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Abstract

There is normally a simple choice made in the form of the covariance matrix to be used
with HMMs. Either a diagonal covariance matrix is used, with the underlying assumption
that elements of the feature vector are independent, or a full or block-diagonal matrix is used,
where all or some of the correlations are explicitly modelled. Unfortunately when using full or
block-diagonal covariance matrices there tends to be a dramatic increase in the number of pa-
rameters per Gaussian component, limiting the number of components which may be robustly
estimated. This paper introduces a new form of covariance matrix which allows a few “full”
covariance matrices to be shared over many distributions, whilst each distribution maintains
its own “diagonal” covariance matrix. In contrast to other schemes which have hypothesised
a similar form, this technique fits within the standard maximum-likelihood criterion used for
training HMMs. The new form of covariance matrix is evaluated on a large-vocabulary speech-
recognition task. In initial experiments the performance of the standard system was achieved
using approximately half the number of parameters. Moreover, a 10% reduction in word er-
ror rate compared to a standard system can be achieved with less than a 1% increase in the
number of parameters and little increase in recognition time.



1 Introduction

There is normally a simple choice made in the form of the covariance matrix to be used with hidden
Markov models (HMMs) [17]. Either a diagonal covariance matrix is used, with the underlying
assumption that each element of the feature vector is independent, or a full or block-diagonal matrix
is used, where all or some of the correlations are explicitly modelled. Unfortunately when using
full or block-diagonal covariance matrices there tends to be a dramatic increase in the number of
parameters per Gaussian component, limiting the number of components which may be robustly
estimated. To overcome this problem multiple diagonal-covariance Gaussian distributions may
be used [13, 10]. In addition to being able to model non-Gaussian distributions they can model
correlations. However, it is preferable to decorrelate the feature as far as possible, as components
must be used to model correlations rather than the possible non-Gaussian nature of the density
function associated with a particular state.

There have been many attempts to overcome this problem. They may be basically split into two
areas, feature-space and model-space schemes. In feature-space schemes, the front-end processing is
modified to try and ensure that all elements of the feature vector are independent. These include
schemes such as linear-discriminant analysis and the Karhunen-Loéve transform [4]. In speech
recognition the use of the discrete cosine transform is common for this reason [2]. However, it is
hard to find a single transform which decorrelates all elements of the feature vector for all states.
Model-space approaches allow many decorrelating transforms to be used. A different transform is
selected depending on which component the observation was hypothesised to be generated from.
In the limit a transform may be used for each component, which is equivalent to a full-covariance
matrix system. The scheme which is most closely related to the one which will be described here is
the state-specific rotation [14], which normally uses a separate transform for each state, but may
be applied at any level of clustering.

The model-space transform introduced in this paper is a natural extension of the state-specific
rotation. Instead of estimating the transform independently of the specific components associ-
ated with it, the transform is estimated in a maximum-likelihood (ML) fashion given the current
model parameters. Recently an extension to linear discriminant analysis based on ML has been
proposed [11]. Though addressing a different problem, this results in a similar optimisation task
to the one described here, but limited to having a single, global, transform. In contrast to the
scheme presented here, where an iterative scheme which is guaranteed to increase the likelihood is
proposed, numerical techniques or steepest descent are used in estimating the transform. With a
simple modification the optimisation scheme presented here may also be used to obtain the linear
discriminant transform for the diagonal-covariance-matrix case. The two approaches can be com-
bined so that each transformation selects a particular feature sub-space, rather than just a linear
transformation of the feature space.

The next section describes the state-specific transform. Semi-tied full-covariance matrices are
then introduced and re-estimation formulae, which are guaranteed to increase the likelihood of
the training data, are detailed. Various implementation issues, such as the memory requirements,
how the component to transform clustering may be performed and numerical accuracy issues are
discussed. The use of standard linear model-space adaptation schemes in conjunction with the
semi-tied full-covariance matrices is then described. The new technique is evaluated on a large-
vocabulary speech recognition task.

2 State-Specific Rotations

In HMM-based systems there is a basic choice in the form of covariance matrix to be used. It may
either be diagonal, block-diagonal, or full. The full covariance matrix case has the advantage over
the diagonal case in that it models inter feature-vector element correlation. However this is at the
cost of a greatly increased number of parameters, n(n + 3)/2 compared to 2n per component. Due
to this massive increase in the number of parameters, diagonal covariance matrices are commonly
used in large-vocabulary speech recognition. The hope is that by using multiple components any
strong correlations may be implicitly modelled.



One scheme proposed for handling this problem is to use state-specific rotations [14]. Here a
full covariance matrix is calculated for each state in the system. This is then decomposed into its
eigenvectors and eigenvalues. All data from that state is then decorrelated using the eigenvectors
and multiple diagonal covariance matrix components may then be trained. Thus the covariance
matrix associated with each state, s , is decomposed as
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A®®) is the diagonal matrix of the eigenvalues, u(®) is the state mean and
7s(1) = p(gs(7)|M, Or) 3)

where ¢;(7) indicates state (or component) s at time 7 and O is the complete set of training data.
When training, instead of using the standard observation vector, o(7), a state specific observation
vector, o(®) (7), is used where

o) (1) = UG () (4)

Each component, m, associated with that particular state, s, is then trained using
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where diag(.) just extracts the leading diagonal. The covariance matrix associated with each
component is

(6)
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During recognition and training the likelihood used for component m of state s is
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Computationally this is relatively efficient as it is only necessary to perform one rotation per
state, in contrast to standard full covariance matrices which are the equivalent of one rotation per
component.

Although this does partially handle the problem of correlation in feature vectors it does not fit
within the standard ML estimation approach for training HMMs. The transforms are not related
to the multiple-component models being used for recognition. One simple extension is to use the
average within-component covariance per state, as opposed to the global state covariance. Thus
the same transform is used except that equation 2 is replaced by
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where ;(™) is the current estimate of the component mean. This still does not yield a transform

that is guaranteed to increase the likelihood (it uses the same sort of approximation as least-squares
linear regression [8]), but does relate the transform to the current model set.

(9)
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A further modification can be used to achieve a transform that is guaranteed to increase the
likelihood. This transform has a similar form to the variance transform described in [6]. The
component-specific variance may be written as

m) _ g.(m) s (s)/ 1 (m)T
20 =L S L, (10)

where

) (m)— m m m)—
S L { T () (0(r) — 1) o(r) — )T L

5 (11)
full M) T
b Zm:l T=1 Tm (T)
and the diagonal matrix Lgl';)g is defined as
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This allows a full-covariance element to be shared over many components. Unfortunately there is
a significant increase in the computational load during recognition [6].

This paper introduces a natural extension to the state-specific rotation approach. The trans-
forms are trained in a ML sense, whilst maintaining the low recognition-time cost of the state-
specific rotation.

3 Semi-Tied Full-Covariance Matrices

Semi-tied full covariance matrices extend the concept of state-specific rotations, so that the trans-
formation are trained in a ML fashion given the current model set, rather than being obtained
from a rotation derived independently of the current model set.

Consider the covariance matrix

\(m) _ r (m) )T
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where Egi'gg is again a diagonal covariance matrix and A" is the full or block diagonal transform
of the covariance matrix. This is very similar to covariance matrix form described in equation 1,
other than the implicit constraint in the state-specific rotation, resulting from the eigenvector
decomposition, that the transform is orthonormal. A (")’ may be tied over a set of components,
say all those associated with the same state of a particular context-independent phone, the, and
EElTa)g is component specific. Rather than optimising A", the inverse, A("), is optimised, thus
Al = A1 (14)

Tt is very complex to optimise this directly so an expectation-maximisation approach is adopted [3].
To train the transform the following auxiliary function is used!

OM, M) = K- (15)
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where K is a constant independent of the model mean and variance, K (™ is the standard normal-
isation factor associated with component m and

6™(1) = o(r) — p(™ (16)

IThe superscript (") has been dropped for ease of notation. Hence M here represents the total number of
components associated with the transformation class r.



Differentiating with respect to A yields
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Unfortunately this does not yield a simple closed-form solution to the problem, as equation 17 is
non-linear. However it is possible to describe a simple iterative scheme which is guaranteed at each
iteration to increase the likelihood of the adaptation data. Details of the optimisation are given in
appendix A. For estimating the component specific model parameters equations similar to 5 and 6
are used.

During recognition the likelihood is based on?

£ (o(r); ™, 2, A0 = N (o) (r); AV, 5 ) +log (|AC)) (18)
and
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Thus by storing A" u(™) instead of (™) the cost of calculating the likelihoods associated with
semi-tied full covariance matrices is that of one matrix vector multiplication per-transform class
and an addition®.

It is worth emphasising the difference between semi-tied full-covariance matrices and state-
based rotations. The most important difference is that the semi-tied full-covariance matrices are
trained in a ML sense from the training data given the current model set. It would only be

possible to train a state-based rotation in a ML sense when all the values of E((ﬂ;)g associated with

a particular transform are the same*. Typically this constraint is not satisfied. As the number of
transforms decreases, so the differences between the component specific variances associated with
a particular transform becomes larger, and the difference between the state-specific rotation and
ML estimated rotation becomes increasingly large. Furthermore, there are no constraints on the
form of the matrix transform in semi-tied full-covariance matrices. In the state-specific rotations
the transforms are constrained to be orthonormal, as they are derived from the eigenvectors of the
state covariance matrix.

4 Implementation Issues

4.1 Statistics required

An important issue in the practical implementation of estimating the transform is the statistics
required. If implemented directly it is necessary to store O(n?), where n is the dimension of the
feature vector, parameters per component. This can very rapidly become expensive in terms of
memory as the number of components increases. Alternatively, it is possible to re-express all the
expressions in appendix A in terms of

GWZ (mﬂzvm o™ ()6 (r)" (20)

where i indicates one of the n dimensions. Assuming that a full transformation matrix is to be
estimated then it is only necessary to store O(n®) parameters per transform. If block-diagonal

2The last term, log (|A|), should strictly be written as %log (\A|2), thus allowing the determinant of A to go

negative.

3If only one transformation class is used then log (|A|) does not discriminate between the models so may be
ignored. It is also possible to eliminate the requirements for the determinant term by simply scaling the elements
of the diagonal covariance matrix [11].

4This effectively states that all component variances associated with the same state are tied.



transforms are to be used, for example as used in the experiments here where a separate transform
is used for each of the static, delta and delta-delta parameters, the storage requirements is reduced
as b%O(n3) where b is the number of blocks. The actual choice of where to store the statistics
depends on the number and nature of the transforms and the number of components.

In addition to just updating the transform part of the covariance matrix, it is possible to store
the standard statistics to update the mean. This allows the means to be updated at the same time
as the semi-tied full-covariance matrix transform. If the statistics are stored at the component
level, rather than at the transform level, it is also possible to update the component-specific
diagonal-elements of the covariance matrix. If all the parameters are updated simultaneously
according to the current alignment then there is no unique solution in common with the ML linear
discriminant analysis training [11]. One way around this problem, which is also applicable to the
ML trained linear discriminant analysis, is to iteratively optimise the mean and transform, A, then
the component specific diagonal covariance matrix. Each iteration is guaranteed to increase the
likelihood of the training data. This may be performed using the scheme described in appendix A.
However, this is not considered in this work due to the memory requirements that would result
from dealing with large model sets.

4.2 Number of iterations required

Auxiliary Function Value
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Figure 1: Convergence rate for estimating the transformation matrix of the semi-tied full-covariance
matrix.

One issue is how long the estimation task takes. For the semi-tied full-covariance matrix the
estimation process is an iterative one. Figure 1 shows a typical change in auxiliary function value
against iteration number. In many applications, particularly large-vocabulary speech-recognition
tasks, the majority of the training time is spent obtaining the statistics from the training data,
rather than estimating the model parameters given those statistics. Thus the actual parameter
estimation time is not crucial. For all the cases considered here the estimation of the transformation
matrix was run to convergence.

4.3 Transformation parameter tying

A variety of techniques may be used for clustering components, for example decision tree tying [1].
Unfortunately, it is harder to decide how to group the components when using semi-tied full-
covariance matrices. The simplest approach is to tie all states of the same monophone together.
The clustering may also be determined by generating a full covariance matrix single component
system and performing agglomerative clustering.

An alternative scheme that has previously been used for generating regression class trees is
based on locally maximising the likelihood [5]. Here a modified version of K-means clustering is



used. If there are currently R transforms then for each state®, s, the transform associated with
that state, #(*), is determined by

ME T

) = arg max Z Z'Ym [2 log( |A(T)\) (A(r)é(m)(T))TE(m)_l (A(T)é(m)(T))] (21)
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This is guaranteed to generate a local maximum of assignment. One problem that has been
observed with this form of optimisation is the dependency of the clustering on the start position.

For the experiments presented in this paper a single transform is used for each phone class and
no reassignment of component or state to transform undertaken.

4.4 Numerical accuracy

When calculating the transform there is a danger of the statistics stored not having full rank. This
may be due to numerical inaccuracies or a limited amount of training data. Defining G( as in
equation 20, the final term of the calculation of the probability may be shown to contain the term

S5 ) (ADa) (7)) St (A0 (1) = Za”G“ (T o)
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It is simple to see that when G(Y does not have full rank then the elements of a;, row i of A,
in the null space may be set arbitrarily large (this will increase the likelihood as it increases |A],
but does not alter the value of equation 22). There are two solutions to this problem, similar to
the calculation of the transforms in maximum likelihood linear regression (MLLR) [12]. The first
is to use block diagonal transformations, thus dramatically reducing the chance of non-full rank
matrices. Alternatively SVD may again be used. G(*) may be rewritten as

G — g AOyOT (23)
and
al =uTaT (24)

By optimising a; in only those dimensions where there are no numerical accuracy problems, the
standard re-estimation formulae for the constrained case may be used. Further details of this
optimisation are given in appendix B.

4.5 Non-diagonal component-specific matrices

There are situations where the elements of the component-specific matrix are non-diagonal. The
most obvious situation would be where stochastic segment models [16] were to be used. Here the
covariance matrix may be split into two terms, a within-frame correlation and a between-frame
correlation. Thus the within-frame correlation may be modelled by a component-specific full-
covariance matrix and the between-frame elements on say a phone-specific semi-tied full-covariance
matrix. The optimisation in appendix A assumes that the component-specific matrix is diagonal.
Standard gradient descent schemes could be used, though this requires storage of statistics at
the component level and may be computationally expensive. Alternatively, this problem may be
overcome by using a modified version of normalised domain MLLR [7]. Here the within-frame full

covariance matrices, Zq(um), are decomposed as
= = utmsg ue” (25)

The semi-tied full-covariance matrices are then obtained in this normalised domain, where only

Egl'gg needs to be considered. This approach may also be used for adaptation and is detailed in

the next section.

5This assumes that all components associated with a particular state will use the same transformation.
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5 Speaker and Environmental Adaptation

There is the question of how the model-based linear transformation schemes, currently popular in
speech recognition, may be applied to situations where semi-tied full covariance matrices are used.
MLLR is not usually applied to models with full-covariance matrices as it is computationally too
expensive [6]. The same problem applies when semi-tied full covariance are used. However, instead
of applying standard adaptation schemes, a modified version of normalised domain MLLR [7] may
be used. The original normalised domain MLLR mapped all the covariance matrices to the identity
matrix and calculated the transform in this new simplified domain (this is the same computational
cost in estimating the transforms as least squares linear regression [8]). The transform was then
mapped back into the original domain. This generates a transform which is guaranteed to increase
the likelihood of the adaptation data. However, the scheme was found to be sensitive in certain
cases of unobserved components. Instead of converting the covariance matrices to the identity
matrix, the matrix may be decomposed into its eigenvalues and eigenvectors®

m) __ m (m) m)T
»(m) — yl )Edi gU( ) (27)
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By expressing the matrix in this format the optimisation for MLLR becomes
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This may be optimised using the standard MLLR equations [12] and the final transform is
) = umAuIT  m) L gy (29)

where A and b are the results of optimising equation 28. This allows models with component-
specific full-covariance matrices to be compensated in approximately the same cost at standard
MLLR, whilst avoiding the problems of normalised-domain MLLR described in [7].

This adaptation may be contrasted with the least squares linear regression (LSLR) implemented
in [9] when the decorrelating rotation described in [14] was used. Using LSLR it is not possible to
guarantee that the likelihood of the adaptation data will increase.

6 Results

An initial investigation of the use of semi-tied full-covariance matrices was carried out on a large-
vocabulary speaker-independent continuous-speech recognition task. All recognition experiments
were carried out on the 1994 ARPA Hub 1 data. The H1 task is an unlimited vocabulary task
with approximately 15 sentences per speaker. The data was recorded in a clean” environment. No
speaker adaptation was performed.

The baseline system used for the recognition task was a gender-independent cross-word-triphone
mixture-Gaussian tied-state HMM system. This was the same as the “HMM-1" model set used in
the HTK 1994 ARPA evaluation system [18]. The speech was parameterised into 12 MFCCs, C;
to C12, along with normalised log-energy and the first and second differentials of these parameters.

6An alternative decomposition is to use
sm) = AMrg(m) A I (26)
diag
This is computationally cheaper as the SVD does not need to be performed for each component (though of course
A () must be inverted.

"Here the term “clean” refers to the training and test conditions being from the same microphone type with a
high signal-to-noise ratio.



This yielded a 39-dimensional feature vector, to which cepstral mean normalisation was applied.
The acoustic training data consisted of 36493 sentences from the SI-284 WSJ0 and WSJ1 sets, and
the LIMSI 1993 WSJ lexicon and phone set were used. The standard HTK system was trained
using decision-tree-based state clustering [20] to define 6399 speech states. For the H1 task a 65k
word list and dictionary was used with the trigram language model described in [18]. All decoding
used a dynamic-network decoder [15].

When generating multiple component systems mizing-up was used [19]. The performance was
investigated at various stages of this process. It should be emphasised that the grammar scale factor
and insertion penalties were not optimised at any stage for the particular number of components
(or for the use semi-tied covariance matrices). For the particular implementation of semi-tied full-
covariance matrices considered here all states of all context-dependent phones associated with the
same monophone were tied. Furthermore, a simple block-diagonal transformation was used. This
resulted in very few additional parameters, 23322, in a system of up to 6 million parameters. The
process of building the semi-tied full-covariance matrices was to firstly mix-up to the new number
of components. Two iterations of Baum-Welch re-estimation were performed. The new transform
was then estimated and finally an additional two iterations of Baum-Welch re-estimation run. This
process was repeated as necessary.

Number Speech | Semi-Tied | Distribution Error Rate (%)
Components Covariance || Parameters || H1 Dev | H1 Eval

1 — 501018 13.93 15.54
Block (+23322) 1227 | 13.70

2 — 1012938 12.01 13.04
Block (+23322) 11.06 11.81

4 — 2023980 10.56 11.43
Block (+23322) 9.86 9.65

6 — 3036918 10.08 10.91
Block (+23322) 9.17 9.30

8 — 4049224 9.67 9.97
Block (+23322) 8.88 8.61

10 — 5061530 9.42 9.51
Block (+23322) 8.46 8.38

12 — 6073836 9.57 9.20
Block (+23322) 8.62 8.12

Table 1: Semi-tied covariance matrices results on H1 development and evaluation data

The first thing to notice about table 1 is that despite the very small increase in the number of
parameters, even for the single component case only an additional 5%, the effects on the recognition
performance is quite dramatic. For the single component case on the evaluation data the block
transform reduced the error rate by 12%. For all cases the semi-tied full covariance matrix case
gives a gain over the standard covariance matrix; the performance of the standard 12-component
system was achieved using only 6 components. In the 12-component case, a 12% reduction in word
error rate was achieved, which is comparable with the performance achieved with incremental
speaker adaptation for the standard system [6].

The performance figures in table 1 may be compared to the state-based rotation scheme [14].
For the implementation examined here separate transforms were calculated for each state of each
monophone using equation 2. On the H1 evaluation task this system had a word error rate of
14.25% for the single component system and 12.85% on the two component system. Though this
shows an slight improvements over the standard system, the gain is considerably less than that
achieved with semi-tied full-covariance matrices described here. Furthermore the gains over the
standard became negligible as the number of components increased. It should be emphasised that
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the “state-specific” rotations estimated were far fewer than those in [14], which possibly explains
the poor performance. However, there are still more transforms than the semi-tied full-covariance
matrix case.

The number of Baum-Welch re-estimations after the transform has been learnt was set very
low: only two. This is not expected to seriously effect the mixing-up process, but for a particular
number of components it may give poorer recognition performance than is actually possible. Thus
purely for recognition purposes an additional two iterations of Baum-Welch re-estimation were
performed®. For the six component system this gave a slight increase in performance, 9.03% word
error rate on the development data and 9.28% on the evaluation data.

An alternative method of using semi-tied full-covariance matrices is to take a fully trained
system and then train the transformation part of the covariance matrix. After obtaining the
transform additional iterations of Baum-Welch may then be applied. Using this approach on the
12 component system and performing two additional iterations of Baum-Welch gave 9.00% on the
development task and 8.59% on the evaluation task. These again show improvements compared
to the standard system, though not as large as incorporating training the transforms into the
mixing up process. This indicates how the transforms may be incorporated when “mixing-up” is
not used in the standard training procedure. Of course further improvements could be obtained
by generating new components, typically using K-means clustering [9], given the current set of
transforms.

7 Conclusions

This paper has introduced a new form of covariance matrix, the semi-tied full-covariance matrix.
Using this new form of matrix, it is possible to choose a compromise between the large number of
parameters of the full-covariance matrix and the poor modelling ability of the diagonal case. Maxi-
mum likelihood re-estimation formulae are derived, which are guaranteed to increase the likelihood
of the training data. How this new form of covariance matrix may be used with standard model-
based adaptation schemes is also described. The new models were tested on a large-vocabulary
speech recognition task where a reduction in word error rate of 10% over the standard system was
achieved with little increase in the number of parameters or computational cost.

Future work will involve experiments using the proposed linear adaptation scheme with semi-
tied full-covariance matrices and use of other transformation groupings.
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A Semi-Tied Full-Covariance Optimisation

The objective is to find the values of A that maximises the following expression

R 1 M T (m)
QM M) =K1 =5 3 3 () [K (30)

m=1r1=1

+1og(|=™)]) - 210g(|A]) + (A6(™ (T))nggg*l (Aa<m>(7)))]

Differentiating with respect to A yields

~ M T
QPR = X S AT g e o] e

8The reason for only performing the additional iterations for recognition is to make the standard and semi-tied
systems as comparable as possible.
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Noting that

COf(Aij)
> r_q @ikcof(Ar)

where cof(A;;) is the cofactor of element a,; and assuming that the determinant of A is non-zero

(@ M)y = (32)
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where o;"* is the i'" leading diagonal element of ngl) )

iag Equating this expression to zero and

re-arranging into the form
clafj — C2Q55 — C3 = 0 (34)
where
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A|D =3 aixcof(A) (35)
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Solving this is a standard problem, thus

c2 £ 1/c3 + 4crez
ai]‘ = 2 (36)
C1

There are two solutions, so there is the question of which root is to be chosen. Differentiating
again

(=)

(37)

8 [9QM, M)\ _ (2ciai —c2)
dai; da;; B |Al

and substituting equation 36 yields

=) 0 <8Q(M,M)) _ +/c2 + 4cico (39)

8aij 8aij |A|

If the determinants of A is constrained to be positive, it is clear that the positive solution is the
one required. There is no strict constraint that |A| be positive, but in practice this was invariably
the case from the identity matrix initial value used.

Thus by using the current estimate of the cofactors, each row of A may be optimised indepen-
dently. By then iteratively running through the rows the complete transform may be optimised
efficiently and robustly. Each iteration is guaranteed to increase likelihood of the training data
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B Optimisation using SVD

The objective is to maximise the following expression (ignoring the terms independent of the
transform A)

QM. 1) = ——{ZZ% [zlog@aﬂzu cof(A )

m=1r1=1

+ Xn: Xn: az A } (39)

=1 =1
where
al = uTar (40)

and

G = Z (m)2 Z% 6™ (r)T = UOAODYOT (41)

/\l(;) is an element of A(). The dimensions whose eigenvalues are deemed to be too small to be
accurate are not updated. These may be left as the elements that result from the identity matrix
transform.

Differentiating this with respect to a;; gives

8Q(M, M) i”‘: i S ulcof(Aix)
== (zlzl it Sy uf cof(A))

Again assuming that the determinant is non-zero and equating to zero

M T n n
Z Z’ym lZu 'cof(A ‘| —a”)\() lZa,lZu cof(A ] =0 (42)

m=17=1 =1

— )]

Rearranging this into a standard quadratic yields

lel2~ - Cgflij — C3 = 0 (43)

)

where

A(l Zu )cof(A
/\() ZallZu cof(A

l#37 k=1

¢z = %ivm lZu cof(A ]

m=1r1=1

C1

C2

These may then be easily solved in the same way as the standard optimisation in appendix A.
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