A SUBSPACE APPROACH TO INVARIANT
PATTERN RECOGNITION USING
HOPFIELD NETWORKS
A. H. Gee, S. V. B. Aiyer & R. W. Prager
CUED/F-INFENG/TR 62
May 21, 1992

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

Email: ahg/svb10/rwp @eng.cam.ac.uk

A Subspace Approach to Invariant Pattern Recognition using

Hopfield Networks
A. H. Gee, S. V. B. Aiyer & R. W. Prager

Cambridge University Engineering Department
Trumpington Street

Cambridge CB2 1PZ
England

Email: ahg/svb10/rwp @Qeng.cam.ac.uk
May 21, 1992

Abstract

This work is concerned with a pattern recognition system which uses a method of subspace
projection to compare n-point template and unknown patterns. The system is intrinsically
invariant to linear transformations, though dependent on the relative ordering of the points
within the template and unknown. However, invariance to point ordering may be added
through the use of a Hopfield network as an optimization tool. Finding the correct point
ordering is formulated as a combinatorial optimization problem, and then mapped onto a
modified Hopfield network for solution. The overall pattern recognition system is successfully
used to recognize instances of the ten handwritten digits. The results confirm that the system
is invariant to both linear transformations and point ordering.

Introduction

In 1985, Hopfield and Tank [1] showed how the Hopfield network could be used to solve combina-
torial optimization problems of the Travelling Salesman type. Their approach involved specifying
two quadratic energy functions of the network output; the first was minimized when the network
output represented a valid solution to the problem, the second was a monotonic function of the
‘cost’ of the solution. The sum of both of these formed the problem specific energy function. They
then showed how this function could be associated with the Liapunov function of the Hopfield net-
work; by setting the network parameters appropriately, the minimization of the network Liapunov
function would effectively solve the optimization problem. However, it was found that the network
frequently failed to find valid solutions, let alone high quality ones [2].

More recent work has revealed how best to modify the original Hopfield network to produce
both valid and high quality solutions to combinatorial optimization problems. One approach has
been to use a multi-state encoding scheme to explicitly enforce one of the validity constraints,
coupled with a mean field annealing process [3]; this technique has been particularly successful
when applied to Graph Partitioning type problems [4]. Another quite distinct approach evolved
through an eigenvector and subspace analysis of the original Hopfield network’s behaviour [5].
This lead to the development of a modified network, proposed in [6], which rigidly enforces all the
validity constraints through a direct subspace projection, leaving the original network dynamics
free to minimize the cost function alone. By decoupling the two parts of the problem specific energy
function, the network operates with an increased efficiency and 100% reliability. A mathematical
framework, drawing heavily on the use of Kronecker products (also known as Tensor products)

[7], has been developed to map arbitrary combinatorial optimization problems onto the modified
network [6]. The modified network has been particularly successful when applied to Travelling
Salesman type problems [6].

In this paper we use the modified network, as well as the Kronecker product framework, to solve
a combinatorial optimization problem associated with a particular method of invariant pattern
recognition. The pattern recognition scheme uses a method of subspace projection to compare
template and unknown patterns, each of which are represented by n points placed evenly around
their outlines. The recognition scheme demands that the n points be ordered in the same manner
for both the template and unknown pattern being compared; the problem of finding the correct
ordering may be formulated as a combinatorial optimization problem. We illustrate how the
Kronecker product framework may be used to map the problem onto the modified network. Finally,
we present results of the network being used in a pattern recognition system attempting to classify
handwritten examples of the ten digits. Whilst the results are encouraging, more interesting are
the intermediate states which the network passes through as it solves the optimization problem.
These give a valuable insight into how the network solves the problem, an insight which will prove
useful when attempting to improve the network’s performance, or derive efficient mappings for
other optimization problems.

Kronecker Product Notation and Matrix Identities

Let AT denote the transpose of A.

Let [A];; refer to the element in the i*" row and j*' column of the matrix A.

Similarly, let [a]; refer to the i*" element of the vector a.

Sometimes, where the above notation would appear clumsy, and there is no danger of ambiguity,
the same elements will be alternatively denoted A;; and a;.

Let A ® B denote the Kronecker product of two matrices. If A is an n x n matrix, and B is an
m X m matrix, then A ® B is an nm X nm matrix given by:

A11B AlgB AlnB
A®B — A21B AZZB AgnB (1)
A, B A,,B ... A,,B

Let vec(A) be the function which maps the n x m matrix A onto the nm-element vector a. This
function is defined by:

a=vec(A) = [A11;A21a~-';AnlaA12:A22:~--aAnQa-“aAlmaA2m:-'-aAnm]T (2)

Throughout this paper we make use of the following identities (see [7] for proofs):

trace(AB) = trace(BA) (for A and B both n x n) (3)
trace(AB) = [Vec(AT)]T vec(B) (for A and B both n x n) (4)
vec(AYB) = (BT ® A)vec(Y) (5)
(A@B)X®Y) = (AX®BY) (6)

Other Notation and Definitions

Let I™ be the n x n identity matrix.
Let 0™ be the n-element column vector of ones:

[0"]; =1 ie{l,...,n} (7)
Let O™ be the n x n matrix of ones:

[On]” =1 Z,] € {1,,71} (8)

2

Let R” be the n x n matrix given by

1
R*=I"--0" 9
: ©)
Multiplication by R™ has the effect of setting the column sums of a matrix to zero:

n n

1
E [R"a]; = E [a—EO”a]i
i=1 i=1
1
= o"Tla— ~0O"a]
n
1
— TLT _ nT n nT
= o"'a n(o"0"")a

n
<> [Rhal; = 0 (10)
i=1
Let P be the set of n coordinate pairs which define a 2-dimensional pattern:

77:{(I’1,y1),($2,y2),---,(-’En,yn)} (11)

Let x be the n-element column vector given by
T
X=[x1,29,...,2,] (12)

Let y be the n-element column vector given by

y =l vl (13)
Let x be a unit vector parallel to x:
b
X=— (14)
x|
Let y be a unit vector parallel to y:
N y
Y= (15)
|yl
Let C be the n x 2 matrix whose columns are x and y:
C=[xy] (16)

Let C be the n x 2 matrix whose columns are x and y:

C=[xVy] (17)

In the context of a pattern recognition system, in which any particular pattern is either a template
or an unknown, let xM, yM %M M CM and CM be the above quantities for an n-point template
pattern, PM. Also, let xY, yY, ¥V yY, CVY and CV be the analogous quantities for an n-point

unknown pattern, PY.

Invariant Pattern Recognition by Subspace Projection

In this section we construct the framework of a pattern recognition system which is invariant
to a wide variety of linear transformations. First, consider any new pattern, PM | obtained by
transforming a template pattern as follows:

FICNE] s

7

3

If we define x™' and yMI as
1 7 1 1 T
M = [zllvl,xlzvl,...,xM] (19)

1 1 1 /T
yM [yiw,ygd,-.-,ym (20)

then equation (18) is equivalent to

M = gxM 4 pyM (21)
yM' = exM 4 dyM (22)

Equations (21) & (22) tell us that the vectors x™" and yM' lie in the 2-dimensional subspace!
spanned by xM and yM. We can construct a projection matrix, TM, for this subspace as follows:

™ = cM(cM’ cM)-1cM! (23)

For any r, the vector TMr is the orthogonal projection of r onto the subspace spanned by x™ and

yM

For an unknown pattern PV, a scalar “quality factor” ¢ may be calculated which measures how
well the vectors xU and yV fit in the subspace spanned by x™ and yM:

g = &UTTM}ACU + 9UTTM§,U

= trace (CUT TMCU) (24)

Note that ¢ is bounded by 0 < ¢ < 2, and reaches its maximum value only when both xV and yV
lie fully in the subspace spanned by x™ and yM.

Equation (24) may be used as the basis of an invariant pattern recognition system. For any
unknown pattern, PV, ¢ is used to give a measure of how well the unknown PV resembles a
pattern obtained by a linear transformation of the template PM. By comparing against a number
of possible templates, the unknown pattern may be classified as belonging to the same class as the
template with which it scores the maximum quality factor ¢.

Any PY obtained from PM by a transformation of the form given in equation (18) will lie
wholly within the subspace spanned by x™ and yM, and will therefore score a maximum quality
factor of 2. The classification scheme is therefore invariant to all transformations of the form given
in equation (18). If all patterns are initially shifted such that their centres of gravity lie at the

origin of coordinates, ie:
n n
i=1 i=1

then the transformations represented by equation (18) include rotations, enlargements and linear
shears. The operation of shifting to the origin may be achieved by the simple matrix multiplication
C® = R"”C, where C® represents the pattern with its centre of gravity shifted to the origin. We
apply this shifting operation to all template and unknown patterns, and use the superscript * to
denote quantities related to such shifted patterns.

This pattern recognition scheme demands that the sets of points representing the template and
unknown patterns have the following properties:

1. Each set contains the same number, n, of point coordinates.

2. The point coordinates in the unknown and template coordinate sets are ordered in the same,
preordained manner.

IThere is a close link here with the notion of the invariant subspace of a transformation: see, for example, [8].

The first condition is simply a matter of representation, and is therefore easily fulfilled. To illustrate
the importance of the second condition, consider the case where the unknown pattern PV is in fact
identical to the template pattern PM. Then we would expect the quality factor, ¢, as calculated
using equation (24), to be exactly 2. However, if the ordering of the coordinates within PY is not
the same as the ordering of the coordinates within PM, then the quality factor will not, in general,

be 2.

Point Ordering

For the pattern recognition system to be of any use, it is necessary to ensure that the template
and unknown points are ordered in the same manner before equation (24) is used to calculate the
quality of the match. A reordering of the points within a pattern may be defined by means of the
n-element vector p: let [p]; = j if the point initially in position j is to be reordered into position
1. We must also enforce

[p]ii[p]j for ’i,jE{l,...,Tl},i#]' (26)

if all the points in the original pattern are to be present in the reordered pattern. The reordering
may be achieved directly by means of an n x n matrix operator V(p), which is constructed as
follows:

0 otherwise

V)l = { Ll = (27)

With the above definition of V(p), the n x 2 matrix C’ = V(p)C contains the same point coordi-
nates as C, but reordered in the manner defined by p. Note that V(p) is a permutation matrix:
its elements are all either 1’s or 0’s, and each row and column contains only a single 1. Expressed
mathematically, this means:

[V(p)l:; € {1,0} (28)
Z[V(p)]ij =1 je{1,...,n} (29)
Z[V(p)]ij = 1 ie{l,...,n} (30)

By making use of the property of the matrix R" given in equation (10), these conditions may be
more neatly expressed as:

[V(p)li; € {1,0} (31)
V(p) = R'V(p)R"+S (32)
where § = %O” (33)

In equation (32), the row and column sums of the matrix R”V(p)R" are both zero, and the row
and column sums of S are both one, so the row and column sums of V(p) are also both one; hence
the two summation conditions (29) and (30) are satisfied.

One approach to point ordering may be to impose something like a Hamilton Path ordering
on the points, but this suffers in that it is not robust against the kind of deformations which we
would expect the system to cope with; small deformations of a template might lead to significantly
different Hamilton paths, resulting in a poor match quality, g. Another approach is to impose no
preordering on the points at all; instead, each time the unknown is compared with a template, the
points in the unknown are reordered to give the maximum possible match quality ¢(p). This can
be expressed as a combinatorial optimization problem as follows:

mlgmx q(p) where ¢(p) = trace (V(p)CUS)TTMS(V(p)CUS) (34)

Expressed in words, the optimization problem is to find the permutation matrix V(p), which,
when used to reorder the points in PV, gives the maximum match quality, ¢(p), with the template

PM,

The Modified Hopfield Network

v —— (1) Projection of v onto valid subspace
i ® (2) Nonlinear ‘symmetric ramp’ threshold
+ = v=s+Twy Vv functions constraining v to the unit hy-
B percube.
\ ® (3) Change in v given by the gradient of
e) S R
AV V=T oPy+jo the optlm.lzatlon energy term E°P with
Av = Atv

Figure 1: Schematic diagram of modified network implementation.

In [6], a modified Hopfield network with increased efficiency is proposed — see Figure 1. The
top loop contains a projection operator (1) which directly confines the network state vector, v, to
a particular affine subspace. The equation of this affine subspace, usually referred to as the “valid
subspace”, 1s

v=T"%yv +s (35)

The nonlinear operator (2) ensures that v stays within the unit hypercube, by applying a “sym-
metric ramp” threshold function to each of the elements of v:

Vi — g([v]o) (36)

1 if [v]; > 1
shre o) = e HO< k< (37)
i |v); <

We can view the nonlinear operator (2) as imposing a set of inequality constraints, where the 8
constraint is active if [v]; < 0 or [v]; > 1, and inactive if 0 < [v]; < 1. Operation (3) in the bottom
loop updates v using the dynamic equation

v = TPv 4i°P (38)
The dynamics expressed in (38) act so as to minimize E°P, where
E°P = —%VTTOPV —iorly (39)
T°P is further expressed as
TOP = TP 4 BI" (40)

TP9 is intimately related to the cost function we wish to minimizein the combinatorial optimization
problem. If v¢ is the converged network state vector v, and EPY is the cost function we desire to
minimize, then

EPd = _%ch TPaye — jorTye (41)

The term SI” is included in equation (40) in order to allow implementation of the Matrix Graduated
Non-Convexity (MGNC) algorithm described in [6]. By gradually increasing 5 as the network

6

converges, the state vector v is forced into a hypercube corner, so that the converged state vector
v© satisfies [v¢]; € {1,0}. The MGNC algorithm also helps prevent the network from becoming
trapped in sub-optimal local minima of the cost function, EP9. Precise implementation details
relating to the modified network can be found in [6]. Broadly speaking, however, the mode of
operation is that a single traversal of the bottom loop, (3), is followed by several traversals of the
top loop, (1) & (2); the whole cycle is repeated continually whilst slowly increasing S to force
convergence to a hypercube corner.

Mapping the Optimization onto the Hopfield Network

The modified Hopfield network may be used to perform the combinatorial optimization (34). The
converged state vector of this network, v¢, is used to represent the desired permutation matrix,
V(p), by way of the vec function (see [7]):

ve = v(p) = vee(V(p)") (42)

Hence, if the patterns are represented by n points, a network with n? units is required to find the
reordering p. We must also define a matrix, V| which is the matrix equivalent of the unconverged
state vector v:

v = vec(VT) (43)

Consider what happens if we confine V so that
V=R"VR" + S (44)

If we subsequently force v into a hypercube corner, ie. if we enforce [V];; € {1, 0}, then it is clear
that V will satisfy the conditions for V(p) in equations (31) and (32), and will therefore represent
a valid solution to the combinatorial optimization problem.

The projection loop of the modified network, described by equation (35), may be used to enforce
(44). The projection parameters T2 and s can be derived as follows:

A% = R"VR"+S
& v = R"V'R*+S
& Vec(VT) = Vec(R”VTR”) + vec(S)
& vee(VH) = (R® @ R™)vec(VT) + vee(S) (using (5))
S v = (R"@R")v + vec(S) (using (43))

Hence, by comparison with (35), we have
Tval — R» ® R” (45)
1
s = vec(S)=—(o" ®o") (46)
n

For this particular problem, TV?! is a projection matrix which projects v onto a subspace in which
the row and column sums of V are zero; this subspace is termed the “zero-sum subspace”.

In this application we are aiming to maximize ¢(p), the match quality, with respect to the point
ordering p. The Hopfield network minimizes EP9, so if we set EPY1 = —q(p), then the Hopfield
network will carry out the desired optimization. We are now in a position to derive the form of
the matrix TPY:

EPY = —q(p)
= —trace [(V(p)CUS)TTMS(V(P)CUS)]

= —trace [(V(p)CU)(V(p)CU)TTV| (using (3)

& EP1Y = —trace [V(p)CUSCUSTV(p)TTMS
_ -pa(vquﬂTVaxcUﬁthvgﬁTTMﬂ (using (4))

~ rec(vip))] " (T © €U ec(V(p)T) (using (5)

= —v(p)" (T © CV*C")v(p) (using (42))
By comparison with (41), we see that

™ = 2P®Q) (47)
P = T (48)
Q = CUsgUs (49)
i = 0 (50)

Results and Discussion

As a small illustrative experiment, the network was used in a pattern recognition system to rec-
ognize instances of the ten handwritten digits. The template and unknown digits used in the
experiment are shown in Figure 2. A point positioning algorithm was used to place 20 points
around the outlines of the digits; these 20 points represent the digits in the recognition scheme.
The results are displayed in Table 1. Figure 3 shows the point reordering the network found for
the unknown ‘3’ compared with the template ‘3.

d
N
W
A
[
0
\
]
0
g
0

Figure 2: Template (top) and unknown (bottom) digits used in the experiment.

Unknown Template Digit
Digit 0 1 2 3 4 5 6 7 8 9
0 1.98 153 181 187 173 187 183 160 190 184

198 1.99 197 198 196 196 198 199 198 1.98
183 166 1.93 176 180 178 1.84 1.82 181 181
1.80 182 1.8 1.94 183 1.87 183 182 186 1.84
172 176 1.77 187 1.88 183 1.76 163 182 1.74
182 165 182 188 1.8 1.91 190 165 188 1.84
181 179 191 193 182 1.89 196 186 184 1.97
170 170 1.82 1.8 189 1.73 187 1.98 1.72 1.90
193 184 18 194 1.78 190 188 1.70 1.96 1.85
181 173 184 187 182 1.8 193 18 180 1.96

W oo~ O O i W N

Table 1: Match qualities for all templates against all unknowns; winning scores are shown in bold
type.

0 1 Nl ‘ o1 OB IR S
o 1 ? 1 46
15 x8 0.2 x]'l x3
02
6 _03}2 2
03t :3 1 T
04k | LR
04 04F A ,
-05¢ 2 2 1 !
2 05]
08y 5] 10
0.7+ J 1 06 A7
-08F 4
29 20 07} 5 #
©rox B &7 1
] L L L L L _08 L L L){19\ xzo L
02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
Template ‘3’ Unknown ‘3’

Figure 3: Point ordering found by the network in attempting to match an unknown ‘3’ to a
template ‘3°.

Not surprisingly, 6’s and 9’s are easily confused, a result of the rotational invariance of the
scheme. 1’s have a high match quality against all templates, because a linear transformation of the

form [L0] will map any template onto a straight line of points. The lower match qualities for

0 0

digits of the same class occurred when the point positioning algorithm placed different numbers of
points on similar features of the templates and unknowns: for an example of this, see Figure 4.

More interesting than the results themselves is the way in which the Hopfield network performs
the optimization. Figure 5 shows the output of the network during various stages of convergence as
it attempts to reorder the points in the unknown ‘3’ to give a good match against the ‘5’ template.
The quantities ¢; and §;, given in the figure, are the intermediate match quality and normalized
intermediate match quality respectively:

¢ = (VU TM(VEYS) + (VyUs) I TV (Vy ™) (51)

A V&Us TTM V)ACUS VAUs TTM VﬂUs

ql — () - (2) + (y) - (2 y) (52)
|VXUs| |VyUs|

Before any of the nonlinear constraints (36) become active, the strategy is to find a linear combi-
nation of the 3’s coordinates which forms a straight line of points; such a pattern, as mentioned
above, scores very well against all templates. As some nonlinearities become active, the network
is no longer able to do this, and instead succeeds in using the 3’s coordinates to produce a pattern
reminiscent of the ‘6’ template, again with a high normalized match quality. As v is forced into
a hypercube corner, the network is likewise forced to make do with the coordinates it has got
(instead of linear combinations of them), and simply reorders them to give the best match quality
against the template. The intermediate behaviour of the network gives a valuable insight into how
the network performs the optimization; such knowledge will be useful when attempting to improve
the performance of the network, or derive efficient mappings for other optimization problems.

0 0
X
01 * 01 x
X X
02 X] 02} x
) x
03 1 03
X X X M
-04F B 04k
X X M
-05F ! 1 05 F
X X X X X X X
06? X X X X X X i 06,
X
0.7+ X b 07+
X
08 1 08 x
X
X
_Olﬂ L L L L X L L _Og 1 1 1 L L L L
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Template ‘4’ — five points on vertical stroke | Unknown ‘4’ — six points on vertical stroke

Figure 4: Template and unknown ‘4’ showing different numbers of points on the vertical strokes,
resulting in a poor match quality.

Conclusions

A pattern recognition scheme, which uses a method of subspace projection to compare templates
with unknowns, has been described. The scheme is invariant to a wide variety of linear transfor-
mations, but requires that the points representing the template and unknown be ordered in the
same manner. However, invariance to point ordering has been added through the use of a modified
Hopfield network as an optimization tool. The process of mapping the particular combinatorial
optimization problem onto the network has been illustrated. The results of the invariant pattern
recognition scheme are encouraging, though more interesting is the intermediate behaviour of the
network as it solves the optimization problem. Knowledge of this behaviour will prove valuable
when attempting to improve the performance of the network, or derive efficient mappings for other
optimization problems.

References

[1] Hopfield, J. J. & Tank, D. W. “Neural” Computation of Decisions in Optimization Problems,
Biological Cybernetics 52, 141-152, 1985.

[2] Wilson, V. & Pawley, G. S. On the Stability of the TSP Problem Algorithm of Hopfield and
Tank, Biological Cybernetics 58, 63-70, 1988.

[3] Peterson, C. & Soderberg, B. A new method for mapping optimization problems onto neural
networks, International Journal of Neural Systems, Vol. 1, No. 1, 1989.

[4] Van den Bout, D. E. & Miller 111, T. K. Graph Partitioning using Annealed Neural Networks,
IEEE Transactions on Neural Networks, Vol. 1, No. 2, June 1990.

[6] Aiyer, S. V. B., Niranjan, M. & Fallside, F. A Theoretical Investigation into the Performance
of the Hopfield Model, IEEE. Transactions on Neural Networks, Vol. 1, No. 2, June 1990.

10

[6] Aiyer, S. V. B. & Fallside, F. A Subspace Approach to Solving Combinatorial Optimization
Problems with Hopfield Networks, Cambridge University Engineering Department Technical
Report no. CUED/F-INFENG/TR 55, December 1990.

[7] Graham, A. Kronecker Products and Matriz Caleulus: with Applications, Ellis Horwood Ltd,
Chichester 1981.

[8] Gohberg, 1., Lancaster, P. & Rodman, L. Invariant Subspaces of Matrices with Applications,
Canadian Mathematical Society of Monographs and Advanced Texts, John Wiley and Sons,
New York 1986.

[9] Rosenbrook, H. H. & Storey, C. Mathematics of Dynamical Systems, Thomas Nelson and Sons,
London 1970.

Appendix

Improving the Speed of Convergence

In this appendix we carefully analyze the operation of the network in the early stages of convergence.
In particular, we consider the operating region in which v is contained within the bounds of the unit
hypercube, and has not yet come to any of the hypercube’s faces: ie. before any of the inequality
constraints (36) have become active. We start by deriving an expression for v?*, the component of
v which lies in the zero-sum subspace.

ML Tval", — Tval(Topv)
TvI TP (T + 5) (53)

Hence we see that v? is made up of two parts, a constant term, TV T°Ps, and a term which
depends on v, T2 TPT"2ly. Let us consider the constant term first:

TvalTopS — Tval(_qu +ﬁIn)S
— _Tval(TMs ® CUSCUST)S + é(Rn ® Rn)(on ® On)
n
— _lTval(TMs ® CUSCUST)(OTL ® On)
n
1 U
= ——TV(TMso" CUSCUSTO”) (using (6)) (54)
n
But .
. R"C
Us — T AT (55)
[R"CY|
and so 1
TvalTopS —— 2r]:\val(r]:\Mson @ R"” CUcUTRnOn) =0 (56)
n|R"CY|
So we see that the constant term in v** is zero, and we are left with
v® = Av=Av® (57)
where A = TvalTerTV (58)
The general solution of (57) can be expressed by means of the matrix exponential (see [9]):
A -~ tF
_ At s _ k
vEB(t) = etV = HA vz (59)
k=0

where vZ® is the initial value of v**. When using the Hopfield Network as an optimization tool, vZ*
is usually set to be a small, random vector.

11

Suppose A has eigenvalues Ay, Ao, ..., A,2, with associated eigenvectors uj,usg,...,u,2. Let
vZ® be decomposed along A’s eigenvectors as follows:

n2

v = Z ciu; (60)
i=1
Then we have

n2

i=1
o] tk TL2 ﬂ2

SvE(t) = Z i Zci/\?ui = Ze)‘itciui (62)
k=0 i=1 i=1

Equation (62) tells us that v?(¢) tends to get lined up with the eigenvector of A which has the
corresponding largest positive eigenvalue: let us call this eigenvector the “dominant eigenvector”,

>
ol
<
ol
|

and the corresponding eigenvalue the “dominant eigenvalue”. In this application, the dominant
eigenvalue is degenerate?, with a corresponding 2-dimensional dominant eigenspace. If we start the
network running with an initial random vZ°, which will have a random component in the dominant
eigenspace, then the network dynamics will tend to emphasize this random component, and hence
the network is unlikely to head towards the global optimum in the linear phase of convergence.
Although the network is quite capable of making substantial corrections once some of the nonlinear
constraints (36) have become active, both a faster convergence and a better quality solution can
be obtained by ensuring that the network heads in the right direction from the outset.

We can break the degeneracy of the dominant eigenvalue by using a pseudo-projection matrix,
TMSI, instead of TM® in the formulation of TP9:

™ = gMem” (63)

Using TMs' instead of TM® results in A having a non-degenerate dominant eigenvalue3, and also
gives a cost function KP9 which is very similar to the cost function obtained using TMS. In
particular, the global optimum obtained with ™ consistently lies at a hypercube corner close
(in terms of Hamming distance) to that obtained with TM®. As soon as any of the constraints (36)
become active, the above analysis is no longer valid, and the true projection matrix TM® can
be substituted for TMS in the formulation of TP4. There is still a small problem in that the
component of vZ® parallel to the dominant eigenvector may be positive or negative, so v can still
go off randomly in one of two directions. Hence, to ensure the network finds the global optimum,
we have to run the network twice, starting the first run with vZ*, and the second with —vZ%. We

o)
are then free to choose the best solution of the two by direct evaluation of the solution quality,

q(p).

2The proof of this is rather protracted, but suffice it to say that the obvious degeneracy of the nonzero eigenvalue

of the projection matrix, TMS, carries through to the dominant eigenvalue of A.

3 Again, the proof is protracted, but notice that TMs' has no nonzero degenerate eigenvalues, which results in A
having a non-degenerate dominant eigenvalue.

12

Iteration Parameters Mesh plot of V (VxY) against (VyY)

Y
-0.38]
Tteration 1
B8 =—0.995 o
q: = 0.0003 ¥
qu = 0435 0.39]
-0.3%
04

L X L
0455 046 0465 047 0475

/ ’\QM 44 ‘ :) j0‘34

Iteration 300 /!’%&y}l\ﬂﬁ %‘,!\ | 03
8 =—0.995 '{ﬁ%ﬂ%"" ;‘" ' ‘ 038
¢ = 0.135 *mﬁ"‘{"«»“» ' .,0_4
q = 1.999 “'iié"’ \\ «
! "' \‘ :0‘45

04 042 04 046 048 05 082 054

0.1
02F x
Tteration 900 03
8 =—0.867 w
¢, = 1.808)
G = 1.993 0
06
07
08

02 03 04 05 06 07 08

0.1
02
03F x
Tteration 3100 o4
3 =1.241
¢ = 2.052 ®
¢, = 1.869 06
07
08

09
01 02 03 04 05 06 07 08

Figure 5: Intermediate behaviour of the network as it attempts to match an unknown ‘3’ to a
template ‘5’

13

