[Journal Name], [Volumn Number], 1-22 ([Volumn Year])
© [Volumn Year] Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Application of Lie Algebras to Visual Servoing

TOM DRUMMOND AND ROBERTO CIPOLLA
Department of Engineering, University of Cambridge,
Trumpington St, Cambridge, CB2 1PZ
foaz: +44 1223 332662

email: twd20Q@Qeng.cam.ac.uk, cipolla@eng.cam.ac.uk

Abstract. A novel approach to visual servoing is presented, which takes advantage of the structure of
the Lie algebra of affine transformations. The aim of this project is to use feedback from a visual sensor to
guide a robot arm to a target position. The target position is learned using the principle of ‘teaching by
showing’ in which the supervisor places the robot in the correct target position and the system captures
the necessary information to be able to return to that position. The sensor is placed in the end effector of
the robot, the ‘camera-in-hand’ approach, and thus provides direct feedback of the robot motion relative
to the target scene via observed transformations of the scene. These scene transformations are obtained
by measuring the affine deformations of a target planar contour (under the weak perspective assumption),
captured by use of an active contour, or snake. Deformations of the snake are constrained using the Lie
groups of affine and projective transformations. Properties of the Lie algebra of affine transformations
are exploited to provide a novel method for integrating observed deformations of the target contour.
These can be compensated with appropriate robot motion using a non-linear control structure. The
local differential representation of contour deformations is extended to allow accurate integration of an
extended series of small perturbations. This differs from existing approaches by virtue of the properties of
the Lie algebra representation which implicitly embeds knowledge of the three-dimensional world within
a two-dimensional image-based system. These techniques have been implemented using a video camera
to control a 5 DoF robot arm. Experiments with this implementation are presented, together with a
discussion of the results.

Keywords: visual servoing, active contours, affine geometry, lie groups, lie algebras

or field rate on standard workstations. This has
enabled visual servoing of sufficient accuracy that
many useful tasks may now be accomplished.

1. Introduction

The use of real-time video information for robotic

guidance is increasingly becoming a more attrac-
tive proposition and is the subject of much re-
search (Hager and Hutchinson 1996). Recent ad-
vances in the power and availability of image pro-
cessing capabilities have made possible the track-
ing of complex features, such as surface contours
(Kass, Witkin and Terzopoulous 1988), at frame

Here we present an approach which takes ad-
vantage of the structure of the Lie algebra of
affine transformations to provide an accurate, ef-
ficient and stable servoing system. A techni-
cal innovation is introduced which exploits the
properties of Lie algebras to provide a method
for integrating group transformations in a consis-

2 Drummond and Cipolla

(a) Target position

“5‘4.’

(c) Part perturbed
Fig. 1. Problem statement

(d) Robot returns

tent manner. The use of Lie algebras provides
a substantial advantage over traditional image-
based visual servoing techniques due to the man-
ner in which the structure of the two-dimensional
affine transformation group is used to implic-
itly embed three-dimensional knowledge within an
image-based system.

The applications which motivate this work are
tasks such as welding of automotive or ship parts.
These tasks are characterised by the need to ac-
curately place a tool onto a workpiece which may
be inaccurately located in relation to the robot.
The use of vision to assist in solving these tasks
is becoming increasingly attractive because of the
capability to respond accurately and rapidly to er-
rors in part placement that are difficult to detect
by other means.

The problem considered in this paper is to learn
a target position and return to it after both the
robot and the part have been perturbed as illus-
trated in Figure 1. Figure la shows the robot
placed in the target position by the supervisor.
Figure 1b shows the robot perturbed from the
target position and Figure 1c shows the part per-
turbed also. Finally the robot returns to the tar-
get position relative to the perturbed part as seen
in Figure 1d.

The remainder of this section reviews a number
of issues in the design of visual servoing systems
and outlines the approach taken in this paper.
Section 2 introduces Lie transformation groups
and shows how they may be used to constrain ac-

tive contour models, or snakes. Section 3 intro-
duces Lie algebras and derives a key result which
allows group transformations to be integrated in
a consistent manner. Section 4 describes the non-
linear control system used to bind observed de-
formations to corrective robot motion. Section 5
ties this to a geometric description and shows Lya-
punov stability before going on to give a simulated
example which illustrates the benefits of the ap-
proach. Section 6 describes degeneracies within
the system and shows how these can be overcome
with the use of multiple contours. Finally, sec-
tion 7 describes our implementation and presents
results from a series of experiments.

1.1. Background

There are a number of important issues which
must be addressed in the construction of a visu-
ally guided robotic system. The approach pro-
posed here, makes use of image-based visual ser-
voing (Sanderson, Weiss and Neumann 1987, Es-
piau, Chaumette and Rives 1992), in which the
control loop is closed in the two-dimensional im-
age domain rather than in the three-dimensional
workspace. This is by contrast to systems which
explicitly use the three-dimensional nature of the
world (Basri, Rivlin and Shimshoni 1998, Wilson,
Williams Hulls and Bell 1996) (often referred to
as position-based visual servoing systems).

Three-dimensional visual servoing is typically
achieved either by building some reconstruction of
the world in a workspace co-ordinate system (Wil-
son et al. 1996), or by computing homographies
and using knowledge of the epipolar geometry to
servo the robot (Basri et al. 1998).

The two-dimensional approach works in the im-
age domain, and computes error measurements di-
rectly, such as the (x,y) image location of target
points (Espiau et al. 1992, Colombo and Allotta
1999). The system then attempts to move so as
to minimise this observed error typically using a
Jacobian which relates robot motions to changes
in observables.

Hybrid approaches have also been attempted,
for example (Malis, Chaumette and Boudet 1999)
in which homographies are used to compute cam-
era rotation in three dimensions, while translation

is computed directly from observed errors in point
correspondences in the 2D image.

One aim of this work is the tracking of mov-
ing targets. It is therefore not possible to assume
that all observed change is due to motion of the
robot. Systems which make this assumption can
constrain the problem and use techniques such as
continuous update or maintenance of the Jacobian
(Cross and Cipolla 1996). Dynamic visual servo-
ing on the other hand, must deal with moving tar-
gets and must implement some kind of closed loop
control strategy (Corke and Goode 1996).

There are two natural locations in which to
mount a visual sensor (Hutchinson, Hager and
Corke 1996), namely static with respect to the
world, and static relative to the robot. Our sys-
tem uses the latter approach with a single cam-
era mounted in the robot’s end effector. This
constrains the visual servoing problem since the
sensor directly measures the relationship between
the robot and workpiece. In this case the trans-
formation between hand and eye must be com-
puted for the three-dimensional approach (Horaud
and Dornika 1995), although uncalibrated image-
based techniques have also been used (Yoshimi
and Allen 1995). There is the additional bene-
fit of scaling; that as the robot approaches the
target position, the size of features on the work-
piece grows in the image plane. This enables
greater accuracy to be obtained in positioning,
but in general provides less control over light-
ing conditions and the use of multiple cameras
than the alternative. The choice between one or
more cameras has a significant impact on the de-
sign of a servoing system. The use of multiple
cameras encourages the use of a reconstructive
three-dimensional approach, although divergent
stereo has also been used (Santos-Victor, Sandini,
Curotto and Garibaldi 1995). Other schemes such
as a camera free to rotate about the scene inde-
pendently of the robot end effector have also been
used (Kinoshita 1998) or mounted on a second
robot arm (Bard, Laugier, Milési-Bellier, Troccaz,
Triggs and Vercelli 1995).

This work uses the principle of teaching by
showing, in which the supervisor shows the system
the correct location by placing the robot in the de-
sired relative pose to the target. The system then
learns this pose by storing sufficient reference in-
formation, captured whilst in that pose, to charac-

Application of Lie algebras to visual servoing 3

terise the three-dimensional relationship between
the end effector and the workpiece. This is accom-
plished by observing one or more contours located
on the surface of the workpiece. By recording the
view of these contours from the correct target po-
sition, any observed deviations from this view can
be detected and corrected for by appropriate robot
motion.

Contours form a particularly useful feature to
track for visual servoing for a number of reasons.
Firstly, advances have been made in the robust
tracking of contours such that they can be tracked
reliably amongst clutter (Isard and Blake 1996).
Secondly, an accurate measure of image motion
can be obtained from contours due to the large
number of measurements that can be made (usu-
ally one per control point on the contour), or by
integration of normal velocities around the con-
tour (Cipolla and Blake 1997). Finally, a pla-
nar contour is constrained to undergo affine de-
formation under the weak perspective assumption,
and projective deformations under strong perspec-
tive. The affine deformation group, GA(2), has
six dimensions and thus theoretically (and, as will
be shown, practically) provides enough informa-
tion to guide a robot through space. These mo-
tions can be described by the group of rigid three-
dimensional motions, SE(3), also having six di-
mensions. The use of the affine/projective con-
straint separates this method from previous work
using deformable models such as (Couvignon, Pa-
panikolopoulos, Sullivan and Khosla 1996) which
relies on a more traditional dynamical model of
active contours. The affine transformation group
of planar contour deformations has also been used
previously for visual servoing (Cross and Cipolla
1996, Colombo and Allotta 1999) and this ap-
proach is distinguished by the way that the large
scale structure of the group is used to provide con-
sistent control. Other features have also been used
for visual servoing such as corners (Basri et al.
1998), or contrived features such as discs (which
act as points) (Espiau et al. 1992). An eigen-image
approach has also been used, in which the features
are the full set of pixel values within a region, pro-
jected onto a principal component subspace (Na-
yar, Nene and Murase 1996).

The robot control system is based on a Jacobian
between the robot motions and the generators of
the group of deformations of the contour. Proper-

4 Drummond and Cipolla

' Image processing Local |
' thread affine |
| deformation !
3 1 2 3
! Affine Integrate)
‘ > Snake - Affine |
| Tracker Deformation !
| Total affine . |
! deformation |
' Robot control |
' thread Y Y
| 4 3 3
3 Compute Closed !
! and Condition Loop |
! Jacobian Control |

Fig. 2. System architecture

ties of the Lie algebra of this group are exploited
to provide a consistent representation for integrat-
ing general affine (or other group) deformations to
the contour. This approach allows a single Jaco-
bian, computed once near the target location, to
be used across a large range of perturbations.

1.2. System OQuverview

The system runs on a workstation which receives
a live video feed from the robot camera and com-
municates directly with the robot controller. As
illustrated in Figure 2, it comprises two separate
threads which operate concurrently.

The first one is the image processing thread
which performs all computations that must occur
at video frame rate. In particular, there are two
major modules that operate within this thread,
namely the affine snake which tracks a contour
on the workpiece and an integrator that computes
the total observed affine deformation.

The second one is the robot control thread
which operates on a much longer cycle time rang-
ing from 0.5 — 1.5 seconds. This thread takes in-
tegrated errors from the contour tracker and com-
putes desired robot motions to compensate. The
Jacobian computation module which calibrates
motions against observed deformations also re-

sides within this thread. Figure 2 also shows the
relationship between these modules, indicating the
flow of information through the system, described
briefly here.

1) The live video feed is delivered to the affine
snake tracker module (described in more detail in
Section 2) which computes a series of local trans-
formations which describe the deformation of the
contour of interest. Velocities in transformation
space are computed and maintained in order to
assist in tracking rapid motions.

2) The local transformations computed by the
affine snake are integrated using knowledge of the
Lie algebra of affine transformations to obtain an
accurate measure of the the total transformation
describing the current position of the contour (see
Section 3).

3) The integral of affine transformation is passed
to the robot control module which uses an affine-
to-robot Jacobian, together with a non-linear con-
trol law described in Section 4 to compute robot
motions.

4) The robot control thread also contains a cal-
ibration module which computes and conditions
the Jacobian by correlating trial motions of the

robot with integrated deformations of the contour
of interest.

1.8. Lie Groups and Lie Algebras

The techniques presented in this paper make ex-
tensive use of concepts of Lie groups and their
associated algebras in order to construct a consis-
tent representation for the hand-eye co-ordination
problem. This paper is particularly concerned
with the use of Lie groups for tracking surface
contours on the workpiece and the application of
Lie algebras of these groups to integrate these
changes in a consistent manner that can be used
for robotic control. Concepts from Lie groups and
algebras have previously been used to represent
robot control structures (Park, Barrow and Ploen
1995, Murray and Sastry 1994). Lie groups and
algebras are reviewed below in Sections 2 and 3.

2. Review of Lie Groups and Affine
Snakes

A Lie group is a group which locally has the topol-
ogy of R™ everywhere (a more precise definition
may be found in (Varadarajan 1974) or (Sattinger
and Weaver 1986), together with a more complete
discussion of Lie groups and algebras). Lie groups
provide a useful way of describing the transforma-
tions that a system can undergo and this section
will show how they can be used in a generic way
to constrain and assist a tracking mechanism by
means of the vector fields that they generate in the
image. There are a number of groups which are
interesting for the purposes of this work and which
can be defined by their action on R™ (R? or R? in
this context). The groups SE(3) (Euclidean trans-
formations in three dimensions with determinant
1), GA(2) (general affine transformations in two
dimensions) and P(2) (projective transformations
in two dimensions) are of particular relevance.

2.1. SE(3), GA(2) and P(2)

Each of these groups defines an allowable range
of transformations on R?2 or R3, with the iden-
tity element of the group performing the trivial
transformation in which each point is mapped to

Application of Lie algebras to visual servoing 5

itself. The dimension n of each group corresponds
to the number of independent ways that it can
make a small (infinitesimal) transformation. For
SE(3) and GA(2) this is 6, whereas P(2) has 8
dimensions.

SE(3) is the group of rigid transformations in
R3. This group is well understood in robotics since
it describes the full range of possible motions of
a rigid body, such as the end effector, in three-
dimensional space. The six independent modes of
transformation are typically described as:

1. x translation
2. y translation
3. z translation
4. Rotation about the x axis
5. Rotation about the y axis
6. Rotation about the z axis

These transformations are often referred to as
screws (Murray and Sastry 1994), since the gen-
eral transformation involves rotation about an
axis in space, together with translation along it.
The derivatives of screws, often referred to as
twists correspond to vectors in the Lie algebra of
SE(3) (discussed in more detail in Section 5). The
transformations can be represented by matrices
acting on homogeneous co-ordinates in three di-
mensions. Matrices corresponding to pure trans-
formations in each of these six modes of deforma-
tion, parameterised by «a are:

4293
My =10010
0001
4292
J— (o]
MZ_ 0010
0001
4299
Ms;=1001a
0001
bl dha
— cosa —sina
M4_ 0sina cosa 0O
0 0 0 1
coga(l)silaag
Ms = | _gina0cosa 0
1
cosa —sina 00
— sina cosa 00
Mg = 0 0 10 (1)
0 0 01

GA(2) is the group of all affine transformations
on two-dimensional space. The six dimensions of
the group are commonly broken down as follows:

6 Drummond and Cipolla

. x translation

. y translation

. Rotation about the origin
. Dilation about the origin

. Shear (squash y, stretch x)
. Shear at 45 degrees to (5)

S UL W N~

These transformations are typically represented
by matrices in homogeneous co-ordinates. Those
giving pure transformations in each of these six
modes of deformation, parameterised by «a are:

10«
M1=(010)

001

100
M, = Ola)

001

cosa —sina 0
M3= sirola cos (1))

a 0
0 0
0 01

e* 0 0
0 e *0
0 0 1
cosha sinha 0
Mg = (sinha cosh a 0)
0 0 1

IS
I
N TN TN N
@
@
R

(2)

GA(2) describes the transformations that the im-
age of a planar object can undergo when viewed
under weak perspective from a camera moving
in three dimensions(Koenderink and van Doorn
1975). This group has three interesting subgroups,
they are the translation group (transformations 1
and 2), the Euclidean group (1,2 and 3) and the
similarity group (1,2,3 and 4).

P(2) is the group of all transformations on two-
dimensional projective space. This is the group
of all 3 x 3 matrix transformations on a two-
dimensional point in homogeneous co-ordinates,
with the convention that the third value in the co-
ordinate is always scaled back to 1. This conven-
tion implies that scaled versions of the same ma-
trix produce identical transformations, thus there
are 9—1 = 8 dimensions to this group. These 8 di-
mensions contain the 6 dimensions of GA(2) as a
subgroup and include two additional dimensions
which produce warping in the image and corre-
spond to the movement of the horizon or vanish-
ing line of the planar object being viewed. P(2)
describes the transformations of a planar image
under strong perspective. The additional dimen-
sions correspond to the matrices:

100 10
M7:(010),M8:(01
a0l 0«

OO

) ®

2.2. Vector Fields and Lie Derivatives

The matrices in Equation (2) each describe a con-
tinuous one-dimensional family of transformations
on R?, parameterised by o. Thus for each matrix,
for each a, a point (z,y) is mapped to some point
(z',y"). Setting a to zero generates the identity
transformation: (z',y') = (z,y). Differentiating
with respect to o and evaluating at a = 0 creates
a vector field:

- dMi(a)@)

L= = (1<i<6) (4

a=0

Since differentiation is linear, writing

_ dM;(a)
Gi = da

T

gives: Ei:Gi(?lJ) (5)

a=0

The matrices G; are referred to as generators of
the Lie group and form a basis for the Lie algebra
discussed in more detail in Section 3. For GA(2),
the generators are:

= (341) o:=(333)
= (35 o= (311)
a-(toha-(f) ©

Since the bottom row of each of these matri-
ces is (000), the last component of L; is equal to
zero. Writing L; for the first two components of L;
gives vector fields in the image plane. These vector
fields are used to compute the affine transforma-
tion which describes the deformation of a contour
in the robot’s view. This is achieved through the
use of affine snakes. The vector fields generated
by the matrices in (6) are:

Li=(5) L= (%) Ls=(73¥)
Ly=(y)Ls = (%) Le = (¥) (M)

Thus the vector fields for affine transformations
are linear functions of position. In order to ex-
tend to full projective deformation, two quadratic
vector fields are needed in addition. These are
discussed in more detail in Section 2.4.

Algorithm 1: Transformation Group Lock

Application of Lie algebras to visual servoing 7

Algorithm 2: Runge-Kutta Update

for each node, &, in snake do
Compute unit normal to snake, 7¢
Compute d¢ = distance to edge along 7¢
end for
for 7,5 =1 to num-generators do

0; =Y df(Lf - f)
£
Mi; =y (L5 -a®)(L§ - 2%)
3

end for
Compute E = M~10 using SVD

2.8. Affine Snakes

In the system presented here, active contours
(snakes) are used to track contours on the work-
piece. These snakes are closed polygons with be-
tween 16 and 1024 vertices and are initialised by
hand either inside or outside the contour of inter-
est. The snake then expands out (or contracts)
until strong edges are located in the image (see
Figure 3). Once the snake has locked on to these
edges, it becomes constrained to only undergo de-
formations within some transformation group of
interest. Currently, the system supports five such
groups (on R?). These are the translation group,
the Euclidean group, the similarity group, the gen-
eral affine group and the projective group (each of
these being a subgroup of those that follow it).

This is achieved using Algorithm 1 which op-
erates by measuring d¢, the distance to the con-
tour in the image along the normal to the snake
tangent at node £. Each such measurement pro-
vides a single estimated constraint on the defor-
mation of the snake. Thus the measurement space
has one degree of freedom per node on the snake.
The measurement is then projected down onto
the subspace defined by the transformation group
of interest using singular value decomposition to
produce a least squares fit. This computes the
amount of each mode of deformation, E;, to min-
imise

S (#-SmEsa) @)

3

for each node, &, in snake do

Let (;) = position of £th node in snake
Compute:
L; = vector field of jth generator at (z)
C_'l = EjUij
L} = vector field at (Z) + 301
02 = E]U]L;

LY = vector field at (z) + 10,
63 = EjUngl
LY" = vector field at (z) +Cs
Cy =3 ,U;LY)
C = %(C_'l + 2(72 + 2C_'3 + 6_'4)
Let position of node ¢ = (z) +C
end for

which is the squared geometric distance between
the observed contour and the transformed snake,
integrated (summed) around the snake. The
transformation group subspace is identified by
computing Lg - A€, the image motion created by
generator j of the transformation group at node ¢
of the snake, in a direction normal to the tangent
of the snake at £. Taking £ as the dimension in-
dex, these form a set of vectors identified by j and
thus span a subspace with the same dimensional-
ity as the transformation group. These vectors
then provide the basis for the least squares lin-
ear regression procedure. Both the general affine
deformation group and the projective group (for
the projective compensation mechanism described

Fig. 3. Snake snapping on to contour after external ini-
tialisation

8 Drummond and Cipolla

update Vx
o Vy
velocities vr
coupling
coefficients ® vd
Vsl
Vs2
project onto affine i At @ [ux |
transformation subspace | Uy _
- D ur | Local affine
ud deformation
) Esl compute Usl
Mmeasure ermors with decoupled Es2 new expected us2
projective - - update - =
project onto compensation | Ewl uwl| _ |
next image | Ew2 uw2
D Local full projective deformation
update
snake

Fig. 4. Affine snake system

in Section 2.4) have been implemented using this
procedure.

The snake tracks the contour using an estimate
of the velocity of deformation of the contour in
general affine transformation space, V. This is up-
dated using the measured deviation between the
prediction and observed contour, E, to provide a
reliable new estimate of transformation velocity
(see Figure 4). The velocity estimate is then com-
bined with the observed deviation to give U which
is used to update the contour to the predicted po-
sition at the next time step:

Ul = B 4 (1 — 1)V
Vim = VP + B (62—)

(9)
(10)

where «; are coupling constants chosen so as to
damp oscillatory behaviour in the snake and to—1t;
is the time elapsed in frames since the previous
observation. This allows the system to cope with
missing or intermittent video frames with graceful
rather than catastrophic failure.

At each time step, the contour is updated using
the update vector U; from Equation (9) and the
fourth order Runge-Kutta algorithm described in
Algorithm 2. The new affine transformation errors
E; are then computed by Algorithm 1 and finally
Equation (10) computes the new affine transfor-
mation velocity V;.

2.4. Projective Compensation

The weak perspective assumption used to com-
pute the affine deformation of the contour does
not entirely hold in the situation presented here.
The full space of deformations of a planar con-
tour is properly described by the two-dimensional
projective deformation group, outlined in Section
2.1. This means that if only affine deformations
are used to track the contour, the tracker cannot
deform to properly match the shape of the ob-
served contour. This gives rise to tracking failures
such as the example shown in Figure 5.

To manage this kind of problem, the tracking
module incorporates a projective compensation
mechanism which extends the range of deforma-
tions to the full projective group in such a way
that the affine component of the observed defor-
mation is essentially left intact. This is impor-
tant because the projective distortion modes are
not consistent across a large domain of observa-
tion of the contour, for example when the contour
is viewed from a distance. This means that any
control mechanism which incorporates this infor-
mation may make large moves in an attempt to
correct perceived projective distortions when this
is inappropriate. In order to achieve this indepen-
dence between the affine and projective modes,
it is important to decouple the vector fields for

W R A e

Fig. 5. Tracking failure in affine snake. The snake has
tracked the contour as the block has been turned. Because
it has been constrained to only undergo affine transforma-
tions, the snake no longer fits the contour properly due to
the strong perspective deformation that is observed.

the projective warps from those of affine deforma-
tion. This can be largely achieved by computing
the warp vector fields relative to the centroid of
the snake. The two additional vector fields which
provide this compensation are:

=) =(2)

where z' and 3’ are relative to the centroid.

This approach works since by computing the
projective transformations relative to the cen-
troid, they operate independently of the mean mo-
tion of the snake. The remaining interactions be-
tween the affine and projective modes are due to
the integral of the product of the quadratic pro-
jective term with the remaining linear component
of the affine term. Since Z’' = §' = 0, this term
should typically be small (for example, consider
' %y'). In practise the disturbances to the affine
approximation are sufficiently small that projec-
tive tracking can be achieved without interfering
with the affine control process.

It would be possible to use this 8-dimensional
measurement to drive the control system, how-
ever this is not advantageous for two reasons.
Firstly, there measurement errors for the projec-
tive modes are much larger because the image mo-
tions they induce are comparatively small. Sec-
ondly, these measurements are not consistent over
a large range of configurations (since the amount

Application of Lie algebras to visual servoing 9

of projective deformation observed due to camera
motion falls off much more rapidly with distance
than the observed affine deformation).

2.5. Choice of Metric

The vector fields in Equations (7) and (11) can
be scaled linearly without in principle affecting
the solution for E; in Algorithm 1. However, the
choice of scale does affect the numerical stability
of the algorithm, so the question arises as to how
a suitable choice of basis fields, or metric, can be
made. For semi-simple groups (see (Varadarajan
1974, Sattinger and Weaver 1986) for details of
this), there is a natural choice of metric, the Car-
tan killing form. GA(2) is not semi-simple (since
it contains an Abelian ideal, the two-dimensional
translation group T(2)). In this case the nat-
ural metric is restricted to the quotient group
GA(2)/T(2) and a separate metric must be chosen
for the two dimensions of T(2). This means that
the scale of the translational vector fields may be
freely determined. The numerical stability can be
improved by choosing them so that the condition
number of the matrix M} in Algorithm 1 is min-
imised (see Section 6 - Intrinsic Degeneracy - for a
description of the problems that can occur if this
matrix is ill conditioned). In practise this means
that L, and Ly are scaled up so that they have a
similar typical magnitude to vectors L3 to Lsg.

3. Review of Lie Algebras and Affine In-
tegration

There is a natural representation for affine trans-
formations in terms of matrices in homogeneous
co-ordinates, such as those shown in Equation (2).
However, an alternative representation is to use a
co-ordinate system to represent small transforma-
tions near the identity. In this co-ordinate system,
the axes correspond to the different modes of de-
formation and affine transformations are specified
as a weighted sum of the group generators added
to the identity. This leads naturally to a local vec-
tor space representation for infinitesimal transfor-
mations, in which an affine transformation matrix,
A can be obtained from a vector, A by the expo-

10 Drummond and Cipolla

[eNeoNoNoNale]

origin

0 0 0 a
-a 0 0 -a
0 -W2|_ | O 0
® 0 & o IFlo | (not 0)
0 0 0 0
0 0 0 0

Fig. 6. Adding vectors in a Lie algebra

nential map:

A =eXiAiGi (12)
where

1
—X34 ...

1
X 2
=I+X+-X"+
¢ 2 6

For small 4; this can be approximated by the lin-
ear term:
A=T+) AG: (A1) (13)
i
Due to the linearity, the G; form a basis for a
vector space, known as a Lie algebra. Formally,
a Lie algebra is a vector space together with a
bilinear anti-symmetric operator, the Lie bracket,
satisfying the Jacobi identity:

[A, [B,C]] + [B,[C, Al + [C,[A,B]] =0 (14)

Where a Lie algebra is obtained from a group
in the manner identified above, the Lie bracket is
defined by the commutator of the generators:

[Gi,Gj] = GiGj — G;G; (15)
SO
C =[A,B] (16)
is given by
ZCka = Z AiB; (GG — G;Gy) (17)
k

i,J
That the algebra is closed as a vector space with

this definition follows from the fact that the G; are
the generators of a group. For GA(2) the com-

mutation relations of [G;, G;] are shown in the

following table:

G1 G2 G3 G4 G5 G6
(en 0 0 -G -Gi1 —-Gi1 -G
G2 0 0 G1 —G2 G2 —-Gh
Gs G2 —-Gi 0 0 2Gs —2Gs
Ga G G2 0 0 2G's 0
Gs Gi —-G2 -2Gs -2Gs 0 —2G3
Gs G2 G1 2G's 0 2G'3 0

The infinitesimal representation of the Lie al-
gebra can be extended by considering the expo-
nential map for non-infinitesimal transformations.
This defines a mapping from the Lie algebra onto
the group, thus providing a convenient way of rep-
resenting affine transformations as vectors which,
in this scenario, can be used to drive the robot
control system. Because higher order terms are
incorporated into the vector space by this method,
it is no longer possible to naively add vectors to-
gether to obtain a vector representing the compos-
ite transformation. This difficulty is illustrated in
Figure 6.

A new addition law must be found which pre-
serves the non-commutativity of matrix multipli-
cation so that the sum of two vectors is the vector
representing the true product of the transforma-
tions. Thus

A=BaC

implies

e2i AiGi — o3 BiGi 32, CiGi

writing A = >, A;G;, (B ,C similarly) gives
I+A+14%+
=(I+B+LiB>+..) I+C+iC*+...)

this is solved by setting

:m

(18)

(the derivation of this is given in Appendix B).
This expression applies to the matrices 4, B and
C. Tt also therefore holds in the vector space of
the Lie algebra replacing the matrix commutator
with the Lie bracket. This is an important result
because the correction terms provide a method of
consistently adding together vectors which repre-
sent group transformations such that the result is
correct in the exponential map.

This can then be used to integrate a series of
affine deformations, so that the integral faithfully
represents the total deformation. Equation (18)
is used to add the vector representing the lo-
cal inter-frame deformation B (computed by the
affine snake module) to that representing the cur-
rent value of the integral C. Figure 7 illustrates
the importance of including these correction terms
in the integral. The light contour shows the inte-
gral synthesised separately from a reference copy
of the snake, stored at the beginning of the ex-
periment. A series of moves were applied to the
contour, each move being a large motion in some
mode of deformation. These were chosen so that
the sequence of deformations would not commute.
The system without the correction terms diverged

(a) With Correction Terms (after 60 moves)

Application of Lie algebras to visual servoing 11

rapidly (Figure 7(b)) while the system with the
corrections incorporated maintained a good track
even over an extended sequence (Figure 7(a)).

One of the key advantages of this representation
(as opposed to parameterising in terms of the ele-
ments of the matrix in homogeneous co-ordinates,
for example) is that straight lines through the ori-
gin of the vector space are geodesics in the man-
ifold of the Lie group. It is this property that
allows a Jacobian computed in one place to oper-
ate correctly across a large range of perturbations.
A further benefit is that velocities and observed
errors can be combined correctly to enhance the
tracking capabilities of the real time affine snake.

The simulated example in Section 5.2 illustrates
the benefits that stem from applying geodesic
transformation trajectories by comparison to the
more common method of computing linear im-
age trajectories or parameterising in terms of the
affine transformation matrix elements.

4. Robot Control

The robot control thread takes the integral of the
affine transformation in the form of a 6-vector, A
and uses an affine-to-motion Jacobian (J~!, the
matrix of partial derivatives of robot motion with
respect to affine image transformations) to gener-
ate robot motions.

4.1. Computing the Jacobian

The affine-to-motion Jacobian is computed from
a series of trial robot motions performed in the
vicinity of the target location. The Jacobian must
be learned since the system has no prior knowledge

(b) No Correction (after 3 moves)

Fig. 7. Effect of correction terms on integral

12 Drummond and Cipolla

Lieagebra Contour Liealgebra
of SE(3) projection of GA(2)

R’ Jﬁ SE(3)J—' GA(Z)J—' R’
L Jacobian, J g(

(motion to affine)

Jacobian, I
(affine to motion)

Fig. 8. Computing the control Jacobian

of the relative position of the plane of the contour
with respect to the camera.

Each of the six possible robot motions produces
in a vector of integrated deformation, resulting in
a 6 x 6 motion-to-affine Jacobian, J. This is in-
verted using SVD to compute the affine-to-motion
Jacobian, J~1 (see Figure 8). In the case of ser-
voing from two contours, as discussed in Section
6.1, this becomes the 6 x 12 pseudo-inverse.

4.2. Control System

This inverse Jacobian can then be used to compute
compensatory motion from the observed integral
of affine deformation. The naive control law is
then simply:

AR=-J A (19)

where J~! is the affine-to-motion Jacobian and A
is the integrated total affine transformation giving
AR as a 6-vector describing the desired change in
robot co-ordinates. This differs from the tradi-
tional control law since A is computed using the
affine integration technique described in Section 3.
In the traditional approach, if M is the matrix de-
scribing the affine transformation from the target
view to the current observation, then A is defined
by M = I+ 3. A;G;. This approach replaces
this with M = exp(}", 4;G;). It can be seen that
when the current observation is near the target
view, then the two approaches converge since the
exponential map may be approximated by the lin-
ear term. However, when the transformation M
is large, the two control laws differ significantly.
This difference is illustrated with a simulated ex-
ample presented in Section 5.2.

14 T
“fourier.bt” —

®
T
L

0 5 10 15 20 25 30 35
Fig. 9. Plot of power spectrum of motions on axis 4

In practise, the simple unit-gain approach is un-
stable over long distances due to errors in mea-
surement and also over short distances due to in-
accuracies in the robot controller. The former
problem has been solved by limiting the motion
to twice the trial motion used for calibration (this
also acts as a safety mechanism preventing poten-
tially dangerous large robot motions).

The second problem which leads to oscillatory
behaviour about the target position proved more
difficult to deal with. In an attempt to model
the system as a second order differential equation,
the Fourier transforms of robot motion values cap-
tured during oscillations were computed. These
transforms showed a power spectrum approxi-
mately linearly proportional to frequency (i.e. the
derivative of a white noise spectrum) (see Figure
9). This suggests that each attempt to reposition
the robot results in a random error with low corre-
lation from one time step to the next. This prob-
lem has been ameliorated by employing a non-
linear control law in which the gain is lowered as
the target position is approached.

In order to determine the roll-off in the gain
control, a series of experiments were performed in
which the system was operated with a set gain
between 0 and 1. The standard deviation of oscil-
lations was plotted against gain (see Figure 10). A
quadratic was fitted (by hand) and the gain was
selected to be a linear function of the estimated
distance to target. The gain was chosen so that
the standard deviation of oscillations observed at
that gain divided by the gain was half the esti-
mated distance to the target. This resulted in the
gain curve shown in Figure 11.

0.04

Magni tude of oscillation (nmm

Fig. 10. Plot of oscillations against gain

5. Geometric Interpretation

In this section, the relationship between in-
finitesimal motions in SE(3) to infinitesimal trans-
formations in GA(2) is discussed. This is used to
demonstrate the benefits yielded by the use of the
Lie algebra of affine transformations in terms of
providing a robust Jacobian. Infinitesimal SE(3)
motions are generated by the following matrices
(using homogeneous co-ordinates), which are the
derivatives of the matrices, M; with respect to «
in (1) evaluated at o = 0.

Application of Lie algebras to visual servoing 13

Applying one of these generators to the homo-
geneous co-ordinate vector representing a point in
three-dimensional space yields the Lie derivative
of the co-ordinates with respect to the generated
motion. For example the Lie derivative (motion)
of a point, p, under Y axis rotation (generated by
Ey) is given by:

X" Z
Lgp = (’Z”) = Esp = (_Ox> (21)

0 0

The X,Y,Z co-ordinate system is chosen such
that its origin is at the optic centre of the camera,
with the Z axis along the optical axis. This means
(given a normalised camera) that p projects onto
the camera plane at p = ();Z) The Lie deriva-
tives of p with respect to the E; can now be com-
puted since:

. (X')|Z-XZ'|Z?
<Y' |Z-YZ /Z2> (22)

Without loss of generality the the surface nor-
mal of the contour is considered to be in the Y-Z
plane (see Figure 12).

If the curve is specified in local co-ordinates as
() then the mapping into the three-dimensional
co-ordinate system and into the image is:

u u U .
() - v cos @ — [dtysing) ()
v R v cos y
d+vsiné d+vsin

0001 0000 0000
S R
0000 0000 0000 (23)
T 3 858 050
E = - E = E =
N [8 5o 8] e [01 59 8] 0 [8 99 8] Only the affine part of observed transformations
(20) is computed here. This approximation requires
non-linear unit gain maximum large motions
control zone control zone motion clamped to maximum
1.0
Gain
0 \ \ \ \ \ \ \ \
0
0.5 10 15 20 25 3.0 35 4.0

Distance (units of trial motion)

Fig. 11. Gain curve for non-linear control system

14 Drummond and Cipolla

T

Fig. 12. Geometry of planar contour

that u,v < d. Using this, the Lie derivatives of
(Z) can be computed for each generator of motion
of the camera in SE(3) and the affine transfor-
mation component of the observed contour repre-
sented in terms of the vector fields L;:

X translation (E;):

LElp = (

)

so Lgz=1/Z=

[=l=T=Y103

1
d+vsiné

= %(1 — ytan0)

and Lgy=0
1 tan @
so Lg,p= ELl + W(Ls — Lg) (24)

Y translation (E2):

0
cor- (]
0

so Lg,z=0
1
and EEzyzl/Z:E(l—ytanO)

1 tané
S0 Lp,=<L2+ %(Ls — Ly (25)

Z translation (E3):

0
cor= ()
0

so Lpx=-X/7°=-z/Z ~—z/d
and Lpy=-Y/Z?=—y/Z ~ —y/d

1
so Lgp= —3L4 (26)

Rotation about X axis (Ej):

0
,CE4P = (_YZ>
0

so Lp,x=-XY/Z?=—ay
and Lpy=-1-Y?/7%=—-1-4?
so Lg,p~—Ls (27)

Rotation about Y axis (Es):

zZ
con ()
0

so Lpr=1+X?/7>=1+2"
and Lpy=YX/Z?=uzy
so Lg,p=L (28)

Rotation about Z axis (Fg):

-y
cor- (1)
0
so Lgz=-Y/Z=—y

and Lry=X/Z ==z
so Lg,p=Ls (29)

These equations form the Euclidean-to-affine
connection of the system. That is, they form a
map between the tangent space (at the identity)
of SE(3), for which the E; form a basis, to the tan-
gent space of GA(2), giving the motion to affine
Jacobian. This can then be inverted to give the
affine to motion Jacobian as:

—2d
0000 o0 2
0000 2% 0
000-d —-d 0

0-10 0 =5 0 (30)
1000 0 25
0010 0

This mapping is in general dependent on the d,
6 configuration, although Equations (27-29) are

independent, reflecting the well known fact that
motion due to camera rotation is independent of
the scene geometry. Thus, for these components,
the Jacobian will be valid across the entire con-
figuration space of the contour. Equation (26),
however, depends on the distance, d, to the con-
tour and Equations (24) and (25) also depend on
the angle, 6, of the inclination of the plane of the
contour. Despite these dependencies, however, the
Jacobian is still stable across a large range of the
configuration space. This is due to the fact that
the change in the value of the 8,d dependencies
over a large range of configurations is small enough
that the learned Jacobian can still operate rea-
sonably effectively. In practise, the Jacobian pro-
vides stable behaviour for d > 0.7 X dyarget, and
for 20° < 6 < 70°.

5.1. Lyapunov Stability

In order to show Lyapunov stability, it is neces-
sary to examine the relationship between the Ja-
cobian computed at the target and the Jacobian
as it would be computed at the current position.
The positive definite energy function used for this
example is simply the norm of the vector describ-
ing the total observed deformation.

V(A) =4l (31)

Then if J is the Jacobian obtained from cali-
bration in the target position and J' is the Jaco-
bian that would be computed in the current posi-
tion, the actual motion is in the direction —J;; 4;,
whilst || Al is minimised in the direction —J;; A;.
Thus:

AlIA]| <0 & (Jy4,).(T4A) >0 (32)

Note that in Equations (24-29) the only varying
coefficients are powers of d and tan . Since d > 0
(the target is in front of the camera), the only coef-
ficient that can change sign is tan 6 (which changes
sign when 6 does). This corresponds to the two-
fold ambiguity of the weak perspective assump-
tion. Thus the system is locally (0 < 6 < 90°)
asymptotically stable since ||A|| = 0 is unique.
Clearly this first order demonstration of Lyapunov
stability only applies to the ‘look and move’ style
of implementation used here. In the case of a

Application of Lie algebras to visual servoing 15

dynamic system, a second order energy function
must be used together with appropriate manipu-
lation of the non-linear gain shown in Figure 11.

5.2. A Simulated Example

In order to compare the use of the Lie algebra
for representing transformations to the more tra-
ditional approach which uses the entries in the
transformation matrix as a co-ordinate system, a
simulated example was constructed.

In the traditional approach, the aim is to drive
the affine transformation matrix to the identity
along a path that is linear in the matrix entries.
Thus if the observed transformation corresponds
to the matrix M, then the transformation error
is A’ = M — I and the path back to the identity
(parameterised by ¢ is:

M(t)=TI+(1—t)A' (33)

This corresponds to the path in which each point
travels to its desired position along a linear im-
age trajectory, as in (Colombo and Allotta 1999).
As will be shown, this approach can lead to some
unexpected robot behaviour.

By contrast, the approach presented here aims
to drive the affine transformation matrix to the
identity along a group geodesic. Thus if M is rep-
resented as M = exp(}_, AiG;) then the path is
given by:

M(t) = exp((1 —t)>,AiGy) (34)

In this example, two contours were synthesised
(shown in Figure 13) and both idealised trajec-
tories computed. Figure 14 shows a comparison
between the two approaches. Note that the scale
of the contour changes in the linear approach.

Initial contour Target contour

Fig. 13. Simulated contours

16 Drummond and Cipolla

)
C
v || O
O
3

Linear trgjectory Affine geodesic trgjectory

Fig. 14. Simulated image trajectories

In the affine geodesic case, the trajectory con-
sists solely of translations and rotations, whereas
in the linear case, there is a substantial compo-
nent of dilation (first negative, and then positive).
When these image trajectories are used to com-
pute simulated camera (and therefore robot) tra-
jectories in SE(3), the affine geodesic case corre-
sponds to rotation of the camera about a fixed axis
at constant speed. By contrast, the linear image
trajectory corresponds to a substantial z transla-
tion, first away, and then towards the image, re-
turning to the original z position, together with

0 0.2 04 06 0s 1 o 02 04 06 0.8 1

X axis rotation y axis rotation

0 0.2 0 ws os 1 1 02 04 s) 1

7 axis rotation 7 axis translation

Fig. 15. Robot trajectories for linear case

0 0.2 04 os os 1 1 02 04 06 X 1

X axis rotation y axis rotation

0 0.2 04 ws os 1 1 02 04 s X 1

7 axis rotation 7 axis translation

Fig. 16. Robot trajectories for geodesic case

camera rotations about an axis that varies with
time. These robot trajectories corresponding to
linear contour interpolation are shown in Figure
15 to compare with those for those computed from
the affine geodesic interpolation which are shown
in Figure 16.

6. Degeneracies and Condition Numbers

There are two significant types of degeneracy
suffered by this approach affine visual servoing.
These are:

Intrinsic degeneracy in which the inherent
shape of the contour creates an ambiguity as in the
case of a circular contour, for which rotation about
the contour centre is not observable. When this
occurs, the rank of the matrix used to identify the
affine transformation (matrix Mj) in Algorithm
1) drops from 6 to 5. In general this problem
occurs when the contour is a conic section. In
the situation where most of the contour is conic
(for example a straight line, in the case where the
contour is a long thin box), the snake can only use
the control points on the remainder of the contour
to resolve the ambiguous motion and hence this
situation is also unstable. Examples of contours
and their intrinsic condition numbers are given in
Section 7.1.

Extrinsic degeneracy which occurs when the
contour is fronto-parallel to the camera in the tar-
get position. In this event, the computed Jacobian
suffers a two-fold degeneracy and its rank drops
from 6 to 4. This happens because the two shear
modes of affine deformation become inaccessible
simultaneously. Consequently there are only four
remaining degrees of freedom in the observation
to control a six degree of freedom robot, causing

Fig. 17. Use of two degenerate contours for servoing

Application of Lie algebras to visual servoing 17

the control strategy to become ill-posed. The re-
lationship between the angle of inclination of the
contour and the condition number of the Jacobian
is shown experimentally in Section 7.2.

Both modes of degeneracy can be detected by
monitoring the condition numbers of matrices in
the system. When a matrix is rank deficient, its
condition number rises to infinity. Numerically,
this is computed by calculating the ratio of the
largest and smallest diagonal values in the singular
value decomposition. If this ratio rises above some
threshold, the matrix is considered to be rank de-
ficient. The dimensionality of the deficiency is
the number of diagonal values that are less than
the largest value divided by the threshold. The
thresholds determined experimentally from stabil-
ity trials were 2000 for the affine transformation
matrix (indicating intrinsic degeneracy) and 100
for the Jacobian (indicating extrinsic degeneracy).

6.1. Multiple Contours

These problems can be overcome by the use of
multiple contours. Servoing can be performed
from the use of two separate contours, each of
which individually suffers extrinsic degeneracy
(where both are parallel to the image plane and
thus the Jacobian for each contour has rank 4),
provided that they lie at different depths (are not
co-planar). An example is shown in Figure 17.
By concatenating the vectors for the two individ-
ual contours, a 12-vector of observed deformations
is formed. This results in a 6 x 12 Jacobian of
robot-to-affine motions. Again, by using SVD,
the pseudo-inverse of this matrix, a 12 x 6 affine-
to-robot Jacobian can be computed. In the case
shown in Figure 17, this Jacobian has full rank and
thus the servoing problem is well conditioned.

Additional contours are also useful, even when
the original contour is well conditioned. Typically
the condition number of the Jacobian dropped
(from about 30 to 20) and qualitative evaluation
showed that the system was stable over a greater
range of perturbations when used in this configu-
ration since it was necessary for both contours to
approach singularities before the system became
unstable.

18 Drummond and Cipolla

7. Implementation and Results

This approach has been implemented in the lab
using a SCORBOT ER VII 5 DoF robot arm with
a monochrome video camera (which can be seen
in Figure 22) connected to an SGI O2 worksta-
tion. The workstation is able to track up to 256
snake nodes at video frame rate and control the
robot with a cycle time of 0.5 — 1.5 seconds. The
principal cause of this long cycle time in the robot
control thread is the slow communications with
the robot controller.

7.1. Choice of contour

The system has been tested with a number of
contours, a selection of which is shown in Fig-
ure 18. The condition numbers of the transfor-
mation matrices under affine and projective lock-
ing was computed experimentally for each of these
contours in order to examine intrinsic degeneracy.
The results of this are shown in Table 1. Contours
1-9 represent an evolving series. Contour 1 has
the least intrinsic degeneracy, being the least ellip-
tical, while contour 8 is sufficiently close to ellip-
tical that the tracking system has substantial dif-
ficulties in tracking it stably. Contours 10 and 11
are essentially triangular. This situation is projec-
tively degenerate, since all motion of a triangle in
a plane can be represented by general affine trans-
formations. Consequently, the condition numbers
for projective tracking are very large, while the
affine condition number is certainly small enough
for stable tracking. Contour 12 is highly non-
degenerate and has the smallest condition num-
bers.

Table 1. Contour condition numbers

contour no. | Affine | Projective
1 127 145
2 149 182
3 190 212
4 232 255
5 340 378
6 535 615
7 1110 1280
8 1880 2250
9 1160 1550
10 333 20500
11 530 8500
12 38 80

oo 60 &0
oD & &

X - X -
D O =l

Fig. 18. Contours tested

7.2. Angle of inclination

Contour 12 was selected and the angle, 6 of the
inclination of the plane of the contour (as shown
in Figure 12) was varied. The Jacobian was com-
puted from trial motions in each configuration and
the condition number computed in order to exam-
ine extrinsic degeneracy. The results of this are
shown in Table 2.

The configuration with 8 = 0 is theoretically
degenerate and should have an infinite condition
number. In practise this does not occur since there
is measurement noise in computing the affine de-
formation of the contour and the robot trial mo-
tions are not infinitesimal, and thus induce a small
amount of affine shear.

Although it was possible to perform visual ser-
voing with # = 10°, in practise, reliable perfor-
mance was only obtained when the condition num-
ber was less than 50 (i.e. 8 > 20°).

Table 2. Jacobian condition numbers

0 (degrees) | Condition no
0 336.5
5 103.9

10 .7
20 41.1
30 30.4
40 23.7
50 20.4
60 18.8
70 18.0
80 broke

Application of Lie algebras to visual servoing 19

(a) Target position (b) Perturbed robot

(c) Perturbed part (d) Iteration 1

(e) Iteration 2 (f) Iteration 3

(g) Iteration 4 (h) Iteration 5

(i) Iteration 6

(j) Iteration 7

(k) Iteration 8 (1) Iteration 9

Fig. 19. Sequence for returning to target position

7.8. Tool placement experiments

A set of experiments were conducted in which
the aim was to accurately place a simulated tool
onto a workpiece. The length of the tool (and
thus the viewing distance when at the target) was
200mm. The reference inclination of the plane of
the contour for these experiments was chosen to
be 8 = 40°. Because the robot is over-constrained,
the sixth degree of freedom was synthesised as ro-
tation about the optical axis of the camera. In or-
der to maintain consistent placement of the tool,
this was computed as rotation about the location
of the tool tip in the image. This location must
be identified by the operator.

7.3.1. Range of perturbation An experiment
was conducted to test the range of possible pertur-

bations of the workpiece from target position. The
experiment was conducted by moving the robot
back away from the target position to a starting
position. The part was then perturbed and the
robot asked to servo back to the target location.
A typical run is shown in Figure 19 which shows
the computer view of the sequence with reference
and tracking snakes superimposed on the video
images. 19a shows the contour as seen from the
target position, in which the system initialises the
reference snake. 19b shows the robot perturbed to
the starting position. In 19c¢, the part is perturbed
by a translation and rotation. The component of
rotation about the optical axis of the camera cor-
responds to the missing degree of freedom of the
robot. Consequently, this rotation is handled by
also rotating the target reference contour about a
pre-specified point in the image plane. 19d-1 show

20 Drummond and Cipolla

3500 T

Cartesian error —
Angular error —--—-

3000

2500

2000

1500

1000 [

500 -

Iteration

Fig. 20. Typical convergence. The angular (rotation) er-
ror is in units of 0.01° while the cartesian (translation)
error is in units of 0.01 mm

the sequence of iterations as the robot returns to
the target position. Typical convergence perfor-
mance for this experiment is shown in Figure 20.

This experiment showed that the translational
perturbation is limited by the requirement to keep
the contour within the image boundary, resulting
in a maximum of approximately 200mm transla-
tional perturbation in x, y and z. The maximum
rotational perturbation of the angle of inclination
of the plane was limited to 20° about the refer-
ence angle of 8 = 40° with a limit of 40° about
the horizontal axis with a reference orientation of
0° (see Figure 21).

Servoing from reference angles other than § =
40° has also been tested, with the system suc-
cessfully responding to perturbations of the work-
piece with 10° < § < 70°. At the extreme ends
of this range, the range of permissible perturba-
tions is limited since the perturbed part must have
0° < 6 < 80°. If § < 0° then the computed

+- 40 ©
+/- 200mm
+/- 200mm
a +/- 200mm
+-200

Fig. 21. Range of stable perturbations

Jacobian is incorrect (since the part has passed
through the singularity) and if § > 80° then the
contour becomes intrinsically degenerate and is
subject to frequent catastrophic tracking failure.

7.8.2. Precision The accuracy of placement of
the robot under visual servoing was also tested.
The workpiece was left fixed, and the robot asked
to servo back to the target position from a se-
ries of random starting positions. The accuracy
of positioning (1 standard deviation) of the cam-
era in this experiment was +0.65mm in x and y
and 0.3mm in z with 0.15° in both pitch and roll.
The maximum error measured at the tool tip over
a series of runs was 1mm, with almost all errors
being less than 0.5mm. This is of higher accuracy
than the camera positioning due to correlations in
the position and rotation errors.

The convergence rate was also computed, with
the mean time to convergence being 2.5 cycles af-
ter the robot has reached the non-linear control
zone shown in Figure 11.

7.3.8. Closed loop tracking A final experiment
was concerned with closed loop tracking and
aimed to test the range of acceptable perturba-
tions that can be tracked gradually under closed
loop, as shown in Figure 22. In this mode sub-
stantial perturbations extending to approximately
double those shown in Figure 21 were successfully
tracked.

Fig. 22. Closed loop tracking

8. Conclusions

This paper has shown how the Lie algebra of affine
transformations can be used for visual servoing.
This is achieved by means of a novel technique
which allows group transformations to be accu-
rately integrated in the Lie algebra representation.
This is combined with a Jacobian based non-linear
control system to obtain high accuracy visual ser-
voing. This system has been implemented and
experiments show an accuracy of < lmm error
in position and 0.15° error in rotation. The use
of multiple contours to overcome degeneracies has
also been presented.

9. Acknowledgements

This work was supported by an EC (ESPRIT)
grant no. LTR26247 (VIGOR) and by an EPSRC
grant no K84202. The robot was donated by the
Olivetti Research Laboratory, Cambridge.

Appendix A: Definitions

An n-dimensional manifold is a topological
space such that about every point, there is an open
neighbourhood which is topologically isomorphic
to R™.

A Lie group is a group and a topology which
form a manifold.

The Lie algebra of a Lie group is the tangent
space of the group manifold at the identity. The
generators of the group are vectors in this space
and form a basis for it. The Lie bracket is an
anti-symmetric bi-linear form which is obtained
from the commutators of the group generators.

An ideal of a Lie group is a subgroup which is
mapped into itself by conjugation with any mem-
ber of the group.

An abelian group is one in which all pairs of el-
ements commute.

A semi-simple Lie group is one with no abelian
ideals.

Application of Lie algebras to visual servoing 21

Appendix B: Derivation of Equation (18)

The formula (18) is derived by repeatedly refining
the estimate of A to higher orders by expanding
both sides as a Taylor series. Expanding

eA — ¢BC

to first order gives:
e =T+A4
eBe’ =(I+B)(I+C)=I+B+C
So, to first order:
A=B+C 1)

Substituting (1) back in to the Taylor series for
e and expanding to second order gives:

e =I+(B+C)+i(B*+BC+CB+(?
ePe® =1+ B+C + §(B*> +2BC + C?)
=e* +1(BC -CB)
=e? + 1[B,C]
So, to second order:
A=B+C+}[B,C] (2)

Substituting (2) into e# and expanding to third
order gives:

e =1+ B+ C+i(B*+2BC +(C?)
+1((B+0)[B,C] +[B,C](B + C))
+ §(B*+ B’C + BCB + BC?
+CB? + CBC + C?’B + (C?®)

eBe’ =1+ B+C + L(B? +2BC + C?)
+ L(B® +3B°C + 3BC? + C?)
=et — 1((B+0)[B,C] +[B,C](B +C))
+ :(2B’C + 2BC?
— BCB - CB? - CBC - (C?B)
=e? - 1((B+0)[B,C] + [B,C](B + C))
+ X((2B +C)[B,C] + [B,C)(B +2C))
=e* + L((B-0)[B,C]+[B,C](C - B))
=’ + 5 ((B-0),[B,C))
So, to third order:
A=B+C+1[B,Cl+ 5((B-C),[B,C] (3)

22 Drummond and Cipolla

In practise this third order approximation is suf-
ficient for experimental purposes.

References

Bard, C., Laugier, C., Milési-Bellier, C., Troccaz, J.,
Triggs, B. and Vercelli, G.: 1995, Achieving dex-
trous grasping by integrating planning and vision-
based sensing, International Journal of Robotics Re-
search 14(5), 445-464.

Basri, R., Rivlin, E. and Shimshoni, I.: 1998, Visual hom-
ing: Surfing on the epipoles, Proceedings of Interna-
tional Conference on Computer Vision (ICCV ’98),
pp- 863-869.

Cipolla, R. and Blake, A.: 1997, Image divergence and de-
formation from closed curves, International Journal
of Robotics Research 16(1), 77-96.

Colombo, C. and Allotta, B.: 1999, Image-based robot task
planning and control using a compact visual represen-
tation, IEEE T-Systems, Man and Cybernetics (B)
29(1), 92-100.

Corke, P. and Goode, M.: 1996, Dynamic effects in visual
closed-loop systems, IEEE T-Robotics and Automa-
tion 12(5), 671-683.

Couvignon, P., Papanikolopoulos, N., Sullivan, M. and
Khosla, P.: 1996, The use of active deformable mod-
els in model-based robotic visual servoing, Journal of
Intelligent and Robotic Systems 17(2), 195-221.

Cross, G. and Cipolla, R.: 1996, Affine visual servoing,
Proceedings of British Machine Vision Conference
(BMVC ’96), Vol. 2, Edinburgh, pp. 425-434.

Espiau, B., Chaumette, F. and Rives, P.: 1992, A new
approach to visual servoing in robotics, IEEE T-
Robotics and Automation 8(3), 313-326.

Hager, G. and Hutchinson, S.: 1996, Introduction to spe-
cial section on vision-based control of robotic manipu-
lators, IEEE T-Robotics and Automation 12(5), 649-
650.

Horaud, R. and Dornika, F.: 1995, Hand-eye calibra-
tion, International Journal of Robotics Research
14(3), 195-210.

Hutchinson, S., Hager, G. and Corke, P.: 1996, A tutorial
on visual servo control, IEEE T-Robotics and Au-
tomation 12(5), 651-670.

Isard, M. and Blake, A.: 1996, Visual tracking by stoachas-
tic propagation of conditional density, Proceedings of

the Jth European Conference on Computer Vision,
pp. 343-356.

Kass, M., Witkin, A. and Terzopoulous, D.: 1988, Snakes:
Active contour models, International Journal of
Computer Vision 1(4), 321-331.

Kinoshita, K.: 1998, Robotic control with partial visual
information, Proceedings of International Conference
on Computer Vision (ICCV ’98), pp. 883-888.

Koenderink, J. J. and van Doorn, A. J.: 1975, Invariant
properties of the motion parallax field due to move-
ment of rigid bodies relative to an observer, Optica
Acta 22(9), 773-791.

Malis, E., Chaumette, F. and Boudet, S.: 1999, ZD% vi-
sual servoing, IEEE T-Robotics and Automation. (to
appear).

Murray, R. and Sastry, S.: 1994, A Mathematical Introduc-
tion to Robotic Manipulation, CRC Press, London.

Nayar, S., Nene, S. and Murase, H.: 1996, Subspace meth-
ods for robot vision, IEEE T-Robotics and Automa-
tion 12(5), 750-758.

Park, F., Barrow, J. and Ploen, S.: 1995, A Lie group
formulation of robot dynamics, International Journal
of Robotics Research 14(6), 609-618.

Sanderson, A., Weiss, L. and Neumann, C.: 1987, Dynamic
sensor based control of robots with visual feedback,
IEEE Journal of Robotics and Automation 3, 404—
417.

Santos-Victor, J., Sandini, G., Curotto, F. and Garibaldi,
S.: 1995, Divergent stereo in autonomous navigation:
From bees to robots, International Journal of Com-
puter Vision 14, 159-177.

Sattinger, D. and Weaver, O.: 1986, Lie groups and al-
gebras with applications to physics, geometry, and
mechanics, number 61 in Applied Mathematical Sci-
ences, Springer-Verlag.

Varadarajan, V.: 1974, Lie Groups, Lie Algebras and
Their Representations, number 102 in Graduate
Texts in Mathematics, Springer-Verlag.

Wilson, W., Williams Hulls, C. and Bell, G.: 1996, Relative
end-effector control using cartesian position based
visual servoing, IEEE T-Robotics and Automation
12(5), 684-696.

Yoshimi, B. and Allen, P.: 1995, Alignment using an un-
calibrated camera system, IEEE T-Robotics and Au-
tomation 11(4), 516-521.

