration of genuine unvoiced speech. Using
this figure, inappropriate assignment of U-marks could therefore occur with speech with
an Fy below 50Hz, or in regions of low-pitched creak. Although creak could occur, the
result of it being marked as a voiced-unvoiced-voiced transition in the original segment
would be to produce creak in the synthetic segment, which was not necessarily a bad thing.
The occurrence of speech with an Fy below 50Hz was thought to be very unlikely for the
speakers used in this work. However, for very low-pitched speakers a longer threshold, or
a different method, might be necessary.

Given that both voiced and unvoiced pitch-marks could occur in the same original
speech segment, some mechanism was required to determine which sections of the synthesis
segment should be voiced, and which unvoiced. The method used is shown in Figure 7.4.
The method involved the introduction of voicing transition markers, called T-marks, which
were placed equidistant between the last pitch-mark of one voicing type, and the first pitch-
mark of the following voicing type. During synthesis, these marks were used as follows.
Firstly, the overall duration ratio of the synthetic and original segments was found as
before. This was then used to map the times of the T-marks in the original segment to
times in the synthetic segment, to produce the synthesis T-marks. The synthesis pitch-
marks were then generated using the appropriate pitch periods, calculated from the desired
pitch track, for voiced regions, and at 4ms intervals in unvoiced regions, with the voicing
regions defined by the synthesis T-marks.

The quantisation of the original speech segments into ST-signals meant that they
would very rarely be synthesised for exactly their required durations if proper pitch-mark
separations were to be maintained. Therefore, in order that the Fj of synthetic utterances
could be computed in advance with reference to the required segment durations, it was
necessary to introduce a mechanism by which the synthetic speech could stay in step with
these durations during synthesis.

The mechanism introduced involved two time-scales, ideal time and actual time. Ideal
time was that computed from the desired segment durations, and the mapping of original
segment T-marks into synthesis time. It formed the framework into which the pitch-marks
were placed, the location of which was computed using actual-time. The process worked as
follows. The voicing type of the first pitch-mark in a segment was determined. Synthesis
pitch-marks of the appropriate voicing type were written out in a left to right fashion, until
the next pitch-mark would occur beyond the next T-mark time, computed as the segment
start time plus the synthesis T-mark offset into the synthetic segment. The voicing type
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of the pitch-marks being written was then changed, and pitch-marks written out at times
continuing on from the actual time reached with the previous voicing. Importantly, no
pitch-marks in the new voicing type were actually written until their actual time had
exceeded the T-mark time. This was to prevent the end of a low-pitched voiced section,
into which another V-mark would not fit, being filled with multiple U-marks, which would
then be mapped to V-marks in the original segment, producing an artifact in the synthetic
speech. This method continued left to right until the time of the next pitch-mark to be
written would exceed the ideal segment end time, computed as the segment start time
plus the desired segment duration. The next segment would then be begun, with the
pitch-mark times again carrying on from the actual time reached in the previous segment.
Again, no pitch-marks were actually written until their actual time exceeded the new
ideal segment start time, because this could result in multiple synthesis pitch-marks being
mapped to the first analysis pitch-mark of a segment, again causing an artifact in the
synthetic speech. This process is also shown in Figure 7.4.

7.3.2 Implementation Demonstration

The TD-PSOLA implementation was intended to be used to concatenate segments of
speech from different parts of a database. However, by treating an entire utterance as a
single segment, containing many voicing transitions, it was possible to use the implemen-
tation to perform analysis-synthesis. This was useful in demonstrating that the algorithm
worked properly, and in determining the degree of degradation introduced by Fy and dura-
tion modifications alone. This speech represented the best that the concatenation system
could hope to achieve.

Figure 7.5 shows the waveforms of an original speech segment from the M2 database,
and the results of performing TD-PSOLA analysis-synthesis on it. The segment shown
corresponds to the phone sequence /f ae sh/, of the word “unfashionable”, taken from the
first sentence of the training data. The speech from which the waveforms were taken, plus
other similar examples, is available as examples 8-19 on the accompanying compact disc
(see Appendix E). Figure 7.5(a) shows the original speech waveform, taken from the M2
database. Figure 7.5(b) shows the waveform of the speech after analysis-synthesis, with
no change in Fy or duration. As can be seen, the waveform looks extremely similar to
the original, and in fact the speech is audibly indistinguishable from it. Figures 7.5(c)-
(f) show the results of re-synthesising with various Fy modification factors. By listening
to the speech examples, it can be heard that raising Fy is generally more successful than
lowering it. This is because the duration of the Hanning windows used was set to twice the
local synthesis pitch period, and therefore when lowering Fj the windows began to have
a significant inherent Fy of their own. This is most clearly heard with the speech shown
in Figure 7.5(f), where Fj was halved during re-synthesis. In this case the inherent Fyys of
the ST-signals have combined to recreate the original pitch of the speech, which can both
be heard in the speech, and seen in Figure 7.5(f). This indicates that perhaps a procedure
which ensured that ST-signals were never larger than two analysis pitch periods would
have been useful. Nevertheless, the implementation does work very well for Fy changes of
up to a factor of 1.2, and reasonably well up to factors of 1.5, certainly for Fj rises.
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Figure 7.5: TD-PSOLA analysis-synthesis of the speech of the phone sequence /f ae sh/ from
the word “fashionable” from the first sentence of the M2 database.
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Figure 7.5 (continued): TD-PSOLA analysis-synthesis of the speech of the phone sequence /f
ae sh/ from the word “fashionable” from the first sentence of the M2 database.
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Figures 7.5(g) & (h) show the result of using TD-PSOLA analysis-synthesis to lengthen
or shorten the duration of the original speech by factors of 1.5 whilst maintaining the
original Fj. The speech can be heard to be of a high quality with a slight degradation
audible in the lengthened speech. More extreme examples, with duration factors of 2.0,
are also available on the compact disc, and here the lengthened speech can be heard to
be considerably inferior. The degradation is due to the artificial periodicity introduced
into the unvoiced regions of the synthetic speech, and its effect is to make the speech
sound as if it were being heard through a large plastic tube. However, this degradation
was expected, and such large increases in duration were not likely to be required by the
synthesis system.

Speech examples 20-31 similarly demonstrate the performance with the same sentence
taken from the F2 database (see Appendix E). Note that the hoarseness heard in the word
“uncharted” is due to the non-identification of a single V-mark.

In summary, the TD-PSOLA implementation has been shown to work very well for
Fy changes of factors of 1.2 or less, and for duration compression up to a factor of at
least 2.0. It also works reasonably well up to a factor of 2.0 when raising Fy up to a
factor of about 1.5 when lowering Fy and up to a factor of about 1.5 when lengthening
durations. An analysis was conducted to determine how much prosodic alteration of the
original waveform segments was required during synthesis, when the system was trained on
the M2 database. The results of the analysis, and an assessment of the implementation’s
ability to perform the required alterations, is presented in Section 8.5.2.



Chapter 8

Results, Analysis, & Discussion

This chapter begins with a discussion of the effects of the modifications to the basic system
introduced in Chapters 6 and Chapters 7. It goes on to present an analysis of the results
of the tree clustering and duration estimation procedures used in the system (Sections 8.2
& 8.3). It then presents examples of the synthetic speech from the final LP version of the
system (Section 8.4). The results of incorporating the TD-PSOLA synthesis technique are
then presented in detail (Section 8.5), before a discussion of the strengths and weaknesses
of the PSOLA version of the final system (Section 8.6).

8.1 Analysis of Synthesis Improvements

The work described in Chapters 6 and 7 led to significant improvements in the quality
of the synthetic speech produced by the system. Modified Rhyme Tests (see Chapter 4)
were conducted periodically to monitor the changes introduced to the system. These tests
were used primarily to direct research effort towards the aspects of the system which were
most in need of improvement. The results also enabled some assessment to be made of
how much improvement resulted from each modification (or group of modifications). A
summary of the results is presented in Table 8.1.

As can be seen from Table 8.1, the largest relative improvements in the MRT scores
came from the introduction of variable frame size and rate coding, the transition to a TD-
PSOLA system, and the introduction of word final/initial clustering and/or the coding
alterations of Section 6.1.8. Tt is likely that the splitting of plosives into separate closure
and burst models and the improved silence transcriptions contributed in part to the size
of the gain achieved by the use of variable rate coding. The large improvement resulting
from the introduction of the early TD-PSOLA scheme was due to the improved synthesis
quality obtained, particularly with bursts where the bipolar voicing decision used in the
LP system was inadequate. The final large improvement was probably mostly due to the
coding alterations, rather than the introduction of word final/initial clustering. It shows
the importance of accurate transcription and segmentation in the final system. However,
the size of this improvement should probably be viewed with some caution, since the
number of error words was very small by this stage.

The stability of the MRT error rate following the implementation of the full TD-PSOLA
system and the introduction of syllabic clustering is perhaps surprising. As can be heard
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MRT Error Rate (%) | System/Modifications

33.0 The P-method version of the Basic System.

28.7 After splitting plosives into separate closures and two-state
burst models, removing silences aligned in the initial or final
closures of words, and moving to a single (30ms minimum
duration) silence model.

14.7 After introducing variable frame size and rate coding.

11.7 After the methods of Section 6.1.4 were applied to remove
suspiciously short closures.

9.7 After the voicing decision made during synthesis was im-

proved (see Section 8.4), and the bursts of voiced plosives
made into one state models.

11.7 After introducing stressed vowel clustering, and raising the
minimum number of frames per state clustering threshold in
an attempt to solve the problems discussed in Section 6.2.1.

4.7 After the change to an early TD-PSOLA system (see Sec-
tion 8.5.1).
4.7 After the implementation of the full TD-PSOLA system, the

laryngograph methods for locating pitch marks, and the syl-
labic clustering described in Section 6.2.3.

2.7 After the introduction of word final/initial clustering, and the
transcription and segmentation improvements resulting from
the coding alterations of Section 6.1.8

Table 8.1: Modified Rhyme Test scores during system development.

by listening to the synthetic speech presented in Sections 8.5.1 and 8.5.3, these changes did
lead to considerable improvements in the overall quality of the synthetic speech produced
by the system. However, these improvements were mostly with the detailed quality of
voiced regions of speech, which were generally already very intelligible, and so they did
not affect the MRT scores. Finally, the earlier rise in error rate from 9.7% to 11.7% was
probably caused by the change in the minimum number of frames per state clustering
threshold, which resulted in a 15% drop in the number of clustered states in the system.

As discussed in Section 4.2, all the tests in Table 8.1 (except for that with the basic
system) were conducted using listeners who had performed the tests before. The listen-
ers undoubtably adapted to the synthetic speech produced by the system over the course
of the tests (see Section 8.5.4). The figures in Table 8.1 therefore do not represent ab-
solute performance, and some allowance for adaptation should probably be made when
interpreting them.

8.2 Tree Analysis

An analysis of which questions were the most important during the tree-clustering process
is given in Table 8.2. The first question, and the first five questions, asked during the
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First question First five questions
% of questions question % of questions question
asked asked
11.6 R_Vowel 5.3 R_Vowel
9.1 R_Nasal 4.3 R.sp
6.6 L_Vowel 3.3 R_Nasal
5.8 R-sp 3.1 L_Nasal
5.8 R_Unrounded 2.9 L_UnFortLenis
5.0 L_UnFortLenis 2.4 R_Unrounded
5.0 L_Strident 24 R High
2.5 R_UnFortLenis 2.4 L_Vowel
2.5 R_High 2.4 L_Unrounded
2.5 L_Voiced-cons 2.1 L_Front

Table 8.2: The ten most frequently occurring questions in the sets formed by pooling the first
questions and the first five questions asked in each tree, using the final system and the M2
database.

construction of each tree were pooled to form two sets. The ten most frequently occurring
questions in each set are listed in Table 8.2.

Although not appearing in Table 8.2, questions referring to both stress level, and
contexts with specific within-word positions did occur as the first question asked during
the construction of some trees. A question about the syllabic nature of /1/ was asked as
the first question of the tree built for the leftmost /1/ state. Interestingly, the first question
asked in several trees was about a left or right context of one particular phone, rather than
about a broader class context. This was sometimes due to a lack of training data for the
phone concerned, but this was not always the case. It meant that the trees lost generality
very quickly, but it was not clear if it was actually detrimental to performance.

8.3 Duration Analysis

The durations used by the system during synthesis were essentially obtained as a by-
product of the acoustic clustering. However, they did lead to remarkably natural sounding
synthetic speech. It would be useful to measure the accuracy of the durations predicted by
the system, relative to some standard. In the literature human segmentations have usually
been used as this standard, although as discussed in Section 2.2.1 such segmentations
are in themselves somewhat subjective. Unfortunately, no human segmentations of the
databases used in this research, nor even of any sentences recorded by the speakers used,
existed to provide this reference. The accuracy of the duration model used by the system
was therefore assessed relative to the segmental durations derived automatically during
system construction.

If the duration model was perfect, accounting for every possible form of context in-
cluding speaking rate, then the r.m.s. deviation of the database durations predicted by the
model from the database durations obtained using the HMMs (upon which it was trained)
would be zero. Therefore, the size of the r.m.s. deviation is an indication of the quality of
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the duration model. The use of this figure was not ideal, since it is generally preferable
to use new data as test data to prevent an over-fitted model being judged as superior.
However, the result nevertheless gives some indication of the performance level reached.
The r.m.s. deviation between the HMM derived state durations and those predicted by
the duration model was 14.8ms. This was calculated over all segments except silences and
dummy /cl/s, using the results of the final system trained on the M2 database. Since
most phones were composed of three states, this represented an r.m.s. deviation of 25.6ms
per three-state phone, assuming that the deviations for each state were independent ran-
dom variables. This is slightly worse than Riley’s result of 23ms per phone discussed in
Section 1.9.2. Furthermore, Riley used cross-validation techniques to prevent over-fitting,
which was not done in the present case. However, it must be remembered that the present
results were produced as a by-product of the acoustic clustering, and not via duration
clustering. The possible future use of duration clustering is discussed in Section 9.1.2.

The duration alteration algorithm described in Section 5.3.1 was designed to alter the
most variable state durations the most, and the least variable the least. Some analysis
was conducted to determine whether any phonetic patterns could be seen amongst states
with different variabilities. The results of the analysis are presented in terms of percentage
deviation figures, which were calculated using the results of the final system trained on the
M2 database, as follows. For each state, the r.m.s. deviation between the HMM derived
state durations and those predicted by the duration model was expressed as a percentage
of that state’s mean duration. The average of these percentages was then calculated
both globally (again excluding silences and dummy /cl/s), and for each individual phone,
weighting each state’s figure by the number of occurrences of that state in the database.
The global percentage deviation figure was 44%, and with the exception of /ua/ (for
which there were very few occurrences), the dummy /cl/, and silence, the phone-based
percentage deviation figures varied from 23% to 63%. As expected, bursts in general had
smaller percentage deviations than vowels, nasals, and liquids, although there was some
overlap. The different fricatives spanned most of the range of values, and closures were in
general very variable.

Recalling the discussion in Section 5.3.1, the above analysis shows one of two things.
Either the duration clustering resulting from the acoustic clustering was better for bursts
than for vowels, nasals, and liquids, or, bursts in a given context simply have less variable
durations than other phones at different speaking rates. Both of these may be true;
however, from an articulatory point of view, the latter seems unlikely to be unimportant,
and therefore the duration alteration procedure used has at least some justification.

8.4 LP Synthesis Results

Figure 8.1(a) shows a wideband spectrogram of the sentence fragment “...vast Atlantic...”
produced from speech example 32 on the accompanying compact disc. This speech was
generated using the final system trained on the M2 database, incorporating all of the
improvements described in Chapter 6, but using an LP synthesiser with the LP coefficients
estimated using the P-method. The algorithm used to determine the voicing of each
segment during synthesis was improved over that used in the basic system. The new
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algorithm forced the states of the phones /tbst, kbst, jhbst, chbst, pbst, hh, th, s, sh, f/ to
be produced unvoiced, and the states of the phones /aa, ae, ah, ao, aw, ax, ay, ea, eh, er,
ey, ia, ih, iy, oh, ow, oy, ua, uh, uw/ to be produced voiced, using the zero crossing rate
to determine the voicing of states of other phones as before. In order to unambiguously
demonstrate the large improvement in the system’s ability to model closures and bursts,
in this example each closure state was produced at its average s.t.e.p.s. figure. Usually
however, closures were produced as periods of silence, since this removed any residual buzz
or noise, and improved the quality of the speech. Figure 8.1(b) is a repeat of Figure 5.2(d),
i.e. a spectrogram of the same sentence fragment produced by the P-method version of
the top ranked configuration of the basic system listed in Table 5.1 trained on the M1
database. It is repeated to enable a direct comparison to be made with that produced
from the speech synthesised by the final system. Finally, Figure 8.1(c) is a repeat of
Figure 5.2(f), and was produced from a natural version of the utterance spoken by the
speaker used to record both the M1 and M2 databases.

As can be seen from the figure, the improvements of Chapter 6 substantially improved
the system’s ability to synthesise closures and bursts. For example, those in the /t/ of
“vast” and the first /t/ of “Atlantic” are much more distinct in the spectrogram obtained
from speech synthesised using the final system than they are in that produced from the
speech of the basic system. These improvements resulted in the speech sounding much
more precisely articulated than that produced with the basic system. Indeed, the final
system, which releases all bursts during synthesis, can sound hyper-articulated at times.
Another improvement which can be seen from the figure is that the speech produced from
the final system did not have as much excess energy present at high frequencies as that
produced from the basic system. A possible explanation for this phenomenon is that the
superior clustering used in the final system resulted in clustered states comprised of more
self-similar speech, which therefore had more accurate LP coefficients. Small changes were
present in the quality of some vowels, but this was probably due to improvements made
to the pronunciation dictionary, rather than any improvements made to the synthesis
system. The synthesis of some fricative to voiced speech transitions was also improved in
the speech from the final system, but otherwise the synthetic speech was quite similar to
that of the basic system.

Modified Rhyme Tests were conducted on speech generated from a P-method LP ver-
sion of the system trained on the M1 database, just prior to the transition to the TD-
PSOLA synthesis scheme. This system was very similar to the final system, but did not
include word final/initial clustering, or the transcription and segmentation improvements
resulting from the coding alterations of Section 6.1.8. MRTs conducted with an LP ver-
sion of the final system are discussed in Section 8.5.4. The test was performed using six
experienced listeners, and the error rate obtained was 11.7%. An analysis of the errors
occurring in the tests showed that 63% of them were with the phones /b, d, g, z, v, n, m
& ng/. These errors could all be largely accounted for by failings in the synthesis scheme
used. The bursts of /b, d & g/ were often synthesised badly because the burst required
was really a transient signal, which could not be synthesised using either of the excitation
signals available. The voiced fricatives /z & v/ required a mixed excitation, which was
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Figure 8.1: Wideband spectrograms of the sentence fragment “...vast Atlantic...”. The syn-
thetic speech was produced using the P-method versions of the final system and the top ranked
configuration of the basic system listed in Table 5.1. The same speaker was used to record
both training databases used, and the natural speech shown.
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not implemented, and the nasals, /n, m, & ng/, had spectra which contained zeros, and
so were poorly reproduced by LP synthesis.

The poor performance of the LP based system cannot be blamed on the use of LP
synthesis per se; the LP re-synthesised natural speech discussed in Section 5.6 also used
LP synthesis, and yet obtained a much lower MRT error rate of 3.3%. There are several
explanations for this difference in performance. These explanations fall into two broad
categories, one concerned with the concatenative nature of the wholly synthetic speech,
and the other with the additional deficiencies of the LP scheme used with the wholly
synthetic speech.

The wholly synthetic speech was constructed from a sequence of clustered state-size
synthetic segments, as defined by the HMMs. If the re-synthesised speech is regarded as
being constructed from a similar sequence of segments, then it is clear that this sequence
is the most ideal sequence possible, since the segments are based on exactly the speech
required. Similarly, the segment durations used in the re-synthesised speech were the most
ideal possible. The HMM clustering system and the duration model used to construct the
wholly synthetic speech aimed for these ideals, but did not achieve them. As a result, the
re-synthesised speech contained more perceptual clues than the wholly synthetic speech,
and performed better in the MRTs.

The LP scheme used for the wholly synthetic speech was similar to that used for the
re-synthesised speech, but was in fact inferior to it in several ways. The LP coefficients
used to synthesise the wholly synthetic speech were estimated by pooling many segments
of database speech. Since this speech was in practice not all identical, either within
segments or between segments, this resulted in imprecise LP coefficients with broad for-
mant bandwidths, and hence poorly-defined and non-resonant speech. Furthermore, the
wholly synthetic speech could use only one excitation type for each state, whereas the
re-synthesised speech could use more than one in a corresponding segment of speech since
voicing was determined on a frame by frame basis. This meant that more reasonable ap-
proximations to the transient bursts of voiced plosives, and the mixed excitation required
when synthesising voiced fricatives were possible in the re-synthesised case.

The explanations in the first category above represent problems inherent to wholly syn-
thetic speech, and could not be solved by using an alternative synthesis scheme. However,
the problems in the second category could be solved by such a change, or even by improv-
ing the LP scheme used. For example, a scheme in which a single segment was used to
estimate a sequence of LP coefficients for each state, allowing multiple voicing transitions
within each state, would solve many of the problems. However, this approach was not
pursued, partly because such ideas had already been partially explored with little success
(see Section 5.5.2), but principally because the performance of such a system would still
have been limited to that of LP re-synthesised speech, less the additional degradation due
to the concatenative nature of the system. A fundamentally superior synthesis scheme was
therefore sought in order to enable both the MRT score and the general speech quality to
improve beyond the limits imposed by standard LP synthesis. As discussed in Chapter 7
TD-PSOLA was selected to be this alternative.
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8.5 TD-PSOLA Results

This section begins by presenting the results of an early TD-PSOLA implementation in
order to demonstrate the necessity of using entire segments to reproduce each clustered
state, and the effect of widespread formant discontinuities. In Section 8.5.2 it presents
an analysis of the results of the segment selection algorithm used. Section 8.5.3 presents
examples of the speech produced by the TD-PSOLA version of the final system, and
Section 8.5.4 the results of the large-scale MRTs conducted with this system. The size
of the waveform inventory which must be stored for the final TD-PSOLA system is then
examined in Section 8.5.5, and the processing times required by this system discussed in
Section 8.5.6. Finally some examples of prosody transplantation and voice transformation
using the final TD-PSOLA system are presented in Section 8.5.7.

8.5.1 Early TD-PSOLA Results

Figure 8.2(a) shows a wideband spectrogram of the sentence fragment “When a sailor in
a...” produced from speech example 33 on the accompanying compact disc. Figure 8.2(b)
was obtained from speech example 36, which is a natural version of the utterance spoken
by the speaker used in the M1 database. The synthetic speech was produced using a sys-
tem incorporating an early TD-PSOLA implementation, trained on the M1 database. In
this implementation each state was synthesised either as all voiced speech or all unvoiced
speech. The original database segments used in synthesis were selected as described in
Section 7.1, and so were not necessarily each of a single voicing type, although in practice
they often were because the HMMSs tended to segment the speech this way. In synthe-
sis unvoiced states were produced as described in Section 7.3.1, but voiced states were
produced by repeating only a single ST-signal selected from the original segment. This
ST-signal was defined to be centred on the largest sample in the LP residual of the original
segment. The voicing decision used in the LP system was found to be insufficiently accu-
rate for this system, and a better algorithm, based on analysis of the log-power spectrum
of speech, was developed. This algorithm is not described further here since it was used
only temporarily, and did not form part of the final system.

This implementation was made as an intermediate step, before the research into meth-
ods of marking the moments of glottal closure discussed in Section 7.2 was carried out.
This was before the syllabic clustering, position in word clustering, and coding alterations
of Section 6.1.8 were added to the system. The speech is the same as that reported in
(Donovan and Woodland 1995b), and had an MRT score of 4.7% when tested on six ex-
perienced listeners. It is shown here to demonstrate the effect of synthesising each voiced
state by repeating the same pitch pulse, to show why it is necessary to use all of each
original segment during synthesis. The effect can clearly be seen in Figure 8.2(a), where
formant discontinuities between adjacent voiced sections can be observed which are not
present in Figure 8.2(b). The audible effect is an overall artificial quality to the syn-
thetic speech, which is perhaps best appreciated by listening to the speech in conjunction
with speech example 35, which is the same utterance synthesised by the full TD-PSOLA
implementation, as discussed in Section 8.5.3. It is interesting to compare the audible
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Figure 8.2: Wideband spectrograms of the sentence fragment “When a sailor in a...”. The
synthetic speech was produced using a system incorporating an early TD-PSOLA implemen-
tation, trained on the M1 database. The natural speech was spoken by the speaker used in
the M1 database.

differences in this case with the result of a similar experiment in Section 5.6.1, where no
difference could be heard between LP synthesised speech with and without similar formant
discontinuities. The difference was thought to be audible in the present case but not in the
LP case because in the latter the effect was probably masked by the general poor quality
of the LP synthesis scheme used.

Speech example 33 is also useful because it demonstrates the problem which was being
experienced with the synthesis of /1/s before the introduction of the syllabic clustering
described in Section 6.2.3. A burbling sound can be heard through the /1/ of “...sailor...”
as the formants jump about. The exact location of the worst discontinuity is difficult
to pinpoint in Figure 8.2(a), because the formant structure in the second half of the
spectrogram is not very smooth in general. However, by careful listening the location can
be identified as occurring at about the 0.76s time-mark in the spectrogram, with another
discontinuity between the /ih/ and the /n/ of “sailor in...”, at about the 0.91s time-mark,

compounding the audible effect.
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Speech example 34 was synthesised using essentially the same system trained on the
F1 database. This speech should be compared to that in speech example 43, which was
generated using the full TD-PSOLA version of the final system.

8.5.2 Segment Analysis

An analysis of the speech segments selected for use in synthesis by the algorithm described
in Section 7.1 was conducted, in order to determine how much modification the TD-PSOLA
algorithm was required to impose on them during synthesis.

With the final TD-PSOLA system the duration scaling factor in equation 5.3.1 was
set to 0.1 when synthesising continuous speech, and 0.5 when synthesising isolated words.
Analysis of the actual durations present when the system was trained on the M2 database
revealed that this corresponded to each state being synthesised for an average of 1.04
times and 1.22 times its average duration when synthesising continuous speech and isolated
words respectively. The 80% duration threshold used in the segment selection algorithm
described in Section 7.1 therefore meant that stretching factors averaged less than 1.30 and
1.52 in the two cases. Note that both these stretching factors are within the acceptable
range for the TD-PSOLA implementation used (see Section 7.3.2).

The segments selected from the M2 database by the final system were examined to
determine the local Fy between every pair of adjacent V-marks within a segment. The
mean Fj of the speech in the segments and the standard deviation from this mean were
then calculated. It was found that the mean Fj was 112.3 Hz, with a standard deviation
of 14.3 Hz. Assuming a normal distribution, over 95% of the Fj values will lie within two
standard deviations of the mean. Thus, if the speech is transformed to the mean frequency
during synthesis, then with over 95% of the speech this will involve scaling Fy up by factors
of 1.34 or less and down by factors of 1.25 or less. It is encouraging to note that both of
these factors are well within the ranges for which the TD-PSOLA implementation has been
shown to give reasonable performance (see Section 7.3.2). Note that the speech in this
thesis based on the M2 database was synthesised at 116Hz, this being an earlier estimate
of the average Fj of this speaker.

When synthesising using a variable pitch track, larger pitch alteration factors might
be required if a segment at one pitch extreme has to be synthesised at the other pitch
extreme. Assuming the above distribution again, such pitch alteration factors would be
unlikely to exceed 4 standard deviations, and this corresponds to a pitch raising or lowering
factor of 1.68. Thus, in such cases the required pitch transformation factor may exceed
the acceptable range for the current TD-PSOLA implementation. The solution to such
problems is probably either to improve the TD-PSOLA implementation, to use some other
form of signal processing in place of TD-PSOLA, or to store multiple segments for use
during synthesis with different inherent pitches. This last idea is explored further in
Section 9.1.3.

8.5.3 Final TD-PSOLA Results

This section presents speech waveforms, wideband spectrograms, and audio examples syn-
thesised using the full TD-PSOLA version of the final system, trained on the M2 and F1
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databases. The system trained on the M2 database used the associated laryngograph sig-
nals to find the moments of principle excitation of the vocal tract, and the system trained
on the F1 database used the LP residuals of the speech.

Figures 8.3(a) & (b) show the speech waveform and wideband spectrogram of the
sentence fragment “When a sailor in a...”, taken from speech example 35. The speech
was synthesised using the TD-PSOLA version of the final system, trained on the M2
database. Figure 8.3(c) is a repeat of Figure 8.2(b), which was obtained from speech
example 36, a natural version of the same utterance spoken by the speaker used in both
the M1 and M2 databases. Figures 8.3(d) & (e) show the speech waveform and wideband
spectrogram of the sentence fragment “...vast Atlantic...”, taken from later in the same
synthetic utterance. Figure 8.3(f) is a repeat of Figure 5.2(f), which was also generated
from the natural speech of speech example 36.

With the exception of the second half of Figure 8.3(b), the synthetic speech spectro-
grams in Figure 8.3 can be seen to be quite similar to those of the equivalent natural
speech. The most noticeable differences are that there are more pitch pulses in the syn-
thetic speech spectrograms, because the synthetic speech is slower than the natural speech,
and that the first /t/ of “Atlantic” is released in Figure 8.3(e). Formant discontinuities at
state boundaries are usually small, with the result that state boundaries are often difficult
to identify from the spectrograms.

In the second half of Figure 8.3(b), however, the formant continuity is less good.
Although the introduction of syllabic clustering did improve the synthesis of many /1/s,
the main defect in the speech corresponding to this region of the spectrogram seems to
be a burbling sound through the /1/ of “sailor”. When looking at the formant structure
in the spectrogram it is perhaps surprising that the synthetic speech sounds as good as it
does. This phenomena has also been observed with other synthetic speech.

Figure 8.4 shows the waveform and a wideband spectrogram of the sentence fragment
“When a sailor in a...”, taken from speech example 43. This speech was generated by
training the final TD-PSOLA system on the F1 database. The natural speech spectro-
gram was generated from speech example 44, a recording of the same utterance by the
speaker used in the F1 database. As with the male speech of example 35, problems can
be heard in the synthetic speech around the /1/ of “sailor”. However, in the female speech
the problems are more serious, because the formant discontinuities are accompanied by
numerous errors resulting from pitch-mark identification errors in the original database.
These errors occurred because the F1 database did not include a laryngograph signal,
and the alternative pitch-mark identification algorithm based on the LP residual of the
speech was far from perfect. During synthesis these errors resulted in voiced speech being
treated as if it were unvoiced, which can be heard as hoarseness in the synthetic speech,
particularly around the /1/ of “sailor”, but also more generally.

Speech examples 37-42, 45, 46, 48-51, 53, and 54, are also available as further demon-
strations of the performance of the final TD-PSOLA system, trained on the M2, F1, F2,
and M3 databases. Speech example 41 demonstrates and describes some of the problems
which still occur with speech synthesised by the system. Speech example 42 was synthe-
sised using a stylised pitch track, originally taken from a natural version of the utterance,
but then altered by hand to match the synthetic durations.
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Figure 8.3: A synthetic speech waveform and wideband spectrograms of the sentence fragment
“When a sailor in a...”. The synthetic speech was produced using the TD-PSOLA version of
the final system, trained on the M2 database. The natural speech was spoken by the speaker
used in the M2 database.
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Figure 8.3 (continued): A synthetic speech waveform and wideband spectrograms of the
sentence fragment “...vast Atlantic...”. The synthetic speech was produced using the TD-
PSOLA version of the final system, trained on the M2 database. The natural speech was
spoken by the speaker used in the M2 database.
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Figure 8.4: A synthetic speech waveform and wideband spectrograms of the sentence fragment
“When a sailor in a...”. The synthetic speech was produced using the TD-PSOLA version of
the final system, trained on the F1 database. The natural speech was spoken by the speaker
used in the F1 database.
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Word Final Phones | Word Initial Phones
phone | % of errors | phone | % of errors

/d/ 29 /t/ 29
/n/ 18 /d/ 17
/m/ 14 /1/ 17
/g/ 12 /h/ 10

/ng/ 6 /b/ 7
[/ 7
Table 8.3: The most frequently occurring errors in the Modified Rhyme Tests conducted on
the TD-PSOLA version of the final system.

8.5.4 Final MRT Results

MRTs were conducted to evaluate the speech synthesised by the TD-PSOLA version of the
final system, trained on the M2 database. The aim of these tests was to produce an MRT
score which was comparable with those for other systems listed in (Logan et al. 1989). As
described in Section 4.2, most of the experimental procedures used in all the MRT tests
conducted during the course of this work were very similar to those used by (Logan et
al. 1989). However, most of the tests were conducted using only six experienced listeners.
The final tests were therefore conducted using thirty-six inexperienced listeners, in order
to provide a more reliable figure for comparison. The listeners used were gathered by
advertising for native British English speakers, with no history of hearing problems, and
no previous experience of working with synthetic speech. These conditions were imposed
in order to obtain listeners equivalent to those used by (Logan et al. 1989). Each listener
was informed that they would be paid £1 for performing a test, plus an additional 50
pence if he or she got 5 or fewer words wrong. Each listener was told that the bonus was
easy to obtain if he or she concentrated. A brief description of the test was given by the
author, and then the test performed as described in Section 4.2. The bonus was included
to encourage the listeners to concentrate on the test. The intent was that every listener
should receive the bonus, and in fact every listener did.

The MRT score obtained was 5.00%, with a standard error of 0.47%. The most fre-
quently occurring errors are shown in Table 8.3. As can be seen, the voiced plosives, /d &
g/, and nasal errors accounted for over 79% of the word final errors occurring. The word
initial errors were more distributed, with errors in the identification of both voiced and
unvoiced plosives, /1/ and /h/ all being significant.

Many of the word final errors with plosives occurred between words which differed
only in voicing. For example “bead” was often recognised as “beat”, and “pig” as “pick”,
etc. This was because although the final plosive was often well produced, the length of
the vowel was often inappropriate; an unvoiced plosive following a vowel should shorten
that vowel, (Klatt 1987). The clustering questions “R_Voiced-Closure” and “R_Unvoiced-
Closure” did exist in the question list, but were often not used in these cases to split nodes
during tree-building. The problem was perhaps that, with the speech coding used, the
acoustic difference between such vowels was small, despite the fact that their durations
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differed considerably. Examples of the problem can be heard in speech example 41. A
possible solution to this problem would be the use of an improved duration model (see
Section 9.1.2).

It is possible that the large number of errors with word final nasals was due to the
system being trained on continuous speech. It is likely that in the continuous speech of
humans, nasals are less clearly produced than in isolated words, since their identity is
often obvious due to context. In isolated words however, humans are aware of the possible
ambiguity, and so deliberately produce them more clearly, whereas the synthesis system
merely slows down nasals extracted from continuous speech. These ideas suggest that the
system will always have problems with synthesising isolated words, unless it is specifically
trained on an isolated word database.

The word initial errors are more diverse, and less easy to explain. Many of the er-
rors with word initial /1/s occurred because the words sounded as if they began with
the sequence /b 1/. Furthermore, many of the word initial /t/ errors occurred in words
beginning with the sequence /t oh/, which sounded like /k 1 oh/. These errors suggest
that the modelling and segmentation of /1/s with the final system was still not perfect,
a result consistent with the synthetic speech examples presented in Section 8.5.3. Many
more word initial /t/ errors occurred with the word “told”, which was frequently mistaken
for “sold”. Most word initial /d/ errors occurred with “dip”, which sounded like “lip”.
The exact reasons for these errors, and the word initial /h/ errors, are difficult to specify,
but appear to be problems more with duration estimation, or unit selection, than with
segmentation.

The score of 5.00% was believed to be fairly directly comparable with those obtained
by (Logan et al. 1989), as listed in Table 4.1. As described in Section 4.2, the experimental
setup used was extremely similar to that used by (Logan et al. 1989), and the differences
in arrangements not thought likely to affect the results. It has been suggested that a local
test of the DECtalk system could be made to establish the comparability of the results,
but this was not done since only British subjects were available, and it was thought that
the significant mismatch in accents would render the results so unreliable that it was not
worth the significant effort that would be involved.

Finally, note that the final TD-PSOLA system was also tested on six experienced
listeners, and that the result of this test was an error rate of only 2.7%. This demonstrates
how much the listeners had adapted to the system over many tests, despite never being
given any feedback on their individual performances. It also shows how necessary it
was to use inexperienced listeners to obtain results which could be quoted in absolute
terms. This point is also illustrated by the result of an MRT conducted on the LP version
of the final system, again using six experienced listeners. The error rate obtained was
17.0%, which was much higher than that obtained using an almost identical, but probably
inferior system, as reported in Section 8.4. However, in the light of the above result using
inexperienced listeners, the most likely explanation for this poor performance is simply
that over 3 months had elapsed since the listeners used had done their last test, with
over 6 months time elapsed since their last test on LP synthesised speech. In short, the
listeners were out of training, and hence performed badly.
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8.5.5 Inventory Size

The size of the waveform inventory which must be stored for use during synthesis is an
important factor for possible real world applications of the synthesiser. For each segment
stored, an extra few milliseconds of speech to the left and right of the leftmost and right-
most pitch-marks respectively also had to be stored, in order that the Hanning windows
used by the TD-PSOLA algorithm were applied to a continuous piece of speech. The TD-
PSOLA implementation used Hanning windows whose size was set by the synthesis pitch,
and therefore the exact amount of storage required depended on the lowest pitch required
in synthesis. For the final version of the system, trained on the M2 database, the storage
requirement to enable synthesis down to a Fj of 70Hz was 293 seconds of speech, which
required about 9.4MB of disc-space since it was sampled at 16kHz with 16 bit resolution.

For Personal Computer based applications 9MB represents a substantial memory re-
quirement at the time of writing. Accessing the inventory from disc would probably not
be possible, because of speed constraints. Whilst supplying waveform inventories loaded
onto relatively inexpensive ROM chips would be one possibility, a software only solution
would generally be more flexible, and thus more desirable. Methods to reduce the required
storage size, preferably to less than 1MB, must therefore be sought.

Preliminary experiments were conducted to investigate the effect of using fewer clus-
tered states on both the speech quality produced by the system, and the size of the wave-
form inventory to be stored. Two methods of achieving this were examined. In one case,
the final system was trained on the whole M2 database, but with the minimum number
of occurrences per leaf node clustering threshold increased to 30. This produced a syn-
thesis system with 2523 states, the waveform inventory of which comprised 129 seconds of
speech, and required 4.1MB of storage. In the other case the system was simply trained on
only the first half of the M2 database. This produced a synthesis system with 3088 states,
corresponding to 159 seconds of speech, or 5.1MB of storage. Synthetic speech from both
synthesis systems is available on the accompanying compact disc as speech examples 55
and 56 respectively. As can be heard, the results in both cases compare well with the same
speech as synthesised by the standard system, available as speech example 35. The initial
section of speech example 56 can be heard to burble more than that of speech example 55,
which in turn sounds perhaps slightly worse than that of speech example 35. However, the
rest of the three speech examples are all very similar in quality. Spectrograms of the speech
agree with this analysis; the formants of the early part of speech example 56 are much
more broken than those of the other two examples, which are fairly similar in smoothness
and continuity. Thus it appears that there may be considerable scope for reducing the
inventory size required using either of these methods, with at the moment some indication
that clustering the available data less finely is a superior method to using less training
data. Indeed, if this approach was coupled with a scheme to ensure formant continuity
during segment selection, very large reductions in inventory size could be achieved. This
idea, and other possible methods for reducing the inventory size, are discussed further in
Section 9.2.
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8.5.6 Processing times

The final system can be retrained on a new voice in less than 48 hours. A one hour
speech database takes about 4.5 hours to record. The processing is performed by two
scripts, the first of which finds the moments of glottal closure in the speech, and the
second of which constructs the synthesis system. If a laryngograph signal is being used,
the former takes approximately 40 minutes on an otherwise unloaded SGI R4400 Indigo.
If the moments of glottal closure are to be found using the LP residual, then this may
take anything up to a week of CPU time, depending on the values of the thresholds used
when running epochs. The second script, which constructs the synthesis system, takes 40
hours to run on an otherwise unloaded HP735-99. The first 27 hours of the this time is
spent working with monophone models, iteratively re-estimating, aligning, and using the
methods of Section 6.1 to obtain the best possible phonetic transcription of the database.
The structure of the monophone section of the second script evolved over the course of this
work, and is undoubtably very inefficient, and could probably be speeded up considerably.

Synthesis was conducted using a script which ran ten different binaries, and many lines
of shell script, writing the output of each stage of the synthesis process to disc. There was
an initial overhead for each utterance to be synthesised while the pronunciation dictionary
was loaded into memory, and the manual selection between optional pronunciations made.
The script then ran with no further human intervention. There was a 33 second overhead
associated with synthesising an empty utterance, when run on an otherwise unloaded
HP735-99. There was then an additional cost of approximately 14 times the duration
of the utterance to be synthesised, when running on the same machine, with most of
this additional time being used by the TD-PSOLA synthesiser. Note that the speech
segments concatenated by the synthesiser were not actually cut from the original database
in advance. The TD-PSOLA synthesiser was therefore extremely inefficient, loading a
whole database sentence from disc, across a local network, to extract only one clustered
state sized segment from it, and then discarding that sentence. There was therefore a huge
scope for improvement in the amount of time required for synthesis. Ideally, the script
would be replaced by a single binary which performed all aspects of the synthesis, with
the dictionary and waveform segment inventory pre-loaded into memory. It is likely that
the system could then synthesise speech in real time.

8.5.7 Voice Transformation

If both the durations and the Fjy for a synthetic utterance are obtained from a natural
version of the utterance, then the quality of the underlying synthesis system can be heard,
free from the degradations introduced by using synthetic durations, and stylised pitch
tracks. Such a process could be called prosody transplantation. If the speaker used to
provide the prosody is not the same as the speaker mimicked by the synthesis system,
then the process also enables a degree of voice transformation to be performed.

A system was implemented to enable voice transformation to be performed between
any two voices for which a synthesis system had been constructed, provided the words of
the utterance were known. The models of the source speaker were used to transcribe and
segment the natural version of the utterance. The pitch track, obtained by processing a
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Figure 8.5: Waveforms of the sentence fragment “In the beginning was the word”, taken from
natural speech spoken by the female speaker used in the F1 database, and speech transformed
from this to have the voice of the male speaker used in the M1 and M2 databases.

laryngograph signal recorded at the same time as the natural version of the utterance,
the phone sequence and the phone durations of the natural utterance, were then used
to construct the synthetic speech. The durations of each state of the synthetic speech
were found in the normal way, and then scaled such that the sum of the durations of
the consecutive states representing a single phone was the same as the equivalent phone’s
duration in the natural utterance. This was done in case the distribution of durations
between the states within a given phone was different for the source and target speakers.
If the source and target speakers were different, then the pitch was linearly scaled by a
factor equal to the mean pitch of the source speaker divided by the mean pitch of the
target speaker.

Figures 8.5(a) and (b) show waveforms of the sentence fragment “In the beginning
was the word,...”, taken from speech examples 61 and 62 respectively. The former was
natural speech from the speaker used in the F1 database, and the latter was the result of
transforming this into the voice of the male speaker used in the M1 and M2 databases.
The pitch was scaled by a factor of 116/210, being the approximate average pitches of the
two speakers in Hz. As can be heard, the synthetic speech is of very high quality, with
perhaps the only problems being that it failed to reproduce the phrase boundary after the
word “beginning”, and that the speech does not sound quite resonant enough.

Speech examples 57-60, 63, and 64, demonstrate further examples of prosody trans-
plantation. Examples 57 and 58 demonstrate the result of transplanting prosody onto
synthetic speech generated from a system trained on the same voice. Although some al-
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lowance must be made for the inadequacies of the automatic transcription system used,
which was probably inferior to that used during synthesis system construction, the fact
that the two examples do not sound identical is an indication of the limitations of the
final system. Note that the transformations described here require the specification of the
words of the original utterance. In the future it may be possible to determine the words of
the utterance automatically, or alternatively, as is discussed in Section 9.3.1, to do without
the information altogether.

8.6 Discussion

The previous sections have demonstrated that the final system produces high quality
synthetic speech, with a very respectable MRT score, and a high degree of naturalness.
It can also be retrained very rapidly on easily obtainable training data, and is not voice
dependent. Note that theoretically, with a new dictionary and set of clustering questions,
it is not language dependent either. The performance is due to both the use of a high
quality synthesis scheme, and the automatic selection of a good set of sub-word units. An
explanation as to why the HMM state based approach selects such a good set of sub-word
units is attempted below. Following this is a discussion of the problems still present with
the final system.

The clustering process used by the system is similar to those of other speech synthesis
systems developed in recent years discussed in Section 2.3.2. The major difference here is
that the clustering is state-based instead of phone-based. State-based clustering has been
shown to out-perform phone-based clustering for speech recognition, (Young et al. 1994),
(Odell et al. 1994), and similar gains can therefore be expected to occur in speech syn-
thesis applications. HMM states are represented by a single feature vector, and thus lend
themselves to clustering more directly than longer segments. Furthermore, the individual
HMM states within a phone-model can be clustered independently, which enables better
use to be made of a given amount of training data. The smoothness of the formants of
the synthetic speech is undoubtably also due in part to the use of 1st and 2nd order dif-
ferential parameters in the feature vector representing each state. This means that states
can be characterised by their dynamic features in addition to their static features. During
clustering the relative importance of the dynamic and static features, and of individual di-
mensions within these vectors, is determined automatically using a log-likelihood distance
measure calculated using the variances of the parameters, which were themselves obtained
through training.

The segmentation process, using HMMs, is similar to the previous attempts discussed
in Section 2.2.1. In this system, however, not only is the HMM system more sophisticated
than those discussed in Section 2.2.1, but more importantly the units are segmented using
the models created by the clustering process, and themselves become the synthesis units.
Using the clustered state models to perform the segmentation enforces a large degree of
consistency throughout the entire segmentation process. Boundaries between states will
be well defined when those states are very different, when accurate segmentation matters
most for synthesis, and less well defined when the states are more similar, which is when
it matters least for synthesis. Furthermore, even if boundaries are located inaccurately,
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as judged by a human observer, provided the boundaries are consistently placed that way
the “error” will be undone in synthesis. That is, segments which are likely to appear
adjacent to each other during synthesis are likely to come from states which were often
adjacent during construction. This means that the segments used in synthesis are likely
to concatenate smoothly, because the boundaries of the states involved are likely to have
been segmented consistently with each other. Thus to some extent, consistency is more
important than accuracy. However, new state sequences can occur during synthesis which
were not present in the original database, and so accuracy is also important.

The largest inadequacies of the final system are the lack of a proper text to phoneme
conversion system, a phrase boundary identification system, and a pitch estimation system,
the large size of the waveform inventory required for synthesis, and the slow speed of the
synthesis code. However, none of these were aims of the current research. The remaining
problems which were within the aims are discussed below.

The largest problem which occurs during synthesis is undoubtably the occasional se-
rious formant discontinuity, which is heard as a burbling in the synthetic speech. Such
discontinuities have often been seen to be the result of clustering inadequacies, which re-
sult in too much variability amongst the segments pooled into the same clustered state.
Adjacent states may then be synthesised using segments with widely differing formants,
resulting in discontinuities. Such a problem did, and to some extent still does, occur with
/1/s in particular. Another important problem during synthesis is the occasional unre-
alistic duration, a few examples of which can be heard in speech example 41. A related
effect is the failure of the system to distinguish between vowels followed by voiced and
unvoiced consonants. Both are a result of the durations in the system being effectively
a by-product of the acoustic clustering. Also important are segmentation errors in the
training database, which occasionally cause artifacts in the synthetic speech.

Less prominent problems also remain. One is the lack of resonance that the synthetic
speech seems to have, even when everything else is correct, as in speech example 62. It is
not clear what is causing this effect, but the tiny formant discontinuities between adjacent
segments, and the imperfections introduced by the TD-PSOLA implementation, especially
when reducing the pitch, are the prime suspects. Another is the slightly artificial quality
of the synthetic speech based on the F2 database. This appears to be largely due to the
“plastic tube” effect (see Section 7.3.2) when synthesising some fricatives, but can also be
heard to a lesser degree with some voiced speech. Another problem, also demonstrated
in speech example 41, is that bursts are always released during synthesis, which can lead
to the synthetic speech sounding hyper-articulated. Finally, the system is likely to always
have some problems when synthesising isolated words, since it does so by slowing down
continuous speech, without adding emphasis which may be necessary with isolated words
due to the lack of context information available to the listener. Possible solutions to many
of these problems are discussed as possible future work in the next chapter.



Chapter 9

Conclusions & Future Work

This chapter begins with a discussion of possible solutions to many of the remaining
problems with the speech synthesised by the final system which were within the aims of
the current research. Methods to reduce the size of the waveform inventory which must
be stored for use in synthesis are discussed in Section 9.2, and other future possibilities
connected with the current research in Section 9.3. Finally, the conclusions of the current

work are presented in Section 9.4.

9.1 Improving the Speech Quality

This section presents possible solutions to many of the problems remaining with the syn-
thetic speech which were within the aims of the current research, as discussed in Sec-
tion 8.6.

9.1.1 Improved Clustering

Many major formant discontinuities, as with /1/ for example, are caused by inadequate
clustering, which results in groups of very different segments of speech being present in
the same clustered state. During the synthesis of multi-state phones, segments from the
different groups may then be concatenated causing formant discontinuities. One possible
solution to this problem is therefore to provide new clustering questions, and associated
database labelling, to enable such different groups of segments to be separated. For ex-
ample, labelling syllable boundaries, and asking questions about phone position within
syllables might enable many distinctions to be made. Alternatively, as discussed in Sec-
tion 6.2.3, clustering on the basis of wider phonetic context might perform a similar role,
without the difficulties associated with assigning syllable boundaries.

9.1.2 Duration Trees

The durations used by the final system were essentially a by-product of the acoustic
clustering process. It is very likely that a better set of durations could be obtained using
a separate set of decision trees clustered on the basis of duration data, instead of acoustic
data. This clustering could be performed at either the state or the model level. Wider
context questions, such as position in phrase, position in sentence, etc., could be asked
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during the trees’ construction, in order to reduce the number and severity of the occasional
unrealistic durations which occur with the current system, as mentioned in Section 8.6.

The system just described could result in a long duration being specified for a con-
text for which a relatively short waveform segment had been selected to represent the
appropriate acoustic state. With the current TD-PSOLA synthesiser, the large duration
stretches required would be likely to cause problems during synthesis, particularly for un-
voiced speech. One possible solution to this problem is therefore to adopt an alternative
synthesis technique. Another is to simply store more than one waveform segment for any
state comprising segments of widely differing durations.

9.1.3 Segment Selection

The segment selection algorithm contained in the final system, described in Section 7.1,
works reasonably well, but is actually quite simplistic. As has already been suggested in the
previous section, the storage of multiple segments for a state comprising segments of widely
differing durations would be likely to reduce the burden on the synthesis signal processing.
Similarly, multiple segments could also be stored for states comprising segments of widely
differing pitches, or acoustics. Selection of appropriate segments during synthesis could
then reduce both the amount of pitch and duration modification necessary, and the size
of discontinuities at concatenation boundaries. This would reduce the demands on the
signal processing used in synthesis, which, as discussed in Section 1.7, is always likely to
be beneficial.

There are two problems associated with the dynamic selection system just described.
Firstly, for many applications (at the time of writing) it is impractical to store the entire
training database for use in synthesis, and therefore some form of pre-selection must
be used to determine which segments are worth storing. Secondly, an algorithm must
be devised to select between the segments available for each state during synthesis, to
obtain the set of segments which most accurately produces the desired utterance. This
second problem could be solved by using a dynamic programming algorithm to perform
the selection, minimising some predetermined cost function. Ideally, this cost function
would specify the relative importance of concatenation discontinuities, and the selected
segment deviating from the required pitch, energy, duration, and state acoustic mean
vector. It might take the form of a set of cost curves specifying, for each factor, and for
a particular synthesis technique, what cost was associated with what degree of deviation.
For example, when using TD-PSOLA synthesis, the duration cost curve would rise sharply
as the segment duration dropped below half the required duration. The first problem
could then be solved by using these cost curves to cluster the segments comprising each
state into a number of self-similar sub-groups, and then pre-selecting only one segment to
represent each sub-group. This segment could be chosen by, for example, synthesising a
quantity of test speech, and selecting the most frequently used segment from each sub-
group. The number of sub-groups per state could be chosen on the basis of the inventory
size required. However, determining these cost functions is likely to be very difficult,
and therefore a simpler solution, using thresholds, is also attractive. Recent research by
(Black and Campbell 1995) seems to indicate that human listeners prefer to hear speech
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which is smooth at the expense of acoustic accuracy, rather than vice-versa. Therefore,
an alternative solution to the selection problem would be to use duration, energy and
pitch thresholds to exclude very inappropriate segments during synthesis, and then use
a dynamic programming algorithm to select between candidates solely on the basis of
their concatenation smoothness. The number of segments to store for each state could
be reduced using global energy and duration thresholds, as with the current system. It
could be further reduced using methods similar to those described above, clustering only
on the basis of the acoustic distance between segment endpoints. Again, the number of
sub-groups per state could be chosen to give the required inventory size.

The segment selection procedures discussed in this section would encourage the use
of a larger number of adjacent segments in synthesis than the current system, because
no segments are likely to concatenate more smoothly than those which were originally
adjacent, and the selection procedures encourage concatenation smoothness. Thus, the
result would be a system which effectively concatenated variable length units, using longer
units wherever they were available and it was advantageous to do so, whilst keeping the
underlying state-based approach when longer units were not available. The availability
of longer units would be reduced by pre-selection, but this itself aims to provide the best
possible set of segments for each state for a given inventory size. Such a system would
therefore effectively achieve the ideal described in Section 1.7.

9.1.4 Alternative Synthesis Schemes

The adoption of a parametric synthesis scheme in place of TD-PSOLA could help solve
the problem of concatenation discontinuities, by enabling them to be smoothed away.
FD-PSOLA, LP-PSOLA, and residual excited LP techniques all offer this capability, and
would be able to achieve a high synthesis quality similar to that of TD-PSOLA. Clearly for-
mant synthesis also offers the potential of high quality speech, and could perform formant
smoothing at concatenation boundaries, but, as discussed in Section 1.4.4, automatically
estimating formant parameters from speech is problematic.

9.1.5 Optional Burst Release

It would be useful to devise some mechanism by which the system could determine, through
training, whether or not bursts in different contexts should be released during synthesis.
One possibility would be to incorporate such a mechanism into the existing decision trees,
such that descending a burst tree could, in a particular context, terminate in a node
associated with an unreleased burst. However, this extension would not be straightforward,
since no labelling exists (or could exist) in the dictionary to enable questions to be asked
about whether bursts are released or unreleased, and therefore both cases will always be
able to occur in the same labelled context during synthesis. A possible solution might
be the use of two Gaussians at every node in burst trees, to model both released and
unreleased bursts, with the leaf nodes characterised during synthesis by the dominant
Gaussian.
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9.2 Inventory Size Reduction

As discussed in Section 8.5.5, the final system requires about 9MB of storage for the wave-
form inventory to be used during synthesis, which represents a large memory requirement
for Personal Computers at the time of writing. This section discusses methods which could
be used to reduce this requirement.

Section 8.5.5 also presented the results of some preliminary experiments to determine
the effect on the quality of the synthetic speech of reducing the number of clustered states
in the system. The results demonstrated that whilst large reductions in this number might
be possible, such reductions would lead to the presence of a larger number of serious
formant discontinuities during synthesis. However, these discontinuities could be avoided
by adopting the segment selection algorithms described in Section 9.1.3, although this
would require a larger number of segments to be stored for each state. The hope is that
the superiority of the new system would enable a net saving in inventory size to be made,
without degrading the quality of the synthetic speech. Note that the new system would
be likely to achieve further savings due to the increased efficiency of storing adjacent
segments, the use of which it would encourage. The increased efficiency arises because
the extra speech which must be stored to the left and right of each segment, as described
in Section 8.5.5, does not have to be stored between adjacent segments. However, the
maximum possible saving, if all segments were adjacent, has been estimated at 31% for
the M2 database, and therefore in practice savings would be quite small.

The waveform inventory size could, of course, be reduced by compressing the waveform
to be stored. Lossless compression of the 16-bit 16kHz signal could be performed using
standard compression routines, such as GNU’s gzip, or better still an algorithm such as
Shorten, (Robinson 1994), which exploits the redundancies of the speech signal to achieve
larger compression factors. However, even with Shorten, lossless compression is not likely
to exceed compression factors of about 2.5. Lossy coding offers higher compression factors,
although some degradation of the synthetic speech may be noticeable. For example, a
compression factor of 4 could be achieved very simply, by down-sampling to 8kHz, and
using simple mulaw compression down to 8 bits per sample. Alternatively, higher quality
lossy compression is available using Shorten, which can achieve compression factors of up
to 5.3, by using as few as 3 bits per sample, with no perceptual degradation, (Robinson
1994).

Finally, using an alternative synthesis technique which does not require the storage of
actual pieces of waveform could reduce the inventory size. However, this may result in
poorer quality speech, since in general there is a tradeoff between the amount of storage
required by a synthesis technique and the quality of the synthetic speech produced. The
results obtained by Holmes described in Section 1.4.4 show that this does not necessarily
have to be the case, but it probably is the case for most current automatic methods of
encoding and re-synthesising speech. Nevertheless, slightly poorer speech quality may be
acceptable in many applications, and then codebook excited, or multi-pulse, LP synthesis
could be used to obtain substantial savings in inventory sizes. Simple LP synthesis could
be used to obtain further savings if a larger reduction in speech quality was acceptable.
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9.3 Other Future Possibilities

This section discusses other future possibilities connected with the work presented in this
thesis, which have not been covered above.

9.3.1 Voice Transformation

As described in Section 8.5.7, the final system can be used to transform speech uttered by
one person into speech with the same prosody which mimics the voice of another. Cur-
rently, knowledge of the words of the utterance (and their pronunciations) is required, to
determine the clustered state sequence of the new speech. The words are currently speci-
fied manually, and the pronunciations determined automatically by using an HMM system
trained on the source speaker to select pronunciations from a dictionary. In the future,
speech recognition technology may improve sufficiently that the word sequence could be
determined automatically. However, with current systems, an unacceptable number of
recognition errors would be likely to occur, which would result in entire incorrect words
being synthesised. An alternative approach, in which the words of the utterance are not
required, is therefore currently more attractive. In this approach, a single set of decision
trees would be used for both the source and target speakers. A direct one-to-one mapping
would then exist between the clustered state sequence of the source speaker, and that
required in synthesis for the target speaker. A recognition system would be used to de-
termine the source state sequence. Although the accuracy of current recognition systems
on such tasks is much lower than for word recognition, this approach has the advantage
that entire incorrect words would not be synthesised. In fact, provided that recognition
errors occurred principally with phonetically indistinct segments for which the equivalent
segments in the target voice were equally phonetically indistinct, many recognition errors
might have only a minor effect on the synthetic speech, especially since they would be
produced with the correct prosody. Incorporating the ideas of Section 9.1.3 to encourage
concatenation smoothness during synthesis would be likely to improve the synthetic speech
quality. The advantage of this method is that any speech produced by the source speaker,
including highly ungrammatical sentences, out-of-vocabulary words, and even non-words,
could be converted into the new voice.

9.3.2 Voice Adaptation

The experiments described in Section 8.5.5 suggest that it might be possible to reduce
the amount of training data used by the system to much less than the one hour used
currently, particularly if the methods of Section 9.1.3 were used to encourage concatenation
smoothness during synthesis. However, for the system to be able to construct reasonable
models of phones in at least a few contexts, it seems unlikely that using less than a few
minutes of training data will be possible using the current approach. To enable the system
to acquire new voices with less data requires a different approach.

Modern speech recognition systems incorporate speaker adaptation systems which en-
able them to significantly improve their performance with a new speaker after exposure
to only a few utterances of new speech. These adaptation systems either use speaker
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normalisation techniques to map the parameters of the new speaker towards those of the
speaker(s) that the system was trained upon, or adjust the existing model parameters to
better model the new speaker, (Leggetter and Woodland 1995). In synthesis it is desirable
to adapt the speech produced by the system towards that of a new speaker, and therefore
the model adaptation techniques are appropriate. With the LP version of the current
synthesis system, adaptation techniques could be used to transform the LP parameters
associated with each clustered state towards those appropriate for the new speaker. With
the TD-PSOLA version of the system, each state is associated with a waveform segment,
and in this case adaptation is therefore less straightforward. One possible solution which
has been suggested, (Maes 1995), is to decompose each waveform segment into a set of
LP parameters and an associated residual, adapt the LP parameters as just described,
and then synthesise a new waveform segment using the new LP parameters and the old
residual.

9.3.3 Speech Recognition

Chapter 6 described a number of methods were which were developed during the course
of this work to improve the transcription, segmentation, and clustering of the training
database. This section briefly discusses whether some of these methods could be usefully
incorporated into automatic speech recognition systems.

Some of the largest improvements in synthesis obtained during the course of this work
were due to the improved modelling of plosives. Both the use of multiple frame sizes and
rates, and optionally released plosive models, considerably improved plosive transcrip-
tion and segmentation, and hence synthesis performance. However, it is not clear that
the improved models would necessarily bring similar improvements to speech recognition
systems. The identities of many bursts are contained more in the formant transitions of
neighbouring vowels than they are in the bursts themselves. Therefore, whilst better burst
models might be of some use in unambiguously determining the presence of some burst,
and hence constraining the search during recognition, they may not be very helpful in
establishing burst identity. Furthermore, recognition systems usually use Gaussian mix-
ture distributions, and can therefore model both released and unreleased plosives with the
same model anyway.

The additional clustering questions introduced in Chapter 6 would be likely to bring
some benefits to speech recognition systems, by enabling new acoustically important dis-
tinctions to be made during clustering. In fact, the use of word boundary information,
and phonetic context two phones distant, has already been incorporated into the HTK
large vocabulary speech recognition system, (Odell 1995).

9.4 Conclusion

A concatenative speech synthesis system has been developed which uses waveform seg-
ments representing the clustered states of a set of decision-tree state-clustered HMMs as
its synthesis units. The system selects and segments these waveform segments entirely
automatically from a single speaker continuous speech database. Duration and energy



9. Conclusions & Future Work 130

parameters are also estimated automatically from the database. The system can synthe-
sise fluent, natural sounding, highly intelligible speech, in a monotone, from a word string
specification of known pronunciation. The synthetic speech produced mimics the voice of
the speaker used to record the training database. The segmental intelligibility has been
measured using large scale Modified Rhyme Tests, and a very respectable error rate, of
only 5.0% obtained. The system can be retrained on a new voice in less than 48 hours,
and has been successfully trained on four voices.

The system developed achieves very respectable results, and thus demonstrates the
validity of an HMM-based approach to speech synthesis. Many possible avenues exist
for further development, and the approach therefore holds considerable potential for the
future.



Appendix A

Modified Rhyme Test Answer
Sheets

Figure A.1 shows the answer sheets used to perform the Modified Rhyme Tests described
in Chapter 4. The word sequences used were obtained from (House et al. 1965) and formed
six random paths through the words displayed on the answer sheets. Note that the words
in each group on sheet 1 differ only in a final consonant, and those on sheet 2 only in an

initial consonant.
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10

11.

12.

Pl ease listen to each word carefully and then put a line through
the word on the answer sheet which you think you heard
If you are not sure, please guess

bass bad bat h 13. page pace pay
ban back bat pane pave pal e
bean beat beach 14. pat pass pat h
beak beam bead pack pan pad
buf f buck bun 15. peal peak peace
bus but bug peat peas peach
cake cane cave 16. pit pill pin
case cape came pig pi ck pi p
cub cuss cud 17. puck pun pus
cuf f cut cup pup pub puf f
dig din dip 18. raze ray rave
did dim dill race rake rate
duck dung dug 19. save sal e sane
dud dun dub same sake safe
fin fib fit 20. sad sap sat
fig fill fizz sack sag sass
heat heat h heap 21. seep seek seem
heal hear heave seed seethe seen
ki t ki ng ki d 22. si ng sip sil
kin ki ck ki l'l si ck sin sit
| ace | ame I ay 23. sun sup sub
| ane late | ake sung sud sum
mat mass man 24. tap tang tan
mat h map mad tab tam tack
25. teach t eak t eam
t eal tear t ease

Figure A.1: Modified Rhyme Test answer sheet no. 1.
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26.

27.

28

29

30

31.

32.

33

34

35.

36.

37.

Pl ease listen to each word carefully and then put a line through
the word on the answer sheet which you think you heard
If you are not sure

| ed
shed

fold
cold

a -
QQ

l'ick
ki ck

t ook
hook

har k
bar k

bal e
gal e

reel

Figure A.1 (continued): Modified Rhyme Test answer sheet no. 2.

si ck
pi ck

book
| ook

hen
t hen

wed
fed

hol d
sol d

T2
Qaq

=
o
Q

i ck

—

shook
cook

boi
coi

tane
cane

pen
den

pl ease guess

38

39

40

41.

42

43

44,

45.

46

47.

48.

49.

50

23
-]

run
bun

gang
rang

bent
went

-0
T T

shop
top

beat
neat

e
-

| ot
not

test
rest

must
rust

raw
j aw

day
way

fun
gun

bang
hang

dent
tent

h
rip
mop

cop

neat
f eat

o
— -

hot
pot

vest
nest

j ust
bust

saw
t haw

gay
pay

—+Q
535

nun
sun

sang
fang

rent
sent

=
o

pop
hop

seat
heat

got
t ot

best
west

dust
gust

| aw
paw

nay
say



Appendix B

Speech Databases

Each of the speech databases used in this work comprised 592 sentences, or groups of short
sentences, read from the first 43 pages of the novel The Hitch Hiker’s Guide to the Galazy,
(Adams 1979). The sentences were spoken with natural prosody, at a normal read speech
speaking rate. The data typically took about 4 hours to record, and this was usually done
over 3 days. A Sennheiser HMD 414 head mounted microphone and a Symetrix SX202
Dual Mic Preamp were used to record the speech signal, and a Portable Laryngograph
from Laryngograph Ltd. U.K. used to record the laryngograph trace. The signals were
fed directly into the left and right line in sockets of a Silicon Graphics Iris R4400 Indigo
computer, in which they were digitised by sampling at 16kHz and quantising into 16 bits
per sample. The details of the databases are given below, together with an estimate of

the average fundamental frequency of the speaker used in each.

M1

M2

M3

Fi

F2

Recorded by the author, in the old CUED Speech Vision and Robotics (SVR)
group quiet room, as used for the WSJ CAM 0 database. A speech only
database occupying 118MB of disc-space. Average Fy approximately 116Hz.

Recorded by the author, in the new CUED SVR group quiet room, before
the application of acoustic tiles, and thus in a somewhat reverberant, though
otherwise quiet, environment. A speech and laryngograph database occupying
262MB of disc-space. Average Fj approximately 116Hz.

Recorded by Phil, in the new CUED SVR group quiet room, after the applica-
tion of acoustic tiles. A speech and laryngograph database occupying 265MB
of disc-space. Average Fy approximately 99Hz.

Recorded by Tina, in the old CUED SVR group quiet room, as above. A
speech only database occupying 134MB of disc-space. Average Fj approxi-
mately 210Hz.

Recorded by Patricia, in the new CUED SVR group quiet room, after the
application of acoustic tiles. A speech and laryngograph database occupying
271MB of disc-space. Average Fj approximately 189Hz.
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Appendix C

BEEP-0.6 Phone Set

As described in Section 5.2.1, various versions of the British English Example Pronunci-
ations dictionary were used during the course of this work. The phone set of the most
recent version to be used, BEEP-0.6, is shown in Table C.1.

Phone | Example || Phone | Example

aa after k cat

ae sack 1 leg

ah bug m mouse
ao ball n nest

aw allow ng king

ax again oh god

ay eye ow window
b back oy toy

ch church P pine

d dog r rake

dh then S sea

ea air sh shell

eh gem t table

er bird th theatre
ey prey ua sumptuous
f fire uh foot

g gold uw true

hh house v van

ia amiable w window
ih pig y yak

iy eel z Z0O

jh Jjudge zh leisure

Table C.1: The BEEP-0.6 phone set.
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Appendix D

Linear Prediction Theory

This appendix presents the underlying mathematics of Linear Prediction (LP) theory,
the justification for the method used to estimate LP coefficients from multiple segments
in Section 5.3.4, and the derivation of the distance measure used for unit selection in
the I-method of Section 5.5.2. It does not describe the details of the algorithms used to
solve for the LP coefficients, the relationship between LP coefficients and other related
parameters, such as reflection coefficients or log-area coefficients, lattice filters, or the
spectral interpretation of LP coefficient estimation. For a description of these aspects
of LP theory see (Markel and Gray 1976), or any good speech processing textbook, for
example (Parsons 1986).

D.1 Basic LP Theory

Let the speech samples in a frame be represented by y(n), where 1 < n < N. The
basis of Linear Prediction theory is then to assume that each speech sample y(n) can be
approximately predicted as a linear combination of the previous P samples of speech,

P
j(n) = = a(i)y(n — i), (D.1)
i=1

where a(7) are the Linear Prediction Coefficients of the frame, and P the Linear Prediction
Order. Let the difference between the predicted sample and the actual sample be ge(n),
where o is a scaling factor introduced to make the error signal e(n) have an r.m.s. value
of 1. Thus,

ve(n) = y(n)—§(n) (D.2)
P
= y(n)+ ) a(d)y(n —1) (D.3)
=1
P
= Za(z)y(n —1) where a(0) = 1. (D.4)
i=0

The LP coefficients are found by minimising the sum of the squared error terms, over
some range of n. This is the point at which LP theory diverges into two slightly different
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approaches, known as the covariance approach, and the autocorrelation approach. In the
former, the minimisation is conducted only over those values of e(n) which can be properly
calculated using the values of y(n) in the frame, for which 1 < n < N. In the latter, the
minimisation is conducted over all values of e(n) over all time. This can be done if the
speech signal is multiplied by a smooth windowing function, such as a Hamming window,
so that y(n) is non-zero only for 1 < n < N, since then the error signal e(n) is non-zero
only for 1 < n < N + P. This will be the approach taken in this appendix; the covariance
approach will not be considered further.
The autocorrelation approach therefore minimises E, defined by

E = Z [e(n)o]? (D.5)

N+P
= Z [e(n)o]? which, substituting equation D.4 is, (D.6)

N+P P

= Z [Za (n—1)] (D.7)

n=1 =0

The minimum can be found by setting the differentials of E with respect to each a(j),

8E N+P
Z?[Z y(n —9)y(n - j) 1<j<P (D.8)
n=1 1=0

to zero. Paying careful attention to indices, this becomes

P

doalry(i—j)=0  1<j<P (D.9)
=0

where the autocorrelation function ry(i) is defined by

N—1

ry(i) = > y(n)y(n +1). (D.10)

n=1
Equation D.9 represents a set of P equations in P unknowns, and can therefore be
solved using normal linear equation methods, or more efficiently by an algorithm known
as Levinson’s or Durbin’s recursion. The details of these methods are not described in
this Appendix; for further information see the references mentioned above.
By expanding equation D.7 to

P

E:Za Z J)ry(i — ). (D.11)

=0

and then substituting in equation D.9, E can be calculated as

P

E =Y a(i)ry(). (D.12)

i=0
The only remaining unknown is o. This quantity is defined to be such that the r.m.s.
value of e(n) is 1. However, it is not clear over which range of n the r.m.s. calculation
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should be performed. In this work the range was taken to be 1 < n < N + P to enable
the calculation of o to be integrated with the maths presented so far. The definition is

therefore

N+ P ’ '
which, by re-arranging and substituting equation D.6, becomes

E
2
= . D.14
7 TN+P (D-14)
Furthermore, note that the mean of the error signal, € is given by
_ EN—+1P e(n)
¢ N+P (D-15)
o(N + P) '
o(N + P) '

which is zero if the mean of the speech signal over the frame is zero. Thus, zero-meaning
the speech frame after Hamming windowing leads to an error signal with zero mean and
unity variance.

Finally, the all-pole nature of the LP model can be demonstrated by re-arranging the
Z-Transform of equation D.3 to obtain the model’s transfer function,

Y(2) _ o
E(z) 14+ a(i)z

(D.18)

D.2 Estimation from Multiple Segments

When the single speech frame used above is replaced by multiple frames, a single set of
LP coefficients can be found which best represents the pooled speech. Let the multiple
frames be identified by the superscript (f), where 1 < f < F. Equation D.5 then becomes

E = sz fj [e) (n)o())2 (D.19)
F
= Y Y [D(n)e ) (D.20)

P
> a@y')(n— i), (D-21)

I
NE

Differentiating as before, gives

F
=L L A ey m-iyPm-j)  1<i<P (D22)

OF NHyp P
f=1 n=1 =0
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which, when set to zero, can be written as

P
Za )yr G —5)=0 1<j<P (D.23)

which is analogous to equation D.9, and can be solved for a(i). The rgf )() term is defined
by

F N5

=> >y (n+1), (D.24)

f=1 n=1

and is the autocorrelation function of equation D.10 extended over multiple frames. Thus,
in the multiple frame case, the LP coefficients are calculated in the same way as for the
single frame case, but using autocorrelation coefficients calculated from all the frames

involved.

D.3 LP Distance Measure for Unit Selection

It has been shown that the error signal e(n) has zero mean and unity variance, provided the
speech frame it is associated with also has a zero mean. If it is assumed that each sample
of the error signal, e(n), is distributed as an independent Gaussian random variable, then
a useful log-likelihood based distance measure, between a segment of speech and a given
LP vector, can be obtained. The discussion given here is similar to that presented in
(Juang 1984).

Let x = x(n),1 < n < N represent the gain normalised speech signal, defined by

z(n) =y(n)/o (D.25)

where o is calculated as in equation D.14. The x signal is used in the following derivation
in order that the distance measure derived depends only on the spectral properties of the
speech signal, and not on its amplitude. Also, let m = m(i),0 < i < P, be some set
of LP coefficients not calculated directly from the speech signal. The signal x could be

generated from a model with coefficients m using the equation

Zm z(n —1) + e(n) (D.26)

if both e(n),1 <n < N and z(n),1 — P < n < 0 all took appropriate values. Therefore,
the likelihood of the speech signal x being generated given a model with coefficients m, is
the same as the likelihood of these appropriate values occurring, that is,

Pr(xjm) = Prle(n),1 <n < N;z(n),1 — P <n<0]. (D.27)
At this point an approximation is made in which one set of end effects is ignored and

another set introduced, giving

Pr(x|m) = Prle(n),1 <n < N + P]. (D.28)
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The approximation can be justified since in general N > P. If it is assumed that each
sample of the error signal is distributed as an independent Gaussian random variable, with
zero mean and unity variance, then the likelihood of a sample taking a particular value
e(n), is given by

Prle(n)] = e aleml?, (D.29)

The independence assumption also means that the right hand side of equation D.28 can
be factorised to give

Pr(x|m) =~ Pr[e(1)] Pr[e(2)]... Pr[e(N + P)], (D.30)

and hence, by substituting equation D.29,

Pr(xjm) ~ (=) (Ve ol (.31)

By taking logs, and rearranging and substituting equation D.26, equation D.31 can be
expanded to

In[Pr(x|m)] ~ _N;FP In(27) — %Z S mlyrgi—j).  (D32)
i=0 =0

By defining an autocorrelation function over model parameters, r,, (i), as

PZ m(k + 1), (D.33)

it can be shown by algebraic expansion that equation D.32 is equivalent to

In[Pr(x|m)] = —

1
In(27) — = ~—5[ry(0)rm (0 +2Z7“y 0)rm (4 (D.34)

Furthermore, by expanding o2 using equation D.14 and equation D.11, it can be shown
that

s 1

=V P[T‘y )+ 2 Z Ty (8)7q (i (D.35)

where r,(7) is defined similarly to 7, (7).

The distance measure used in the work described in Section 5.5.2 was required to
compare many speech segments of equal length to a single LP vector estimated from a pool
of segments. The comparison required was purely spectral, since the speech synthesised
using the LP coefficients of the selected segment was scaled to the average short term
energy per sample of the clustered state in question during synthesis anyway; hence the
derivation of Pr(x|m) and not Pr(y|m,s?). With segments of equal length the first term
in equation D.34 is always the same, and so the distance measure actually computed was
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_2}7[7«?}(0)%(0) 42 ;ry(i)rm(i)]. (D.36)

Finally note that this distance measure is closely related to the Itakura-Saito distance
measure, as discussed in (Juang 1984).



Appendix E

Audio Examples

The accompanying compact disc contains numerous speech examples recorded as stereo
audio files at a sampling rate of 44.1kHz, which can be played on normal Hi-Fi equipment.
The numbers associated with each of the speech examples described in this appendix
correspond to track numbers on the compact disc. This appendix first presents examples
of the results obtained with the basic synthesis system, as described in Chapter 5, in
Section E.1. Section E.2 presents a demonstration of the performance of the TD-PSOLA
implementation, as described in Chapter 7. Finally, Section E.3 presents examples of the
performance of, and experiments with, both the LP and TD-PSOLA versions of the final
system, as described in Chapter 8.

In general, the words used in each speech example are given in the relevant section.
The only exception is the sentence fragment

o When a sailor in a small craft faces the might of the vast Atlantic Ocean today,...

which is used throughout this appendix, and is referred to simply as the sailor fragment.
Note that, unless otherwise stated, all synthetic speech (other than re-synthesised natural
speech) was produced using a duration scaling factor of 0.1 standard deviations (see Sec-
tion 5.3.1), and at the average fundamental frequency of the speaker used in the relevant
database (see Appendix B). The first track on the compact disc is a brief introduction,

e Example 01 : A natural speech recording of the sentence This compact disc belongs
with a copy of the dissertation submitted by Robert Donovan for consideration for
the degree of Doctor of Philosophy at the University of Cambridge

E.1 Basic System

The speech examples in this section were generated using various versions of the basic
system to synthesise the sailor fragment. The results of performing LP analysis-synthesis
on a natural version of this utterance (available as speech example 36) are also presented

here.

e Example 02 : The F-method version of the basic system, trained on the M1 database,
synthesising the sailor fragment.
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¢ Example 03 : The C-method version of the basic system, trained on the M1 database,
synthesising the sailor fragment.

e Example 04 : The I-method version of the basic system, trained on the M1 database,
synthesising the sailor fragment.

e Example 05 : The P-method version of the basic system, trained on the M1 database,
synthesising the sailor fragment.

e Example 06 : The basic system using interpolated P-method reflection coefficients,
trained on the M1 database, synthesising the sailor fragment.

e Example 07 : LP analysis-synthesis of Example 36.

E.2 TD-PSOLA Demonstration

The speech examples in this section provide a demonstration of the performance of the
TD-PSOLA implementation made during the course of this work. Examples of analysis-
synthesis are presented in which either the fundamental frequency or the duration is
scaled up or down by a constant factor. The original speech, and otherwise unaltered
re-synthesised speech, is also presented. See Section 7.3.2 for further details. The sen-
tence used throughout is

e Far out in the uncharted backwaters of the unfashionable end of the western spiral
arm of the galazy lies a small unregarded yellow sun.,

taken from either the M2 or F2 database. In the following, the numbers on the left refer
to male speech examples, and the numbers on the right to female speech examples.

Example 08/20 :
Example 09/21 :
Example 10/22 :
Example 11/23 :
Example 12/24 :
Example 13/25 :
Example 14/26 :
Example 15/27 :
Example 16/28 :
Example 17/29 :
Example 18/30 :

Example 19/31 :

Original speech.
Re-synthesised, but otherwise unaltered.

Fundamental frequency raised by a factor of 1.2.

Fundamental frequency lowered by a factor of 1.2.

Fundamental frequency raised by a factor of 1.5.

Fundamental frequency lowered by a factor of 1.5.

Fundamental frequency raised by a factor of 2.0.

Fundamental frequency lowered by a factor of 2.0.

Duration reduced by a factor of 1.5.
Duration raised by a factor of 1.5.
Duration reduced by a factor of 2.0.

Duration raised by a factor of 2.0.
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E.3 Final System

This section first presents speech examples generated from the LP version of the final
system, in Section E.3.1, and an early version of the TD-PSOLA implementation, in
Section E.3.2. It then presents speech examples generated using the full TD-PSOLA
version of the final system, in Section E.3.3. Finally, the results of experiments into
inventory size reduction and voice transformation are presented in Sections E.3.4, and E.3.5

respectively.

E.3.1 The LP Version of the Final System

The speech example in this section demonstrates the performance of the LP version of the
final system, as described in Section 8.4. The resulting speech should be compared with
that generated by the P-method version of the basic system, given in speech example 05.

e Example 32 : The LP version (P-method) of the final system, trained on the M2
database, synthesising the sailor fragment.

E.3.2 An Early Version of the TD-PSOLA Implementation

This section presents synthetic speech generated using an early version of the TD-PSOLA
implementation, in which each voiced state was synthesised as a sequence of identical
pitch periods. See Section 8.5.1 for further details. This speech should be compared to
speech examples 35 and 43 respectively, which were generated using the full TD-PSOLA

implementation.

e Example 33 : An early TD-PSOLA system, trained on the M1 database, synthesising

the sailor fragment.

e Example 34 : An early TD-PSOLA system, trained on the F1 database, synthesising

the sailor fragment.

E.3.3 The TD-PSOLA Version of the Final System

This section presents speech examples generated using the full TD-PSOLA version of the
final system, trained on the M2, F1, F2, and M3 databases.

M2 database

The M2 database was used extensively during system development, and therefore cannot
be considered to be a test database for the system.

e Example 35 : The TD-PSOLA version of the final system, trained on the M2 data-
base, synthesising the sailor fragment.

e Example 36 : A natural speech recording of the sailor fragment, made by the speaker
used in the M1 & M2 databases.
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e Example 37 : The TD-PSOLA version of the final system, trained on the M2 data-
base, synthesising This speech was synthesised by a speech synthesis system developed
by Rob Donovan at Cambridge University Engineering Department. It uses the clus-
tered states of a set of decision tree state clustered hidden Markov models, as it’s
subword units. Speech is synthesised by concatenating representative waveform seg-
ments of each of the clustered states. The system can be retrained in less than forty
etght hours on a new voice, and could easily be adapted to a new language.

¢ Example 38 : The TD-PSOLA version of the final system, trained on the M2 data-
base, synthesising This is an example of the best speech produced by the system to
date. It was trained on text read from a novel, namely the Hitch Hiker’s Guide to
the Galazy. The Modified Rhyme Test error for this speech is only five point zero
percent. I must apologise for speaking on a monotone, but you see, I have no brain!

e Example 39 : The TD-PSOLA version of the final system, trained on the M2 data-
base, synthesising She sells sea shells on the sea shore., slowly, with a duration
scaling factor of 0.3 standard deviations.

e Example 40 : The TD-PSOLA version of the final system, trained on the M2 data-
base, synthesising She sells sea shells on the sea shore., quickly, with a duration
scaling factor of -0.8 standard deviations.

e Example 41 : The TD-PSOLA version of the final system, trained on the M2 data-
base, synthesising This speech example is included to demonstrate some of the prob-
lems still present. Pick. Pig. Sack. Sag. What’s the difference? Perfect plosives,
pronounced properly, too properly in fact. Waveform segments are concatenated very
carefully, but sometimes the durations are a bit strange. Occasionally it’s as if some-
one else is talking in the background. Sometimes it sounds like the speaker is burbling.
Sometimes segmentation errors still cause problems. The isolated words in this ex-
ample were synthesised using a duration scaling factor of 0.5 standard deviations,
with the rest of the example using a factor of 0.1.

e Example 42 : The TD-PSOLA version of the final system, trained on the M2 data-
base, synthesising My name’s Rob Donovan, and I'm from Cambridge University.,
using a stylised pitch track and a duration scaling factor of -0.1 standard deviations.

F1 Database

This database did not include a laryngograph signal. It was used occasionally during the
later stages of system development, but only for demonstration purposes. Therefore, it
can be viewed as a test database for the system.

e Example 43 : The TD-PSOLA version of the final system, trained on the F1 data-
base, synthesising the sailor fragment.

e Example 44 : A natural speech recording of the sailor fragment, made by the speaker
used in the F'1 database.
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e Example 45 : The TD-PSOLA version of the final system, trained on the F1 data-
base, synthesising This speech was produced by training the system on a female data-
base, kindly recorded by Tina Burrows. The system was trained without access to a
laryngograph signal, hence the hoarseness.

F2 Database

This database was not used during system development, and therefore represents a test
database for the system.

e Example 46 : The TD-PSOLA version of the final system, trained on the F2 data-
base, synthesising the sailor fragment.

e Example 47 : A natural speech recording of the sailor fragment, made by the speaker
used in the F2 database.

e Example 48 : The TD-PSOLA version of the final system, trained on the F2 data-
base, synthesising This speech was produced by training the system on a female data-
base, kindly recorded by Patricia. This database did include a laryngograph signal.

e Example 49 : The TD-PSOLA version of the final system, trained on the F2 data-

base, synthesising The rain in Spain stays mainly on the plain.

e Example 50 : The TD-PSOLA version of the final system, trained on the F2 data-
base, synthesising I don’t normally talk in a monotone you know! Rob made me do
at!

M3 Database

This database was not used during system development, and therefore represents a test
database for the system.

e Example 51 : The TD-PSOLA version of the final system, trained on the M3 data-
base, synthesising the sailor fragment.

e Example 52 : A natural speech recording of the sailor fragment, made by the speaker
used in the M3 database.

e Example 53 : The TD-PSOLA version of the final system, trained on the M3 data-
base, synthesising This speech was produced by training the system on a male data-
base, kindly recorded by Phil Woodland. Again, a laryngograph signal was available.

e Example 54 : The TD-PSOLA version of the final system, trained on the M3 data-
base, synthesising HTK is the name of a hidden Markov model tool kit developed at
Cambridge University Engineering Department. It is now available through Entropic
Cambridge Research Laboratory, and Entropic Research Laboratory, Washington.
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E.3.4 Inventory Size Experiments

The speech examples presented in this section were generated using the TD-PSOLA version
of the final system, but with a reduced number of states. See Section 8.5.5 for further
details.

e Example 55 : The TD-PSOLA version of the final system trained on the whole
M2 database, with the minimum number of occurrences per leaf node clustering
threshold set to 30, synthesising the sailor fragment.

e Example 56 : The TD-PSOLA version of the final system trained on only the first
half of the M2 database, with the minimum number of occurrences per leaf node
clustering threshold left at 12, synthesising the sailor fragment.

E.3.5 Voice Transformation Experiments

The speech examples in this section were synthesised using prosody transplanted from
a natural version of the same utterance. The examples are presented in pairs, with the
voices used given in brackets as database mnemonics. In each case, the number on the left
refers to the natural speech, and the number on the right the synthetic speech, which was
synthesised using the TD-PSOLA version of the final system trained on the appropriate
database. See Section 8.5.7 for further details.

e Example 57/58 : Natural (M1 & M2) and synthetic (M1 & M2) versions of the poem

fragment

Water, Water, every where,
And all the boards did shrink;
Water, water, every where,
Nor any drop to drink.

e Example 59/60 : Natural (M1 & M2) and synthetic (M3) versions of the poem
fragment

I wandered lonely as a cloud
That floats on high o’er vales and hills,
When all at once I saw a crowd,

A host, of golden daffodils;

e Example 61/62 : Natural (F1) and synthetic (M1 & M2) versions of the sentence

In the beginning was the word, and the word was with God, and the word was God.

e Example 63/64 : Natural (M1 & M2) and synthetic (F2) versions of the sentence
At last, the end!
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