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Summary

The study of connectionist networks has often been criticized for an overall lack of rigour,
and for being based on excessively ad hoc techniques. Even though connectionist networks have
now been the subject of several decades of study, the available body of research is characterized
by the existence of a significant body of experimental results, and a large number of different
techniques, with relatively little supporting, explanatory theory. This dissertation addresses the
theory of generalization performance and architecture selection for a specific class of connectionist
networks; a subsidiary aim is to compare these networks with the well-known class of multilayer
perceptrons.

After discussing in general terms the motivation for our study, we introduce and review the
class of networks of interest, which we call ®-networks, along with the relevant supervised training
algorithms. In particular, we argue that ®-networks can in general be trained significantly
faster than multilayer perceptrons, and we demonstrate that many standard networks are specific
examples of ®-networks.

Chapters 3, 4 and 5 consider generalization performance by presenting an analysis based on
tools from computational learning theory. In chapter 3 we introduce and review the theoretical
apparatus required, which is drawn from Probably Approzimately Correct (PAC) learning theory.
In chapter 4 we investigate the growth function and VC dimension for general and specific ®-
networks, obtaining several new results. We also introduce a technique which allows us to use
the relevant PAC learning formalism to gain some insight into the effect of training algorithms
which adapt architecture as well as weights (we call these self-structuring training algorithms).
We then use our results to provide a theoretical explanation for the observation that ®-networks
can in practice require a relatively large number of weights when compared with multilayer
perceptrons. In chapter 5 we derive new necessary and sufficient conditions on the number
of training examples required when training a ®-network such that we can expect a particular
generalization performance. We compare our results with those derived elsewhere for feedforward
networks of Linear Threshold Elements, and we extend one of our results to take into account
the effect of using a self-structuring training algorithm.

In chapter 6 we consider in detail the problem of designing a good self-structuring training
algorithm for ®-networks. We discuss the best way in which to define an optimum architecture,
and we then use various ideas from linear algebra to derive an algorithm, which we test exper-
imentally. Our initial analysis allows us to show that the well-known weight decay approach to
self-structuring is not guaranteed to provide a network which has an architecture close to the
optimum one. We also extend our theoretical work in order to provide a basis for the derivation
of an improved version of our algorithm.

Finally, chapter 7 provides conclusions and suggestions for future research.
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Chapter 1

Introduction

1.1 The Scope of this Dissertation

A great deal has been written in the last few decades on the subject of connectionist networks
and their potential applications as pattern classifiers, associative memories, predictors etc. A
great deal has been said about their apparent ability to learn from examples, deal sensibly with
badly defined problems, perform generalization, and be tolerant to faults, but there has tended
to be relatively little work done in an attempt to gain a fundamental understanding of these
properties — connectionist network research, and the discipline of connectionist network design,
have often been criticized for being too ad hoc, and even after several decades of study much
connectionist network design is based on a process of trial and error.

Two major reasons can be identified which have led to this state of affairs. Firstly, re-
searchers have tended to study their networks with little regard for alternative and generally
better understood strategies for approaching similar problems; as an obvious example, we note
that in most connectionist network research relatively little regard is given to whether better
results could be obtained using standard statistical methods. Secondly, the field is characterized
by the existence of a large body of experimental results with relatively little accompanying work
on the production of good explanatory theories. A prime example here is the investigation of the
property of generalization, and we expand on this issue below.

The comparison of connectionist networks with alternative techniques, and the theoretical
analysis of the properties of these networks which are perceived to be of interest, are thus im-
portant areas for research, and indeed in recent years a welcome development in connectionist
network research has been the increase in the willingness of researchers to address these is-
sues. Omohundro [1] for example provides an extensive study of how standard computational
algorithms can be used to obtain results similar to those produced by connectionist networks.
Similarly, Ripley [2] and others have compared connectionist networks with standard statistical
techniques. Other examples are available, however this is not the major concern of this disser-
tation and so we do not mention them here. The contribution of this dissertation concerns the
second of the two areas suggested: the theoretical analysis of connectionist networks.

In this dissertation we provide a rigorous analysis of two specific aspects of a specific class
of feedforward connectionist networks, trained using supervised learning. The actual class with
which we shall be interested was chosen for quite specific reasons. Originally we found these
networks interesting because they appeared to provide excellent practical results while being sig-
nificantly easier to train than the usual feedforward network of choice: the multilayer perceptron
(MLP) trained using hidden layer back-propagation. What increased our interest was the fact



that the class in general appears to be considerably less popular — it is of course interesting to
ask why!

These networks are also interesting because they are quite analytically tractable, and in this
sense our inspiration is similar to that of Minsky and Papert [3]. These authors, in approaching
their celebrated work, had very specific reasons for studying the class of perceptrons: they were
simple enough to be analytically tractable, and flexible enough to be interesting. We study a
particular class of networks — similar in some ways to perceptrons which are in fact a subclass
— for two reasons. Firstly, they combine flexibility with analytical tractability in the same
manner as perceptrons. Secondly, they have proved highly successful in practical applications —
in particular, as we shall see, they have significant advantages over many alternative networks,
in particular the MLP, in terms of training time while often providing comparable performance.

We will be interested in two specific aspects of the design of these networks: generalization
performance and the selection of a good network architecture. These aspects, and the reasons
for studying them, are explained below. In both cases we draw on work not specific to the study
of connectionist networks. In the former case we use ideas from computational learning theory,
specifically from Probably Approximately Correct (PAC) learning, and in the latter case we use
ideas from linear algebra.

The reader should note that we will say nothing about any supposed relationship between
connectionist networks and actual biology (our use of the term ‘connectionist’ as opposed to
‘neural’ is intended to emphasize this). Although we accept that much can be learnt by looking
at the properties of actual neurons and synapses etc, it is not relevant to the study presented
herein, which will be based entirely in the realms of engineering, mathematics and computer
science.

1.2 Feedforward Connectionist Networks

The basic principles of pattern classification and function approximation, and the use of connec-
tionist networks therein, are well documented and we will therefore not provide an exhaustive
review. We assume that the reader has some prior knowledge of these areas, including for exam-
ple knowledge of statistical pattern classification, Bayes decision theory, standard connectionist
networks such as the MLP, and an understanding of the concept of supervised learning. In this
section we provide a brief introduction, mainly for the purpose of providing some basic nota-
tion and nomenclature for what follows. Further detail can be found in Duda and Hart [4],
Lippmann [5, 6] and Hush and Horne [7].

1.2.1 Pattern Classification

In pattern classification, we are interested in assigning sets of measurements, taken in a given
situation, to specific classes. The set of all possible measurements forms an input space Z; it
is usual to deal with Z = IR" for some positive integer n and this is the case in the following
work. A specific measurement provides us with an input vector x € Z = IR", the elements
of which in general correspond either to measurements taken directly from the real world —
pressure, temperature or other physical quantities, or perhaps the pixel values of an image —
or to features derived therefrom. We wish to map input vectors x € Z to pattern classes. For
a problem involving ¢ classes we typically have a set C = {c1,c3,...,¢q} of ¢ class indices and
hence this process can be modelled by a mapping f :Z — C.

As a very simple example of this type of problem, for which ¢ = 2, consider input vectors



x € 7 which contain the pixel values of an image of an apple. We require that the output of the
system is ¢ if the apple is rotten and ¢z otherwise.

1.2.2 Connectionist Networks

Clearly the design of a pattern classifier of the type described above can be regarded as the design
of a device which implements a mapping f : R™ — C; the connectionist network techniques in
which we are interested provide one of many alternative ways of designing and implementing the
desired mapping.

The main distinguishing feature of a connectionist network when compared to the available
alternatives is its architecture. There is no standard and generally accepted definition of a
connectionist network, and we will not attempt to introduce one. It is sufficient for our purposes
to define a connectionist network as a system of interconnected processors (the interconnections in
general being directed). The network has n inputs which will generally correspond to the elements
of an input vector x € IR", and one or more outputs which indicate the class corresponding to any
input x. The processors, or nodes, are relatively simple!, and each processor p; has an associated
vector w; of parameters or weights which can be used to alter the specific function gw, that
it computes. We will be concerned with parameter vectors w; having real-valued elements,
although other types have also been used. Similarly, the functions gw, can have any appropriate
domain and range, although we will in general deal with domains which are Euclidean spaces
and ranges which are either Euclidean spaces or the set {+1, —1}. In the following work we are
interested only in feedforward networks, meaning simply that our networks contain no cycles. A
typical network is illustrated in figure 1.1; the network as a whole clearly computes a function
fw : IR® — C, where w is a vector containing all of the available variable weights.

1.2.3 Connectionist Networks as General Function Approximators

Connectionist networks are also commonly used in order to perform more general function ap-
proximation tasks. For our purposes these cases can be modelled by allowing the set of class
indices to be C = IR, such that the network computes some function fyw : IR" — R. This type of
scenario arises, for example, if we wish to use the network in order to predict a future value of
some appropriate time series, such as a sampled speech signal, given the most recent n sample
values.

1.2.4 Supervised Learning

Obviously the actual function computed by a connectionist network can be altered if we alter
any of the parameter vectors w; associated with the individual processors; we denote by F the
class of all functions fy that can be computed by a network. The task of designing a network
involves three choices: the choice of the class of functions computed by each node, the choice of
the specific architecture used, and the choice of the actual values for the parameters. We are
interested in the design of networks using supervised learning. This means that we have access
to a training sequence,

T = ((x1,01), (x2,02), - -, (XK, 0k)) (1.1)

of k training examples where x; € R™ are inputs to the network and o; € C are the corresponding
classifications. The sequence T} will typically be constructed by collecting actual inputs x for

LSimple’ is of course a term which is difficult to define in this context. Examples of particular functions appear
in later chapters.



Output 1

Output 2

Processor i'comput&sa
function O, depending on the
vector w; of parameters.

Figure 1.1: A typical feedforward connectionist network with two outputs. Inputs are
elements of a vector x € R".

which the correct classification is known, and in general includes only a subset of the possible
inputs to the network. It may either provide a true representation of the underlying problem or,
more realistically, be corrupted by noise. The network is designed entirely on the basis of the
available examples and any a prior: information about the problem that we wish to incorporate.
We typically attempt to construct a network such that an appropriate measure of its error with
respect to the training sequence is minimized; this idea is made more precise in the next chapter.
Once the network has been trained, we hope that it exhibits some ability to generalize.

The ability of a network to generalize is important, and the theoretical investigation of the
generalization ability of a particular class of networks forms the first of the two major aims of
this dissertation. In order to motivate the study of generalization, we now provide a summary
of the issues involved.

1.3 Generalization

In an historical context, the fact that connectionist networks usually exhibit some ability to
perform generalization has always been perceived as one of their most important properties, and
it is fair to say that this ability has been one of the major reasons for the considerable degree
of interest shown in the subject. Although there is no universally accepted definition of the
term ‘generalization’, it is invariably used, in the context of pattern classification, to describe the
ability of a connectionist network or other pattern classifier to correctly classify an input vector
which was not present in the set of examples used to train the system.



1.3.1 Experimental and Theoretical Studies of Generalization: Why do we
Need Theoretical Studies?

Most research performed on generalization has been, until relatively recently and with the excep-
tion of a relatively small number of studies, of an experimental nature. Typically, a particular
network has been trained on a particular set of data from a particular problem and then was
said to ‘generalize’ in some sense if it performed well when tested using an independent set of
test data from the same problem. If the network performs well in such an experiment, we have
some evidence of generalization ability, but only in relation to the specific network architecture
and node functions used, and the specific problem addressed. Of course, this approach is quite
acceptable if we can find a network that appears to generalize ‘well enough’ for the particular
problem we wish to solve, but then some obvious questions present themselves: will the network
be guaranteed to provide good generalization for examples from the same problem that weren’t
in the set of test data? Or: does a different network exist which will generalize better? and
so on. In short, a purely experimental approach is unlikely to be fruitful if we wish to answer
more general, rather than specific, questions about generalization ability, and to gain a true
understanding of the phenomenon.

One of the reasons that the quantity of theoretical work published is relatively small is
perhaps the difficulty of defining, in an exact manner, what is meant by ‘good generalization’,
and several definitions have now appeared. It is worth noting that, in one sense, the concept
of ‘good generalization’ is rather arbitrary, and that it depends entirely on the precise nature
of the problem being addressed and on the views of the user; in this case analysis can only be
attempted for specific cases. A similar observation has been advanced by Minsky and Papert [3,
pages 278-279].

It is also worth noting that, when considering generalization, there are some problems which
no pattern classifier, connectionist network or otherwise, can solve without being trained using
every possible input/output pair. An example given by Girosi and Poggio [8] is that of learning
to associate names in a telephone directory with their telephone number. No matter how large
a subset of the possible set of examples we use to train the network its chances of generalizing
are very small. In general, any mapping which is completely local or random in this manner will
cause problems.

1.3.2 Generalization and A Priori Knowledge

A generally perceived advantage of connectionist networks is that they do not usually need to
be supplied with a great deal of a priori knowledge regarding the problem to be solved. It is
very much an open problem to what extent it will in general be necessary to incorporate a priori
knowledge of a particular problem when designing a network in order to obtain good generaliza-
tion, and of course, any network architecture and training algorithm which do not require this
knowledge would be highly desirable. Again, this problem clearly cannot be satisfactorily solved
using experimental studies alone.

1.3.3 Generalization and Network Architecture

In addition to gaining a good understanding of the generalization ability of particular types
of network, it would be useful to be able to make general comparisons between different types
of connectionist network. For example, we would like to be able to ask questions such as:
is a network of type A inherently better at performing generalization than a network of type
B? Or: does a network of type A typically require fewer training examples to achieve a given



generalization performance than a network of type B? Questions such as this clearly require
theoretical, as well as experimental analysis if they are to be answered adequately. Furthermore,
we would like to know precisely what effect the architecture of a network has on its ability to
generalize, as perhaps the most important result to appear consistently to date in experimental
studies has been that the ‘size’ of a network must be chosen correctly if we are to obtain good
generalization; once again, this question needs theoretical as well as experimental analysis.

In fact, there are further reasons for which the selection of an appropriate architecture is
important and it is an investigation of this problem for the particular class of networks of interest
which forms the second major aim of this dissertation.

1.4 The Selection of a Suitable Network Architecture

In reviewing the existing literature on connectionist network training algorithms, it quickly be-
comes clear that the majority of the research published to date is dedicated to the study of
networks having a fized architecture. That is, the number of processors in the network and
the pattern of interconnections between them is forced to remain fixed throughout the process
of training while only the values of the weights are adapted in response to the presentation of
training examples.

This is the case in particular in the early published literature, with a small number of
exceptions such as the Group Method of Data Handling (GMDH) introduced by Ivakhnenko [9]
and the statistical techniques reviewed by Barron and Barron [10]. In the more recent literature
the fact that the actual architecture used is important, and should be carefully chosen, has found
considerably more acceptance, and more research has begun to appear in what we will call self-
structuring training algorithms. These algorithms choose an architecture which is in some sense
optimum, as well as the appropriate corresponding weights, during training. As we might expect,
research to date has been aimed mostly at MLP type networks.

Why is self-structuring important? Three major reasons can be identified, relating to com-
putational load, storage, and generalization ability. In all three cases we benefit in general from
using the smallest network capable of learning to perform satisfactorily on a set of training
examples, where the size of the network is measured in an appropriate manner.

Firstly, consider computational load. After training, the time taken for a feedforward connec-
tionist network to classify a new input will generally be affected by its size. This is particularly
true of multilayer networks in which the time taken increases with the number of layers. We
also need to consider the time required to determine the values of the weights, which generally
increases with increasing network size. Secondly, the amount of storage required in implementing
a network clearly depends directly on the number of weights and nodes, and on the complexity
of the nodes. Finally, we will see that, in general, in order to obtain a network with good gener-
alization performance for a particular problem it is a good strategy to use the smallest network
capable of learning the training examples to a sufficient accuracy. This can be regarded as a
simple application of the principle of Occam’s Razor; in standard statistical parlance it can be
regarded as an attempt to avoid overfitting the available data.

There is also one further good reason for using self-structuring. This is that the imposition
of a fixed architecture before training proceeds can be regarded as the imposition of a priori
knowledge about the problem being addressed; it can be thought of as being similar to inductive
bias in artificial intelligence. If a prior:i knowledge which allows the user to make a sensible choice
of architecture in this manner is available then obviously it is sensible to use it. However, it is
usually the case in the literature that an arbitrary choice of fixed architecture is made. In any



case, as we have already indicated, one of the major hopes for connectionist networks has always
been that eventually it may be possible to apply them to reasonably general problems without
having to supply this kind of a priori knowledge, and the study of self-structuring provides an
obvious method with which we can try to achieve this aim.

1.5 Organization of the Dissertation

This dissertation is divided into three parts. Part I consists of a single chapter (chapter 2) in
which we introduce and review the class of networks with which the remainder of our work is
concerned: the class of ®-networks.

In part IT we address the ability of ®-networks to generalize by performing a comprehensive
theoretical analysis. The vehicle for our analysis is an area of computational learning theory
based on the theory of Probably Approzimately Correct (PAC) learning, and chapter 3 provides
a full introduction to the required techniques along with a brief discussion of the alternative
methods that are available for analysing generalization. In order to apply the theory introduced
in chapter 3 we need to calculate bounds on two quantities associated with a connectionist
network, called the growth function and the Vapnik-Chervonenkis (VC) dimension, for the case
of interest, namely the class of ®-networks. This problem is addressed in chapter 4, in which
we calculate such bounds for the general class of ®-networks as well as for various special cases
thereof. This chapter also uses the idea that the VC dimension can be regarded as a measure of
capacity to provide an explanation for the fact that ®-networks can in practice require a relatively
large number of weights compared to multilayer perceptrons. In chapter 5 we use the results of
the previous two chapters to derive necessary and sufficient conditions on the number of training
examples required in training a ®-network such that a particular generalization performance can
be expected. We then compare our results to comparable results derived elsewhere for multilayer
perceptron type networks, and we attempt to model the effect of the use of self-structuring
training algorithms on the sufficient conditions.

In part III, which consists of a single chapter (chapter 6), we address the problem of con-
structing a good self-structuring training algorithm for ®-networks. Having discussed the best
way in which to define the ‘optimum’ architecture for a ®-network, we use the fact that training
such a network when the architecture is fixed can be regarded as a least squares problem to
derive a training algorithm that searches for a network with a good architecture. Our analysis
of the problem allows us to show that the well-known weight decay method for performing self-
structuring does not necessarily provide an optimum architecture. We then test our algorithm
experimentally, before extending our analysis of the problem in a way that we expect will allow
an improved version of our algorithm to be developed.

Finally, chapter 7 of the dissertation provides conclusions and suggestions for future research.
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Chapter 2

d-Networks

2.1 Introduction

This chapter introduces the class of ®-networks, henceforth called ®-nets, which is similar to a
type of network introduced originally in the early 1960s. These networks have also been called
Linearly Weighted Connectionist Networks, for reasons which will become clear, and it is the
properties of this class of networks with which this dissertation is primarily concerned.

The most popular and most frequently used feedforward connectionist network at present is
the multilayer perceptron trained using hidden layer back-propagation (HLBP), or some variant
thereon. This type of network has several well-known shortcomings which we summarize in
section 2.3. One of the original motivations for investigating ®-nets was the observation that
particular members of this class appeared in practical studies to offer major advantages over
MLPs, especially in terms of the time required for training, but that, surprisingly, they tended
to be used by only a minority of researchers. This chapter, which consists partly of review
material and partly of original comment, is in part an attempt to argue that ®-nets with fized
basis functions have significant advantages when compared to MLPs; the promotion of the class
of ®-nets can be regarded as a subsidiary aim of the chapter.

The class of ®-nets is introduced as a unifying formalism which allows us to investigate
several individual past and contemporary network types contained within the overall class —
each of which has previously been extensively studied in its own right — without needing to
resort to a separate analysis for each type. Section 2.2 introduces the ®-net formalism, section 2.3
introduces the required material on MLPs, and section 2.4 reviews training algorithms for ®-nets.
In section 2.5 we show that many standard connectionist networks are special cases of the class
of ®-nets — a fact that has not been widely appreciated previously, especially in the case of
regularization networks, modified Kanerva models and cerebellar model articulation controllers
(CMACs), although it has recently also been noted by Boser et al. [11] and Renals and Rohwer [12]
for some types of network. As it is these individual networks, rather than the class of ®-nets
per se, which provided the motivation for this work, we also review the existing literature on the
networks which are the most extensively studied examples of ®-nets to date. In section 2.6 we
discuss the relation of ®-nets to other types of network used to solve similar problems, and we
further motivate the study of ®-nets with fixed basis functions by providing some examples of
practical problems to which they have been successfully applied. We also introduce and discuss
some possible criticisms of ®-nets. Section 2.7 concludes the chapter.

In common with most research areas in the field of connectionist networks, this area has a vast
associated past and contemporary literature, and an encyclopaedic review would not be feasible or
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appropriate. This chapter therefore summarizes what we consider to be the most important and
pertinent work in the context of this dissertation, and attempts to give a representative sample of
the published theoretical and experimental results for the different types of ®-net. An excellent
review of the various alternative types of connectionist network is given by Lippmann [5, 6], see
also Hush and Horne [7], Bressloff and Weir [13], Pao [14] and Hertz et al. [15].

2.2 The Class of &-Nets

2.2.1 The Definition of a ®-Net

A ®-net takes as input a vector x € IR™ where,
xTz[a:l Ta o Tp | (2.1)

and produces as output a class index f(x) € C where C is a set of class indices. In the following
chapters two types of ®-net are studied, differing only in the set C used. In the first type,
which would be used for example in an application such as time series prediction (Lowe and
Webb [16]), we use C = IR, and in the second — intended specifically for the study of two-class
pattern classification problems — we use C = B = {+1,—1}. The networks being considered
have only a single output; we discuss possible extensions of our work to networks with many
outputs at appropriate points in the text. A ®-net can thus be thought of as implementing some,
typically nonlinear, mapping f : R"™ — C.

A general ®-net, for which the structure is shown in figure 2.1, is defined by a 5-tuple
N = (n,m,®,w,C) in which,

e n > 1 is the number of inputs to the network.

® is a set of m =| ® |> 1, typically nonlinear, real-valued basis functions with domain IR".
Formally,
®={¢;(x): R" >R |i=1,2,...,m}. (2.2)

We always assume that the basis functions are fized unless otherwise stated. Although we
will mostly consider only fixed basis functions, we do briefly consider at some points ®-nets
in which the basis functions can be adapted.

e wc R™! is a vector of weights,
wl=[wy wi wy - wWpy | (2.3)
We define W = m + 1 to be the number of variable weights used by the network.

C is the set of class indices introduced above.

The set ® of basis functions is used in order to construct a, generally fixed, mapping ¢ : R" —
R™*! & : x — % which maps input vectors x into extended vectors' %. The extended vector is
formed as?,

x'=[1 ¢1(x) ¢2(x) - m(x) ], (2.4)

!The term ‘extended’ is used as often m + 1 > n. However, this is not a definite requirement and if necessary

m + 1 < n can be used.

2Not all of the specific examples of ®-nets introduced later in this chapter use a unit term in their extended
vector as standard. We assume that this term is always included as it is important for some of our later analysis
and as its inclusion is useful in general.
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Figure 2.1: The structure of a general ®-net.
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and we call the space IR™ containing vectors [ ¢1(x) ¢2(x) -+ ém(x) |7 the estended space.
For the case where C = IR the output of the network is formed as,

fw(x) = wix

wlp(x)

= wo+ Z wigbi(x) (2.5)

where we call the mapping implemented by the network fw in order to emphasize that it depends
on the parameters specified by the weight vector w. Examining equation 2.5, and recalling that
the functions ¢; are fixed, the origin of the expression ‘linearly weighted connectionist network’
should now be clear. For the case of C = IB the output of the network is,

Fur(%) = p(wT%) (2.6)
where3,
o ={ 11 220 (2.7

In the latter case we call the network a threshold ®-net.

The fact that, in equation 2.5, the output fw is clearly a linear combination of the basis
functions and the unit term, is probably the single most important property of the class of ®-
nets, and is discussed below. Although we will be concerned almost entirely with ®-nets having a
single output, the advantages resulting from this linearity also carry over to the multiple output
case.

For the case where C = IB an important interpretation is available of the way in which this
type of network operates. Nonlinear decision boundaries are constructed in the input space by
mapping input vectors into a new space, typically of higher dimension, such that they are linearly
separable. The network divides the new space — the extended space — into two halfspaces, the
decision boundary in this space being the hyperplane,

wlix =0. (2.8)
This is illustrated in figure 2.2.

This definition of a ®-net is similar to definitions for networks which appeared in the 1960s,
see for example Duda and Hart [4], Cover [17] and Nilsson [18]. It is also closely related to the
definition of the more recently introduced functional-link net [14].

2.2.2 Function Classes and Graph Classes

Clearly, given a specific weight vector w a ®-net implements a particular mapping fw : R" — C;
the actual mapping implemented can be altered by altering w. We define 7 as the class of all
mappings that a particular ®-net can implement. Formally,

F2 = {fw|weR™1} (2.9)

The class F2 will be used only where C = IB unless otherwise stated. Similarly, any mapping fw
can be associated with a graph I'yy C IR™ x C where,

I'w = {(x, fw(x)) | x € R"} (2.10)

3Some definitions of p(z) for similar types of network require that p is undefined for z = 0. Our definition is
more convenient, being properly defined for all values of z, and in general the results obtained are the same in
both cases.
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Figure 2.2: Input vectors are mapped into a new space such that they are linearly separable.
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and we define the class of graphs I'? as,

I? = {Tw | weR™!} (2.11)

2.2.3 &-Nets with Adapting Basis Functions

Although we mostly consider ®-nets with fixed basis functions, for reasons which will be discussed
below, it will at some points be necessary to discuss ®-nets with adapting basis functions. In
this case, each basis function ¢;(x;y;) depends on a vector,

yi = [ R CRERR ] (2.12)

of p;, typically real-valued, parameters, and the network implements a mapping f, g : R" — C
which depends on both w and the parameter vector,

0" =yl y¥ - yL]. (2.13)

The class of functions F2 for this type of ®-net is defined as,

7= {sualw e em - S =
=1

2.3 The Multilayer Perceptron and the HLBP Algorithm

The multilayer perceptron has a feedforward structure, as illustrated in figure 1.1, in which node
1 computes a function,

gwi(zi) = o |wf) + > wl? (2.15)
7=1
where ziT = zli) Zgi) Zgi) | is a vector of n; inputs to the node,
wli=[w® w? o W) ] (2.16)

is a vector of variable weights associated with the node, and ¢ is an activation function. The
function o is typically either a sigmoid of a form such as,

o(z) =si1(x) = m forz € Rand B € RT (2.17)
or
o(x) = s9(x) = tanh(fz) for x € R and B € R™T (2.18)

where [ is a ‘steepness’ parameter, or a step function ¢ = p. The network typically has a
layered structure as illustrated in figure 2.3. There is at present no generally accepted convention
regarding what is regarded as a ‘layer’ in such a network; for example, the inputs may or may not
be regarded as a layer. We will take the latter point of view, and hence refer to the network in
figure 2.3 as a three-layer or two hidden-layer network. More general connections between inputs
and processors than are implied by this figure are also often permitted; for example, connections
between inputs and nodes in hidden layer 2, or connections between nodes in hidden layer 1 and
the output layer. We call any node which is in a hidden layer a hidden node.

When the activation function o is of the form of equation 2.17 or 2.18 the network is usually
trained using the hidden layer back-propagation (HLBP) algorithm or some variant thereon. The
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Figure 2.3: The layered structure of a standard multilayer perceptron. We refer to this
network as a three-layer or two hidden-layer network.
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standard HLBP algorithm is well documented (see for example Rumelhart and McClelland [19])
and so we do not include the details. What is important for our purposes is to note that
MLPs have well-known and significant limitations. In particular we note, firstly, that the error
surface of an MLP is multimodal, and consequently it is in general difficult to devise training
algorithms which can successfully avoid convergence to a local minimum. Secondly, we note that,
regardless of the training algorithm used, the training process for an MLP tends to be relatively
time-consuming, and the time taken scales badly as the size of the network is increased. This
observation is reinforced by several theoretical results which prove that training an MLP is hard
in the computational sense (Garey and Johnson [20]). Specifically, the problem is NP-complete,
which implies that it is computationally intractable under the usual assumption that P # NP.
Results of this nature can be found in Judd [21, 22], Blum and Rivest [23], Kolen and Goel [24]
and Orponen [25].

In this dissertation we will mostly deal with MLPs having step-type activation functions o =
p, as this allows us to make comparisons with ®-nets. Note that the computational complexity
results still apply when this type of activation function is used. We discuss at appropriate points
the effect on our results of using more usual activation functions such as s; and ss.

2.4 Training Algorithms for ®-Nets with Fixed Basis Functions

There are many highly developed training algorithms for ®-nets with fixed basis functions, and
in this section we provide a brief review. For the time being, we consider training only in terms
of the minimization of the error of a network with respect to a particular sequence of training
examples. It is of course possible to introduce more sophisticated criteria for training, and this
is part of the aim of chapter 6. In most training algorithms, training consists of choosing an
optimum weight vector Wopt which minimizes an appropriately defined measure of error which
we denote by £(w).

2.4.1 Networks with C =1R

Counsider a ®-net with C = IR, and assume we have a sequence,

T, = ((Xlaol)v(X2a02)a---7(xka0k)) (219)
of k training examples where x; € R™ and o; € R for ¢ = 1,2,...,k. In general, we will have
k> W = m+1. If the training sequence is to be learnt exactly we would like to choose a weight
vector w such that fw(x;) = 0; for i =1,2,..., k. Equivalently, we would like to solve the set of
equations,

Pw=o0 (2.20)
where,
)[4
¢ (x2) X
P ) |7 (2.21)
@7 (x) X
and o’ =[ 01 02 --- o4 ]. If the training sequence cannot be learnt exactly (which is in fact
desirable in some cases) then we usually choose w such that the error £(w) = ||Pw — ol|? is
minimized, where |.|| is the Euclidean norm. In other words, the problem of training a ®-net

can be re-cast as a linear least squares problem. This type of problem is well understood, and
various algorithms are available for its solution; a comprehensive summary is given by Press et
al. [26]. We return to this approach to training, and discuss it in further detail, in chapter 6.
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In a similar manner, we can attempt to minimize the expected value of the squared error,
¢w) =E [(0; - W' %)?] (2.22)

and this leads to the well-known Least Mean Squares (LMS) algorithm (see Haykin [27]). Again,
we discuss this approach further in chapter 6.

2.4.2 Networks with C = 1B

Consider now a network with C = IB, and assume again that we have a training sequence Ty,
where in this case x; € R™ and 0; € B for i = 1,2,...,k. Again, we may wish to select a weight
vector w such that fw(x;) = 0; for each training example. If it is possible to do this we say
that the training examples are separable; this occurs if the examples are linearly separable in the
extended space.

There are many algorithms available for training this type of network, the most common
of which are discussed in [4]. The algorithms typically have associated convergence results; for
example, in some cases an algorithm will always obtain, in finite time, a weight vector which
correctly classifies all the training examples provided they are linearly separable in the extended
space. For sequences of training examples which are not separable, algorithms such as those
introduced above for C = IR, linear programming algorithms, or the Ho-Kashyap Procedure [4]
can be employed to obtain approximate solutions.

2.4.3 Further Comments on Training Algorithms

The most important difference between the training algorithms mentioned in this section and
training algorithms for many other networks, including MLPs, is that the linearity inherent in
®-nets with fixed basis functions allows their training algorithms to run relatively quickly in
most cases. Significant reductions in training time have been reported in practical comparisons
with MLPs trained using HLBP (Lynch and Rayner [28]). Of course, difficult situations exist
which can make training difficult, but our observation appears to be widely valid on the basis
of the available experimental results. It is also important to note that when using the training
algorithms mentioned for C = IR, we are usually able to deal with situations in which, as we shall
see in chapter 6, either the error surface is unimodal, or for which the structure of the solution
space is well-defined and highly tractable. We therefore do not suffer from problems caused by
local minima.

In the next section, we will consider some specific ®-nets in which the basis functions have
parameters associated with them which we in general regard as being fized. It is obviously
tempting to adapt these parameters as well as w during training, and indeed some researchers
have done this. However, this will in general turn the problem into one of nonlinear optimization,
and we consequently lose the advantages mentioned above. Lowe [29] has made some particularly
pertinent observations regarding this approach, which we discuss in subsection 2.5.3.

Training algorithms have also been suggested in which a simple criterion is used to select
parameters associated with the basis functions. These parameters are then fized allowing the
training algorithms presented above to be applied separately. This distinction is important,
and we will discuss it at length in chapter 5. Algorithms of this type have been applied with
considerable success (see for example Moody and Darken [30]) suggesting that to some extent
they allow us to obtain the advantages of both linear and nonlinear optimization strategies.
We suspect that in fact they provide us with a fast way of finding a global, or a ‘good’ local
minimum on the full error surface for the network which would otherwise need to be searched
using nonlinear optimization.
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‘ Type of connectionist network ‘ Form of basis functions

Linear discriminant function ¢i(x) = x; where i =1,2,...,n.

Perceptron ¢i(x) : {0,1}" — {0,1}. The functions ¢;

are partial predicates.

Polynomial discriminant function | ¢;(x) is a product of the elements of the

input vector. For example ¢;(x) = x5
Radial basis function network ¢i(x) = ¢(||x — yi||) where ¢ is

a suitable function and y; € R™ is a centre.
Polynomial terms are also included in some cases.
Regularization network ¢i(x) = G(x;y;) where G is a Green’s function
(see subsection 2.5.4) and y; € R™ is a centre.
Polynomial terms are also included in some cases.

Modified Kanerva model oi(x) = { Lif (%, y3) <7

0 otherwise
where y; € R" is a location, r and p are fixed

1
parameters and u,(x,y) = (Z?:l | s — i [P)®.

Table 2.1: Summary of Basis Functions Used for Different Types of ®-Net

2.5 Examples of Specific Networks in the Class of $-Nets

We now briefly review several connectionist networks and demonstrate that they are members of
the class of ®-nets. Linear and Polynomial discriminant functions, and perceptrons, have been
studied extensively for several decades; radial basis function networks, regularization networks,
and the modified Kanerva model were introduced more recently. The various networks introduced
here differ only in the form of the basis functions used; table 2.1 provides a summary.

Most of the following discussion assumes that we use the set C = R of class indices. This
type of network can be converted to a two-class classifier with C = B simply by adding to its
output a unit implementing the function p of equation 2.7.

2.5.1 Linear Discriminant Functions and Perceptrons

Linear Discriminant Functions (LDFs) are probably the simplest type of pattern classifier avail-
able and are clearly members of the class of ®-nets. In this case there are m = n basis functions
of the form,

¢i(x) = x; where i = 1,2,...,m. (2.23)

These classifiers have a large associated literature and many well-known limitations, see for
example Minsky and Papert [3], Duda and Hart [4] and references therein, and Nilsson [18].

The class of perceptrons, originating in the work of Rosenblatt [31] and studied extensively
in [3], is a subclass of the class of ®-nets. In this case inputs are in {0,1}" rather than R" and
basis functions are partial predicates ¢;(x) : {0,1}" — {0,1}. It is important to note that many
of Minsky and Papert’s celebrated negative results rely on the use of partial predicates which are
limited in ways which the ®-net definition does not require; this is discussed further below.
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2.5.2 Polynomial Discriminant Functions

Polynomial discriminant functions* (PDFs) are a natural extension of the LDFs. Of the ®-nets
which are capable of constructing nonlinear discriminant functions, these are probably the best
known and most extensively studied. In this type of network functions fy are of the form,

n
fw(x) = wo+ Z Wiy Tiy

11=1

n n
+ E , E WiyigTiy Tig

11=119=11

+-.-..
n n n
+ Z Z cee Z Wiy igeigLiqg Tig * * * Tiy
t1=1142=11 1q=14_1
= wo+ Y wigi(x), (2.24)
=1

where the basis functions ¢; are in this case products of the elements of the input vector x, for
example, ¢;(x) = z3zyx> ;. We call this network an (n,d) discriminator. It is possible to show
that an (n,d) discriminator has ¥(n,d) weights where,

(2.25)

mm@=<”+d)=@iﬂl

n nld! ’

see Cover [17] or Casdagli [32]. In equation 2.25 we use the standard notation for the binomial

coefficient,
( i ) L (2.26)
J @ =) '

which we will also sometimes write as CJ’ The form of the summations in equation 2.24 prevents
the same product of inputs from appearing many times, for example, x1x9 and xox1 are assigned
a single weight, rather than two separate ones.

Polynomial functions of the form of equation 2.24 have the desirable property that if 7 is a
compact subset of R™ and C%(Z) is the space of all continuous functions f : Z — IR then the set
of all polynomial functions p : Z — IR is dense in C°(Z) (Chen et al. [33]). This type of network
does however have some important disadvantages:

1. Polynomials can oscillate rapidly between training examples when used to model nonpoly-
nomial nonlinearities.

2. Polynomial approximations are unstable under iteration which makes them unsuitable for
tasks such as long term time series prediction (Lapedes and Farber [34]).

3. Examination of the form of the function ¥ shows that the number of weights required grows
very quickly as n and d are increased. This is illustrated in figure 2.4.

A discussion of points (1) and (2) can be found in [32, 34]. The criticism of point (3) is well-
known, however practical experience shows that good decision boundaries can in some cases be
obtained using a reasonable number of coefficients (Specht [35]) or using small d (Rayner and
Lynch [36]).

“For the case where C = B we will call these functions polynomial threshold functions.
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2.4: Behaviour of the function ¥(n,d) for different values of n and d.
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‘ Form of basis function ‘ Type of basis function

¢rin(r)=r Linear

pcup(r) =7 Cubic

¢rps(r) =r?lnr Thin plate spline
duo(r) = (r* + c2)%, ceRY Multiquadric
drmQ(r) = (r? + 02)_%, ceRt Inverse multiquadric
pcavss(r) = exp (— (5)2), o € RT | Gaussian

Table 2.2: Typical Basis Functions used in Radial Basis Function Networks

These networks have been studied by many authors since the 1960s, see for example Duda
and Hart [4], Cover [17], Nilsson [18] and Maxwell et al. [37, 38], and the use of polynomials
in closely related network types has a similarly rich history (Ivakhnenko [9] and Barron and
Barron [10]). In [35] it is shown that PDFs arise naturally from an analysis of the pattern
classification problem using nonparametric (Parzen window [4]) estimation of class-conditional
probability density functions for use in the Bayes decision rule [4].

2.5.3 Radial Basis Function Networks

Radial basis function networks (RBFNs) were introduced by Broomhead and Lowe [39] on the
basis of their observation that the theory of pattern processing using connectionist networks can
be compared to the theory of multivariable interpolation in high dimensional spaces. Of the
connectionist networks included in the class of ®-nets, RBFNs are to date probably the most
widely accepted.

In this approach the learning process is modelled as the task of making the network implement
a mapping fw (and corresponding graph I'yy) which is the ‘best’ approximation to a particular
fixed mapping f : R® — IR with graph I'. Given a sequence of error-free training examples
(points on I') learning corresponds to choosing an ‘optimum’ I'y, based on the training examples.
The property of generalization then corresponds to interpolation between the training examples
using the surface generated during learning; this interpretation of generalization has also been
suggested by Lapedes and Farber [34] and Wolpert [40]. Broomhead and Lowe suggest that
the required interpolation should be constructed using the method of Radial Basis Functions
(RBFs), which has been studied extensively by Powell [41, 42] and others. The standard RBF
method performs strict interpolation, that is, it requires that the function constructed perfectly
interpolates the training examples. Given a sequence T} of training examples a function fy is
constructed such that,
fw(xi) =o0; fori=1,2,... k. (2.27)

The function fyw is constructed using a set of basis functions of the form,
¢i(x) = ¢ ([[x — yill) (2.28)

where ||.|| is a norm on IR", usually the Euclidean norm, the vectors y; € IR™ are called the
centres of the basis functions and ¢ is a suitable function. Typical choices for the function ¢ are
shown in table 2.2; the functions,

dmg(r) = (r’ 4 2P for0 < B<1and c€ R (2.29)
Prmo(r) = (r? +c*)~® for a >0 and c € R (2.30)
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are also popular and are clearly more general forms of the multiquadric and inverse multiquadric
basis functions. Henceforth, we assume that the inputs x; in T, are distinct. In the most
commonly encountered RBF interpolation method the centres correspond to the training example
inputs x1,X9,...,X; and fw is constructed as,

k

Fa(x) =Y Ao (Ilx = x])) (2.31)

=1

where we use A; rather than w; to denote weights as the former notation is used as standard
in the literature. Inserting the constraints of equation 2.27 into equation 2.31 leads to a set of
linear equations which can be solved in order to find the weights. Some important results due
to Micchelli [43] in fact guarantee that the set of equations has a solution for a large class of
functions ¢ and for all £ and n provided the training examples are distinct; we discuss this work
in detail in chapter 4.

A full definition (see Powell [41] and Poggio and Girosi [44]) of the radial basis function
approach requires the construction of fy as,

k q
Fw(x) =D Mo (Ix = xill) + Y bitpi(x) where ¢ < k (2.32)

i=1 i=1
where wl' = [ A\ Ay -+ A 01 Oy - 6, ] is a vector of weights, ||.|| is the Euclidean
norm, ¢ : Ry — IR is a continuous basis function and {t; | i = 1,...,¢} is a basis of the linear

space m4_1(IR™) of algebraic polynomials from IR" to IR of degree at most (d — 1) for some given
d. When using functions of this form in order to interpolate a set of k points the constraints of
equation 2.27 give us a set of k linear equations for (k + ¢) coefficients. We fix the remaining
degrees of freedom by requiring that,

k
> Aii(xi) =0for j=1,...,q. (2.33)
=1

Again, some important results due to Micchelli [43] are available which allow us to choose ¢ such
that it is always possible to interpolate a set of £ points, and we discuss these results in detail in
chapter 4. Equation 2.31 is a special case of this full definition.

An obvious problem with the radial basis function approach is that a basis function is required
for every training example. For many problems, a solution may in fact exist which requires only
a small number of basis functions relative to the number of training examples available. In these
cases the use of a basis function for every training example can lead to overfitting, that is, in
more realistic circumstances when noise is present in the training examples, we may produce a
function that fits the noise. In order to avoid this problem the requirement that basis function
centres correspond to training examples can be relaxed, either by choosing random elements of
the training sequence to use as RBF centres (see also Lowe [29]) or using centres distributed
uniformly in the region covered by the data [39]. Also, a constant offset is often introduced into
fw when networks of the form of equation 2.31 are used; the mapping fw is then,

fw(x) =20+ > Xig (Ix — yill) where m <& (2.34)
=1

and comparison with equation 2.5 shows that this type of network, which is the type of radial
basis function network most often used in practice, is a member of the class of ®-nets, as are the
more general RBFNs of the form of equation 2.32.
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A great deal of theoretical work exists which justifies the use of RBFNs. Some theoretical
justification for their use is provided by the fact that they were derived from the extensive and
rigorously founded theory of multivariable interpolation, which is clearly closely related to the
problem of pattern classification. Two further distinct justifications are also available. Firstly,
it has been shown by Park and Sandberg [45] that RBFNs can perform universal approximation
under quite unrestrictive conditions. Related results have been proved by Cybenko [46] and
Hartman et al. [47]. Secondly, some RBFNs are a special case of Regularization Networks, which
we describe below and which have an excellent theoretical basis.

The Choice of ¢ and y

It is reasonable to expect that the choice of radial basis function ¢ and the centre of each basis
function will have some effect on the performance of an RBFN. The effect of these choices on
learning and generalization ability has been studied by Lowe [29]. In particular, he examines the
effect of adapting radial basis functions and their centres using nonlinear optimization techniques
as part of the training process. As we noted earlier, this clearly has a detrimental effect in that it
usually forces us to optimize on a multimodal error surface and as it increases the computational
complexity of the training process. This experimental study leads to the following important
conclusions:

1. Any degree of generalization performance achieved using nonlinear optimization can be
matched by a radial basis function network using linear optimization (i.e. no adaptation
of RBFs or their centres) but using more RBFs. Similarly, a particular training perfor-
mance can be achieved using fewer RBFs if nonlinear optimization is employed. Nonlinear
optimization is therefore only necessary if the smallest possible network is required.

2. Training takes orders of magnitude longer when nonlinear optimization is used.

3. The precise form of RBF used has little effect on overall performance.

Moody and Darken [30] have introduced a technique for training similar networks of the form
of equation 2.35 (below), where ¢(zx) = exp(—z?), using a combination of linear self-organizing
and linear supervised techniques. This allows much of the increase in training time associated
with the use of nonlinear optimization to be avoided. Centers y; and widths o; are obtained
using m-means clustering and a p nearest-neighbour heuristic respectively. Weights \; are then
obtained using the LMS algorithm. This hybrid technique has been extended by Chen et al. [48]
in applying RBFNs to nonlinear system identification problems, and has also been extended by
Musavi et al. [49]. The technique in fact appears to have an important consequence in terms
of the results obtained in chapter 5 regarding the ability of ®-nets with fixed basis functions to
generalize, and further discussion can therefore be found in subsection 5.2.4.

Related Classifiers

Several networks exist which are closely related to RBFNs. The Kernel Classifier (Lippmann [6],
Park and Sandberg [45]) computes functions fw of the form,

fwlx) = %w (b=
- ; MK (X ;_”) (2-35)
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where o; controls the width of the ith basis function and K is called a Kernel Function. Similarly,
in the method of Potential Functions [4] we use functions fyw of the form,

k
Fw() = Nim(x,%i). (2.36)
=1

The potential function m(x,x%;) is usually maximum for x = x; and decreases monotonically to
zero as ||x — x;|| approaches co. A typical function is,

02

7 seR* 2.37
pOR e PA (2:37)

w(x,%x;) =

2.5.4 Regularization Networks

The similarity between the construction of nonlinear mappings using connectionist networks
and the theory of multivariable interpolation has also been exploited by Poggio and Girosi [8,
44, 50, 51, 52, 53|, who derive the class of Regularization Networks (RNs) using methods from
regularization theory.

Again, the learning process is modelled as the task of finding a vector w which gives the
‘best’ approximation fyw to a continuous, multivariate function f : R™ — IR on a set of training
examples. A question of obvious importance is that of which classes of functions can be ap-
proximated by a particular type of network, and one of the main aims of [44] is to develop an
approximation method which is general, maps into a multilayer network, and is fully mathemati-
cally justifiable. Generalization is again identified with the ability to approximate or interpolate
the function between the available training examples, interpolation being regarded as the limit
of approximation when the training examples are noise free.

As the training examples are usually noisy, and as they do not in general contain sufficient
information to allow unique reconstruction of the function where no training examples are avail-
able, a priori knowledge in the form of, for example, smoothness constraints must be imposed
on the mapping®. The problem is therefore formulated as a variational problem of finding the
function F' which minimizes the cost functional,

k
H[F] = Z(oi — F(x;))% + )| PF|? (2.38)

given a sequence Ty, of training examples. In equation 2.38, the first term represents the difference
between F' and the training examples and the second term is a cost which introduces the required
a priori information, contained in the constraint operator (stabilizer) P. The parameter A € Ry
is a regularization parameter and ||.|| is a norm, usually the L? norm (see de Barra [54]), on the
function space containing PF'. The regularization parameter controls the compromise between
quality of approximation and smoothness (or other a priori constraint) and hence can be thought
of as controlling the way in which generalization is enforced. An example of a stabilizer is,

0FP =33 Z/ X (i, F())? (2.39)
11=1120=1 i5=1

where j > 1 and 9;,..;; = 7 | 0x;, - Ox;;, which leads to multidimensional splines; other exam-
ples can be found in [44]. The overall method can also be theoretically justified using the theory

5The use of smoothness constraints has also been suggested by Barron and Barron [10].
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of Bayesian estimation, see [44, 51]. Minimizing H gives a solution,
k
fw(x) = F(x) = > wiG(x; ;) (2.40)
i=1

where G(x;y) is the Green’s function (see [44]) of PP, P is the adjoint of P, and the weights w;
satisfy,
(G+AI)'w=o0 (2.41)

where the matrix G is defined by G;; = G(x;;x;). A full derivation of this result is given
in [44, 51] along with a full discussion regarding the existence of a unique solution to 2.41, and
the case of pure interpolation (A = 0). Note that it may be necessary to add a further, usually
polynomial, term to the right-hand side of equation 2.40; this depends on the stabilizer used and
the extra term is usually omitted (see [50] for a discussion). Comparison of equation 2.40 with

equation 2.5 shows that regularization networks are ®-nets, even if a further polynomial term is
added.

An important special case appears when P is rotationally and translationally invariant. In
this case G is a radial function,
G =G(lx—yl) (2.42)

and hence the class of regularization networks contains some of the RBFNs (not all RBFNs are
regularization networks). Rotational and translational invariance of P is in fact quite common
in practice.

Several modifications to the regularization network approach are discussed in [44, 50, 51, 52,
53], including the use of fewer centres than training examples and the adaptation of centres. In
particular, the pseudoinverse based approximation method used by Broomhead and Lowe [39] is
obtained as a special case.

2.5.5 The Modified Kanerva Model

The modified Kanerva model (MKM) was introduced by Prager and Fallside [55] as an extension
of the Kanerva Memory Model introduced by Kanerva [56]. The main difference, for our purposes,
between the original and modified Kanerva models is that the latter is able to operate with real-
valued, rather than only binary input patterns.

The MKM uses basis functions of the form,

. 1 i pp(x,yi) <7
¢i(x) = { 0 otherwise (2.43)

where y; € R™ is a location associated with basis function ¢;, r € R™ and p, which is a positive
integer or oo, are fixed parameters, and p, is a distance metric, generally of the form,

pp(X,y) = (Z | zi — i Ip) - (2.44)

Each basis function thus produces an output of 1 (is active) if the current input falls within a
hyperball centred on y;, the actual shape of which depends on the metric p, used. The output
of the basis function is 0 otherwise. Typical choices of p (Clarke et al. [57]) are p = 2, leading
to hyperspherical regions, p = oo, leading to hypercubes, and p = 1, leading to the duals of
hypercubes. The shape of the hyperball used is generally chosen such that it closely matches
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the shape of the region populated with locations [55], although p = 2 is generally avoided as it
is less convenient to implement, and an analysis in [57] has shown that the use of ;o leads to a
sparsely connected first layer which is highly desirable as it leads to a significant increase in the
speed with which the network can be simulated.

The locations are fixed and are typically chosen randomly; suggestions are given in [57]
regarding the introduction of adaptation to this layer and Prager [58] introduces an effective
method for pruning unnecessary locations. Inputs to the network are constrained to lie within
a relatively small region in the centre of the region populated by locations. This allows us to
ensure that approximately the same fraction of the total number of basis functions is active for
any input; the actual fraction which becomes active is set, typically to % (see [55, 57]), by fixing
a suitable value for the activation radius r. In some cases the weights are constrained to be
integer valued [57].

In Kanerva’s original work he predicted that the most significant properties of his model
would only be exhibited by networks much larger than could be simulated using serial computers.
Although in [55] Prager and Fallside use networks small enough such that many of the most
important properties predicted theoretically by Kanerva do not appear, and as a result the
networks are less successful than Kanerva’s work would suggest, they do show that the MKM
is as powerful as some alternative models in the literature when applied to a particular speech
recognition problem.

2.5.6 Other ®-Nets

Clearly, we can construct a ®-net using any appropriate set of basis functions. The networks
presented above are those most often presented in the literature, and an obvious way in which
to construct further ®-nets would be to mix basis functions from these networks.

A further ®-net of interest can be constructed using basis functions of the form of equa-
tion 2.15, that is, of the form of the processors in an MLP. In this case we would regard pa-
rameters associated with each basis function, including any steepness parameter [ associated
with the activation function o, as being fixed rather than adapting, and would obtain a network
similar to a single hidden layer MLP. It is important to note that when we discuss MLPs in this
dissertation we mean to refer to MLPs in the generally understood sense, in which all parameters
(with the usual exception of the steepness parameters) are adapted.

Some further standard network types are also specific examples of ®-nets. For example,
the cerebellar model articulation controller (CMAC), which was introduced by Albus [59] and is
reviewed by Miller et al. [60], and the Distributed Method® (Gallant and Smith [61]) which uses
basis functions that are linear discriminants with randomly chosen coefficients.

2.6 Discussion

®-nets with fixed basis functions have, in recent years, been marginalized by many researchers.
We believe that in most cases the arguments advanced against these networks are fallacious, and
the purpose of this section is to show why this is the case, and to argue that ®-nets with fixed
basis functions are useful pattern classifiers which are a viable alternative to MLP type networks.
We begin with a brief attempt to explain why these networks have been marginalized.

5This was brought to the attention of the author by Dr. S. Renals.
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2.6.1 P-Networks: A Short Historical Critique

As in any other discipline, it is important in pursuing research in connectionist networks to
appreciate their history, perhaps especially so in this particular case as the pursuit is highly
interdisciplinary. As we have already observed, networks of the general form of ®-nets have been
studied since the 1960s. Originally, PDF's attracted particular attention as a natural extension
of LDFs which were not subject to the same well-known limitations, and at this time a great
deal of high quality research was produced. Research in connectionist networks then suffered a
well-publicized lull after the publication in 1969 of Minsky and Papert’s results [3], and when
interest was re-kindled with the introduction by Rumelhart et al. [19] of the HLBP algorithm,
much of the foregoing research was forgotten in the rush to join the MLP bandwagon. In
retrospect, it is surprising that the HLBP algorithm caused such a sudden and significant burst
of enthusiasm among researchers, as, contrary to the perceived state of affairs, good alternative
algorithms for estimating multilayer networks had already been available for some time (Barron
and Barron [10]). Clearly, this was merely a consequence of unfamiliarity with the early literature.

It is also surprising that even now the MLP trained using an HLBP type algorithm tends
to be the immediate choice in practical experimental studies, regardless of its well-known draw-
backs. Minsky and Papert [3] suggest that it was a failure to fully appreciate the potential scope
and importance of their results, and a failure to realize that they would be likely to apply to
networks other than standard perceptrons, as well as an incomplete understanding of the prob-
lems associated with hill-climbing methods, which led to the prevalent high degree of interest in
MLPs. We are of the opinion that, in a similar manner, it is an incomplete knowledge of the
existing results, and an incomplete understanding of the issues involved, which has led to the
general lack of enthusiasm for ®-nets with fixed basis functions.

During the 1980s, much of the early work on specific examples of ®-nets was rediscovered.
Rayner and Lynch [28, 62], working from the point of view of nonlinear adaptive filter theory,
rediscovered the idea of using PDF's and similar ideas were re-investigated by Chen et al. [33] and
by Maxwell, Giles and Lee [37, 38]. Rumelhart et al. [19] suggested that feedforward networks
using this type of unit, under the name of Sigma-Pi units, could be used as an alternative to
multilayer perceptrons of the usual type, although they did not realize that such units could be
useful in their own right without combining them to form larger networks and hence introducing
the standard problems associated with training multilayer networks. Radial basis function net-
works, regularization networks, the modified Kanerva model and the distributed method were
also introduced during the 1980s, although it has not been generally appreciated that these are
all members of the class of ®-nets originally studied in some form in the 1960s. What has been
provided by recent research, particularly in PDFs, RBFNs and RNs, are further rigorous math-
ematical justifications for the use of ®-nets with particular sets of basis functions. What also
appears consistently in recent research, which we summarize below, is that ®-nets with fixed
basis functions can often be made to provide performance broadly equivalent to that of MLPs,
with decreases of orders of magnitude in training time, when applied to practical problems.

It is clear that some ®-nets have disadvantages when applied to some problems — for example
PDF's are not necessarily a good solution to time series prediction problems as explained above.
However, in many cases they are a good alternative to multilayer perceptrons, as we will now
attempt to demonstrate.

2.6.2 Examples of the Practical Application of ®-Nets

In order to further motivate the use of ®-nets we now provide a brief summary of some practical
problems to which they have been successfully applied. The examples provided apply to networks
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with fixed basis functions. Note however that in some cases a simple algorithm was used to select
a ‘sensible’ set of basis functions; for example, one of the simple strategies mentioned in our review
of RBFNs. The important point to remember here is that in these cases the algorithms used
to select basis functions are very simple and very fast, and so we retain the advantage of fast
training which motivated us to study these networks.

Polynomial Discriminant Functions

Rayner and Lynch [28, 62, 63] have compared the performance of PDFs with that of multilayer
perceptrons for the parity problem and for the recognition of both character font and hand drawn
characters, obtaining comparable performance with significant reductions in training time.

Chen et al. [33] have used a similar type of network in order to perform channel equalisation
and compared its performance with that of a multilayer perceptron, finding that although very
similar results were obtained, PDFs were much easier to train. They show that when using a
network as described by equation 2.24 it may be necessary to use a large d, and hence a large
number of weights, but that this problem may be solved by using,

fw(x) = p(gs(w'x)) (2.45)

where g, is a sigmoid,

gs(w) = tanh (5 0> 0. (2.46)

Krefel et al. [64] have compared the performance of a PDF with that of a multilayer percep-
tron having a comparable number of weights in solving a handwritten digit recognition problem,
obtaining comparable performance. Finally, studies by Rajan and Rayner [65] using PDFs in
the classification of rock types using acoustic signals from the drill bit in an oil well have yielded
good results.

Radial Basis Function Networks

Broomhead and Lowe [39] have successfully applied RBFNs to chaotic time series prediction, and
Niranjan and Fallside [66] compare multilayer perceptrons, RBFNs and MKMs for the recogni-
tion of static speech patterns, finding that they provide comparable performance. Lowe [29]
successfully applies RBFNs to vowel classification, and Renals and Rohwer [12] apply RBFNs
to phoneme classification problems, again obtaining performance similar to that of a multilayer
perceptron. Lee [67] obtains good results in applying RBFNs to handwritten digit recognition.

Modified Kanerva Models

Prager and Fallside [55] obtain good results in speech recognition using an MKM. Similarly en-
couraging results were obtained by Clarke et al. [57]. A more recent study by Prager [58] addresses
vowel classification, word classification and wheat classification (detection of one particular wheat
strain from among 22 others) and again obtains good results.

Finally, Boser et al. [11] have successfully applied various ®-nets to problems involving the
recognition of handwritten characters.
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2.6.3 Possible Criticisms of ®-Nets

We now summarize and discuss some possible (and in some cases commonly aired) objections to
the use of ®-nets, in particular those with fixed basis functions.

Constructing an Extension

A standard objection to ®-nets with fixed basis functions is that it appears that the actual basis
functions used must be selected in an arbitrary manner. A related objection is that the use of
a specific set of basis functions imposes a particular form on the class of functions which the
network can compute. In answer to this criticism, we first note that universal approximation
results similar to those available for MLPs exist for various types of basis function; some of these
were mentioned above. However, although results of this type are theoretically appealing, they
tend not to be very useful in any practical sense. We therefore also note that excellent theoretical
justification exists for the use of many types of basis function, particularly for RBFNs and RNs;
the same cannot be said for the MLP in which the use of simple nodes containing a weighted
summation followed by a nonlinearity is based on a highly idealized biological approximation.

In answer to the criticisms regarding the biasing of the class of functions, note that the same
criticism can be applied to any connectionist network, including the MLP. What is important is
that the class of functions computed is general enough to cover the types of problem we actually
expect to encounter, that is, to allow us to approximate the types of mapping that are likely to
arise in practice.

The Requirement of Full Connection

A further standard criticism is that some ®-nets must be fully connected”. Examples are RBFNs,
RNs, and to some extent MKMs although as we have seen the use of a suitable distance metric
leads to a sparsely connected first layer. This means that m different vectors y; € R", one
specifying the parameters for each basis function, must be stored in addition to the weight vector
w. In some cases, such as Kernel Classifiers, further parameters must also be stored. The
criticism here is that for large m and n this leads to an unrealistically large storage requirement.
We do not agree with this criticism in general as in a realistic practical sense the on-going
improvements in memory technology and custom connectionist network integrated circuit design
make this unlikely to be a significant problem. Note also that again the same criticism can be
applied to any fully connected feedforward connectionist network.

A related criticism is that the increased complexity of many standard basis functions over
the complexity of the nodes typically used in MLPs leads to an unacceptable increase in the
time taken to classify a new input vector. Again, we expect that this should not, considering the
current, celebrated rate of technological advance, be a significant problem in all but cases with
the most stringent speed requirements.

The Size of the Weights

One important observation made in [3] is that we must be careful to consider the size of the
weights required in solving a problem. It is tempting to ask whether the ease of training as-

"®-nets clearly have a structure generally described as having a single hidden layer, in which basis functions
are ‘hidden nodes’. Connections from hidden nodes to the output node each have a single weight. In some ®-nets,
such as radial basis function networks, a fixed or variable weight must be associated with each connection from an
input to a basis function, and all such connections may be included.
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sociated with ®-nets with fixed basis functions is obtained at the cost of introducing the risk
of requiring impractically large weights. We have not studied this question in detail. Several
relevant theoretical results exist (see for example Muroga [68] and Saks [69]), although we are not
aware of any comprehensive practical study addressing this question which consequently provides
an important area for further research. We note that in practice it does not in general appear to
have been a significant drawback. Renals and Rohwer [12] report that in the specific cases that
they addressed experimentally it caused problems up to about 10% of the time in RBFNs having
more than 150 centres, but that methods could be introduced to improve the situation. Niranjan
and Fallside [66] experienced some problems of this type using MKMs, but their experience does
not appear to have been shared by others using these networks.

The Size of the Network

It is generally perceived that in using ®-nets with fixed basis functions it will be necessary to use
a larger network to solve a problem than if an MLP is used. This criticism is most often applied
to PDF's; see the discussion in subsection 2.5.2.

The precise validity of this criticism is not clear. Although we can in fact expect it to be true
in general for reasons which we will state and discuss in chapter 4, it is important to appreciate
that it depends on the specific problem addressed and the set of basis functions used — some
problems can be solved by either a small ®-net or a larger MLP. It is also important to appreciate
that for many standard basis functions the increase in the size of the network required is nowhere
near as bad as may be expected after an examination of the rate at which the number of weights
in a PDF can increase; this statement is supported by many of the experimental results provided
above and also by the fact that, given T}, a radial basis function network can be constructed
which has k basis functions with fixed centres and which can exactly learn the training examples
(see chapter 4).

What About Minsky and Papert’s Objections?

®-nets are obviously rather similar to the perceptrons studied by Minsky and Papert [3]. An
obvious difference is that the former have inputs in R™ and basis functions ¢; : R" — IR, whereas
the latter have inputs in {0,1}"” and partial predicates ¢; : {0,1}" — {0,1}; this difference is
relatively superficial, and it is natural to ask whether Minsky and Papert’s negative results apply
to ®-nets. The important point to remember here is that many of Minsky and Papert’s results
rely on the fact that partial predicates have been limited in some manner; as a result of the
fact that we allow ®-nets to be fully connected we are effectively deciding not to impose such
restrictions. Note however that neither LDFs or PDFs are necessarily fully connected.

2.7 Conclusion

In this chapter we have introduced and reviewed in detail the class of networks with which this
dissertation is concerned. Our main motivation for studying networks of this type was that they
offer significant advantages in terms of training time when compared to the usual feedforward
network of choice: the multilayer perceptron. The class of networks that we consider is similar
to one introduced in the 1960s; many well-known standard connectionist networks are specific
examples of this class, although this has not been widely appreciated, and we have reviewed many
of them in detail. We have also briefly reviewed the available training algorithms for this class
of networks. Finally, we have further motivated the use of this class of networks by reviewing
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some practical applications in which they have been used successfully, and we have discussed
some possible criticisms of the networks, in most cases arguing that they are in general unlikely
to present significant problems.
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Chapter 3

Computational Learning Theory
and the Theory of (GGeneralization

3.1 Introduction

The first of our aims in this dissertation is to investigate the ability of ®-nets to generalize. In this
chapter we introduce the theoretical framework which will be used to achieve this aim, and we
briefly review the alternative formalisms available for the theoretical analysis of generalization.

We have chosen to use methods from computational learning theory in our analysis. Although
the body of work on theoretical techniques for the analysis of generalization forms only a relatively
small part of the overall published literature on connectionist networks, it is nonetheless composed
of several approaches based on distinct underlying frameworks. Only two of these approaches
have made a significant impact to date: the approach based on computational learning theory
and the approach based on statistical physics. The former approach is attractive for two reasons.
Firstly, its results are arguably the more powerful because they tell us about performance in the
worst case, rather than the average case; however, as we shall see, they are also in a sense quite
limited at present. Secondly, the generalization performance of ®-nets with fixed basis functions
has not previously been addressed using this approach, while on the other hand, results obtained
using this approach are available for the generalization performance of networks other than ®-
nets, providing a basis for comparison.

In section 3.2 we provide an introduction to the relevant computational learning theory, which
is used in subsequent chapters. The theory is in fact very general and applies to systems other
than connectionist networks. However, as connectionist networks are our primary concern this
introduction is biased towards their treatment. In section 3.3 we briefly review the alternative
approaches to the theoretical analysis of generalization, and in section 3.4 we briefly discuss the
importance of the capacity of a network in considering its generalization performance. Section 3.5
concludes the chapter.

3.2 Computational Learning Theory

3.2.1 The Hypothesis Space

In analysing generalization, we will consider networks applied to pattern classification problems
having two classes, and we therefore consider threshold ®-nets which compute functions fw(x) :
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IR" — IB and have an associated class F2 of functions as defined in chapter 2. These networks
classify a pattern x € IR™ to be in class 1 if fw(x) = +1 and to be in class 2 if fy(x) = —1.
With each fw € F2 we can associate a subset hyw of IR™ called an hypothesis. The set of all
hypotheses forms the hypothesis space.

Definition 3.1 (Hypothesis space) Consider a threshold ®-net which computes a class of
functions F2. Given a particular weight vector w the network computes a specific function
fw :IR®™ — B. The hypothesis hw associated with fw is the subset of R"™ defined as,

hw = {x € R" | fw(x) = +1}, (3.1)

that s, the region of R™ for which the output of the network is +1. The hypothesis space H of
the network is the set of all hypotheses,

H={hw|weR""}. (3.2)

3.2.2 The Growth Function and the VC Dimension

It should be clear that definition 3.1 is not exclusive to threshold ®-nets, but applies to any
system which can be modelled by an appropriate parameterized class of functions. The same is
true of all the computational learning theory presented in this section.

Two combinatorial parameters associated with F® and H have proved to be of central
importance to computational learning theory; they are the growth function and the Vapnik-
Chervonenkis (VC) Dimension. These parameters were originally introduced by Vapnik and
Chervonenkis [70] in their study of the uniform convergence of relative frequencies to probabilities.
The VC dimension can be regarded as a generalization of Cover’s concept of capacity [17] — it
is a measure of the ‘expressive power’ of ¥ and H (Anthony and Biggs [71]). In fact, some
measure of the capacity of a network tends to be important whenever we consider the property
of generalization in feedforward networks, regardless of the particular formalism used, and we
discuss this further in section 3.4.

Consider a threshold ®-net which computes the class F2 of functions and has hypothesis
space H, and let S C X be a set of k elements of the environment X, which corresponds to the
input space of the network and in this dissertation is always IR"™ unless otherwise stated.

Definition 3.2 (Dichotomy) Given Sy and a function fw € FT we define the dichotomy
(sometimes called the two-colouring) (ST,S7) of Sk induced by fw as the partition of Sy into
the two disjoint subsets ST and S~, where ST US™ = Sy, in such a way that for x € S, x € ST
if fw(x) =41 and x € S~ otherwise.

Definition 3.3 Given the hypothesis space H and Sy C X, we define the set A (Sk) as,

Ag(Sk)={hNSx|he H}. (3.3)
If A (Sy) = 25, where 25% denotes the set of all subsets of Sy, then we say that Sy, is shattered
by H.

The set Ap(Sk) therefore contains as elements all the sets ST which can be induced by the
functions in 2. Figure 3.1 illustrates the idea of an hypothesis space, a dichotomy, and the set

'In this and the next definition, some authors use the symbol II instead of A.
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Figure 3.1: Illustration of the ideas of an hypothesis space, a dichotomy, and the set A g (Sk)
for an environment X = IR? and k = 4, using a set of points Sy = {s1,52,53,54} and an
hypothesis space H = {hy, hy}.

Ag(Sy) for a simple example. In this example we let X = IR? and consider the set of points
Sy = {s1, 82,853,854} and the hypothesis space H = {h1,ha}. Using the hypotheses h; and hs
illustrated we have,

AH(S4) = {{82,84},{81,82,53}}. (3.4)

If we consider the functions f; and fy corresponding to h; and hy respectively, fi induces the
dichotomy,

d1 = (S+ = {81,32,53},57 = {84}) (35)
and fy induces the dichotomy,

dy = (81 = {s9,54},5 = {s1,53}). (3.6)
We can now define the growth function and the VC dimension.

Definition 3.4 (Growth function) We define the growth function Ay (i) on the set of positive
integers as,

Ap(i) = max (| Au(S) ). (3.7)

The growth function therefore tells us the mazimum number of distinct dichotomies induced by
F2 for any set of i points.

Definition 3.5 (Vapnik-Chervonenkis dimension) Given the hypothesis space H, we define
the Vapnik-Chervonenkis dimension V(H) of H as the largest integer i such that Ay (i) = 2°. If
no such i exists then V(H) is infinite.

The VC dimension therefore tells us the largest ¢ such that a set of ¢ points exists which is
shattered by H. It is easy to show that if H is finite, then V(H) < log, | H |, however in
this dissertation we will usually be concerned with infinite hypothesis spaces. Note that as
an hypothesis space H is directly related to a class of functions F, and to a corresponding
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connectionist network, we can refer to the growth function and the VC dimension of F, or of the
connectionist network, and use the quantities Ax(Sg), Ax(i) and V(F) defined in the obvious
manner.

There are no known systematic methods for calculating either the growth function or the
VC dimension, and in general we must therefore exercise our own ingenuity in order to calculate
them for specific cases; the next chapter of this dissertation addresses precisely this problem for
the case of ®-nets. The VC dimension tends to be the easier of the two parameters to deal with,
and luckily if we know the value of the VC dimension then we can bound the growth function
using a result commonly known as Sauer’s lemma [72], and an extension due to Blumer et al. [73]
(see [71] for further references regarding this result).

Lemma 3.6 (Sauer’s Lemma) Given a class of functions F for which V(F) = d > 0 and
d < oo,

d
s o@n =1+3 (1), (3.5)

=1 !
where k > 1 is a positive integer. When k> d > 1,

o(d, k) < (%)d. (3.9)

This lemma is useful as it is often easier to estimate V(F) than Ax(k), and as it gives an upper
bound on Ax(k) which is a polynomial function of k of degree d. A further result [70, 71] on
Ax(k) for finite V(F) is that either Ax(k) = 2 or,

Ar(k) < KV, (3.10)

Clearly when V(F) is infinite, Az(k) = 2* for all k. The bound of equation 3.10 is important
for reasons which we will provide below.

Values for the growth function and VC dimension, or bounds thereon, are known for a number
of hypothesis spaces, some of which correspond to connectionist networks. Rather than list them
here we introduce them as they become relevant.

3.2.3 Using the Growth Function and VC Dimension to Analyse Generaliza-
tion

Counsider a connectionist network which computes a class F of functions. One way of interpreting
the task of training this network is as follows: we attempt to adjust the weight vector w in order
to obtain a function fw € F, which gives ‘good agreement’ with a target function fr on a set
of training examples. Let x be an element of the environment X picked at random according to
some arbitrary? distribution P on X. We define 7, as the probability that fy agrees with fr
on an example chosen at random according to P, that is,

Tw = Prlfw(x) = fr(x)]. (3.11)

Given a sequence Ty = ((x1, fr(x1)),-.., Xk, fr(xx))) of training examples in which the x; are
picked at random according to P, we define vs, as the fraction of the & examples which fw

2The theory presented in this chapter is distribution independent. It is important to remember however that,
while we can use an entirely arbitrary distribution to model the generation of data, in any specific situation the
same distribution is used in both the training of the network and in the assessment of its subsequent performance.
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classifies correctly. When we train a connectionist network we choose a particular w on the basis
of the value of vy, , and it is therefore important to know whether vy, converges to 7y, in a
uniform manner for all fyy € F as k becomes large. If this is not the case then it is possible
to choose a function fw for which the corresponding value of 7y, is in fact relatively low. An
important inequality due to Vapnik and Chervonenkis [70] bounds the probability that there is
some fw € F for which vy, and 7y, differ significantly. Given a particular value €, we have,

Pr| sup |vpy — Tpy [> €
JwEF

< 4AF(2k) exp (_ik) . (3.12)

This result has recently been improved by Anthony and Shawe-Taylor [74], and various similar
results have been proved by other authors (see Saitta and Bergadano [75]).

An important consequence of equation 3.10 is now apparent. When V() is finite the growth

function Az (k) is bounded above by a polynomial function of k. As the factor exp (7‘;32’“) decays

exponentially in k it is therefore possible, by choosing k large enough, to make the right-hand side
of equation 3.12 arbitrarily small. Equation 3.12 places a bound on the rate of convergence which
is independent of both the specific target function fr and the specific probability distribution P.
The speed of convergence, and hence the number of examples required to guarantee a particular
generalization performance, is clearly influenced by V(F).

Further discussion of this method of analysing generalization performance can be found in
Hertz et al. [15] and Abu-Mostafa [76] (on which the preceding discussion in this subsection is
based).

3.2.4 Generalization and PAC Learning Theory

The discussion given above illustrates one reason for the importance of the growth function
and VC dimension in the analysis of generalization in connectionist networks. The work on
generalization presented in this dissertation is based on the theory of Probably Approzimately
Correct (PAC) learning introduced by Valiant [77]. In particular, in chapter 5 we use an extended
form of PAC learning due to Blumer et al. [73], based on the work of Vapnik [78], to analyse the
generalization performance of ®-nets. The same collection of techniques was used by Baum and
Haussler [79] in their well-known work in which they address the generalization ability of general
feedforward networks constructed using linear threshold elements; we define these networks in
full in the next chapter.

The published literature in this field is again too extensive to allow an exhaustive review,
and we therefore give only the minimum introduction required as a prerequisite for the work
presented in chapter 5. In particular, note that in general PAC learning theory one also addresses
the question of whether learning algorithms are computationally efficient, although we will not
be concerned specifically with this type of question here. More detailed introductions to standard
PAC learning can be found in Natarajan [80], Anthony and Biggs [71], Angluin [81], Kearns [82],
and Haussler [83] and further material on the extended form in Blumer et al. [73], on which the
material in the remainder of this subsection is based.

Standard PAC Learning

Consider again the environment X corresponding to the input space of a network, and an hy-
pothesis space H computed by the network. We define the concept class C, in a similar manner
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Hypothesis h

Target concept C.

I:I ___ Symmetric difference hWVcT
of h, and C_.

Figure 3.2: The error of an hypothesis hy is the probability according to P of the symmetric
difference hw Ver.

to H, as a set of subsets of X and require that elements of C' and H are Borel sets®. The concept
class C' may or may not be equal to H. Training the network corresponds to adjusting the weight
vector w such that the network computes an hypothesis hy, € H which is a ‘good approximation’
to some target concept cp € C.

In PAC learning, we are given a finite sample T, = ((x1,01),(X2,02),...,(Xk,0k)) of k
training examples, where inputs x; are drawn independently according to some arbitrary fixed
distribution P on X and labelled with output o; = +1 if x; € ¢y and 0; = —1 otherwise. Let
X}, denote the corresponding k-tuple Xy = (x1,X3,...,X;). We call a function F' which, given a
large enough sample of any cr € C, returns an hy = F(T}) € H which with high probability is a
good approximation to cr, a learning function for C' with respect to P. In order to formalize this
we define the error of some hy € H as the probability according to P of hw Vcr, where aVb is
the symmetric difference* of the sets a and b. The error is thus the probability that ¢z and hw
disagree on a randomly drawn example; this is illustrated in figure 3.2. We then require that,
given some small specified € and §, the hypothesis hw provided by the learning function satisfies,

Pr[Error of hy > €] <6 (3.13)

uniformly for all ¢ € C provided k is large enough. Equation 3.13 is rather informal, and is
intended to provide an intuitive idea of what is required. Formally, we require,

P*[{Xy | P[F(Ty)Ver] > €}] <6 (3.14)

where k& must depend only on € and § and where the notation P[E] denotes the probability of the
event E according to the distribution P. If this is possible regardless of the actual distribution P
then we say that £ is a learning function for C' with sample size k. The smallest k£ guaranteed to
achieve this is called the sample complezity of F', and any concept class for which such a learning
function exists is called uniformly learnable by H.

3We also require that C' satisfies some measurability-related conditions. Neither of these requirements is very
restrictive and neither presents a problem in practice. A discussion is given an appendix A where, in particular,
we argue that all elements of C' and H are Borel sets in realistic situations, and prove that all classes computed
by ®-nets satisfy the required measurability-related conditions.

“The symmetric difference of two sets is the set of elements which belong to one, but not both, of the sets.
Formally, aVb = (a\ ) U (b \ a). It is more common to use the notation a/Ab, however we use this notation in
order to avoid confusion with the growth function.
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Blumer et al. [73, 84] have shown that the VC dimension is an extremely important parameter
in this type of learnability theory. For example, they prove that a concept class C' is uniformly
learnable by some hypothesis space H if and only if V(C) is finite. But how are these ideas
related to generalization? Note that from equation 3.14 we can require that the error of the
hypothesis computed by a network after training is, with high probability, below some arbitrary
level. This error describes the performance of the network for all possible inputs, and not just
those used during training, and hence provides a direct measure of generalization performance.

Extended PAC Learning

PAC learning in its standard formulation does not provide a satisfactory means of dealing with
several important situations. For example, it does not allow us to consider samples 7} which
contain misclassifications and, perhaps most importantly from our point of view, it does not
allow us to consider the use of a target concept defined in a stochastic manner — an assumption
which is often used in work on pattern classification — as opposed to the use of a deterministic

cr.

We will use an extension to PAC learning in which, instead of considering T} as having been
generated using a distribution P on X and the target concept cr, we consider T} to be generated
using only a distribution P’ on X x B, from which examples are drawn independently. If a
network computes the function fyw then we define the error of fy with respect to P’ as,

erp(fw) = Prlfw(x) # o
P'[{(x,0) | fw(x) # o}] (3.15)

where (x,0) is a random example. It may thus not be possible to define a deterministic ¢y C X
as given x € X both (x,+1) and (x, —1) may have non-zero probability. Using this extension we
can, for example, model the situation in which examples are generated as in the standard PAC
learning formalism but T} is modified by some random process which alters x; or o;.

The work of [73] allows us to model the task of searching for a deterministic hypothesis
hw which, with high probability, is a good approximation to some stochastic target concept.
This corresponds closely to the usual manner in which the problem of training a connectionist
network is cast. In applying this extended version of PAC learning, we will use two important
theorems due to Baum and Haussler [79] and based on the work of Vapnik [78], Blumer et al. [73]
and Ehrenfeucht et al. [85]. These theorems are stated and applied in chapter 5 (theorems 5.2
and 5.4), and in common with standard PAC learning rely heavily on the growth function and
VC dimension.

3.2.5 Further Results in Computational Learning Theory

Several extensions exist to the computational learning theory presented above, the most impor-
tant of which we now briefly review. Many of the extensions mentioned here are reviewed in
more detail by Anthony and Biggs [86].

The theory presented above clearly applies only to networks used to solve two-class pattern
classification problems, which in general have only a single output. Extensions allowing us to
consider, using PAC learning techniques, networks with many outputs, which can solve pattern
classification problems with several classes, have been made by Shawe-Taylor and Anthony [87].
Extensions to the theory allowing us to deal with networks having real-valued outputs have been
made by Haussler [88, 89].

43



One of the most desirable properties of the theory is that it provides results which are entirely
independent of the actual probability distribution that governs the occurrence of training and
testing examples. Unfortunately, this generality, while leading to results that are obviously very
powerful, tends also to lead to results which are impractical, and we will pursue this point further
in chapter 5. Extensions to the theory have been made which allow us to consider distribution-
dependent learning, in which we deal with some particular class of probability distributions, or
even a single, specific distribution, rather than with arbitrary distributions.

Extensions have also been made to PAC learning theory which allow a learning algorithm
to make queries; for example, the algorithm may now be allowed to ask whether some partic-
ular input x is in class 1 or class 2 (Angluin [81]). Kearns and Schapire [90] have considered
further methods for dealing with probabilistic concepts, and Fischer et al. [91] have attempted
to incorporate Bayes decision theory into a PAC learning framework. Haussler et al. [92] have
attempted to unite computational learning theory and the theories of generalization based on
statistical physics which we introduce below. We discuss the work in [92] further in chapter 5.

3.3 Other Approaches to the Theoretical Analysis of General-
ization

We now briefly summarize some alternative approaches to the theoretical analysis of generaliza-
tion. As we mentioned at the beginning of this chapter, the most important alternative techniques
are based on statistical physics. These techniques address the average generalization ability of a
network whereas computational learning theory provides worst case results. We will not provide
a detailed account of the former techniques; for a good introduction see Hertz et al. [15] and
for further detail see Seung et al. [93] and references therein. The relationship between these
methods and computational learning theory is also discussed in further detail in [93].

Kanaya and Miyake [94, 95] have proposed a definition of valid generalization based on Bayes
decision theory, and have analysed the number of training examples required to produce valid
generalization under this definition. Anshelevich et al. [96] have proposed a method for analysing
generalization ability using very simple information theoretic arguments; although their theory
contains many assumptions, which are not necessarily realistic, they find that it agrees well
with simulation results for some simple problems. Further, quite simple analyses are given by
Cover [17], Wan [97] and Denker et al. [98]. A rather different approach to generalization is given
by Wolpert [99, 100], who introduces a model independent formalism involving the specification
of various criteria required of a system that generalizes. For example, the system might be
required to be invariant to particular types of coordinate transformation of the input space. A
system is then constructed with these criteria in mind; systems constructed in this manner have
been applied with encouraging results (Wolpert [40]). Finally, an analysis using the Vapnik-
Chervonenkis and other inequalities appears in Devroye [101], and MacKay [102, 103] briefly
discusses generalization in the context of his Bayesian framework.

3.4 The Importance of Capacity

An important point, which is supported by most theoretical work on generalization, is that we
should in general attempt to use a network which has the minimum capacity necessary to provide
acceptable performance on the training examples, where capacity is some appropriate measure
of the ‘size’ of the class of functions computed by the network. This has been noted by various
authors, such as Le Cun [104], and is reinforced by experimental studies (see for example Sietsma

44



and Dow [105]). Simple algorithms for tuning the capacity of particular classifiers in this manner
have been proposed by Boser et al. [11] and Guyon et al. [106]. A widely applicable technique for
capacity tuning (although one that is quite computationally intensive) is that of cross-validation
(see Efron [107]). (Note however that this technique will not necessarily select a network having
strictly minimum capacity.)

There is a simple intuitive explanation for this fact: if we train a network with much larger
capacity than necessary, then we can expect the probability that it performs well on the training
data to be high. However, we can also expect that the number of different functions that the
network can compute which perform well on the training examples will be high, and consequently
that the probability of choosing the one which provides the ‘best’ generalization is low. Of course,
we can increase the latter probability by increasing the number of training examples and hence
reducing the number of functions that perform well thereon.

3.5 Conclusion

In this chapter we have introduced the theoretical framework that will be used in the next
two chapters to investigate the ability of ®-nets to generalize, and we have briefly reviewed the
alternative formalisms that are available for the theoretical analysis of generalization. One reason
that we have chosen to use a formalism based on PAC learning theory is that it allows us to
derive results relating to the performance of a network in the worst case, rather than the average
case. In order to apply the relevant theory, we need to deduce values for the growth functions
and VC dimensions of the networks of interest, or bounds thereon; this is the main aim of the
next chapter.
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Chapter 4

The Generalization Ability of
®-Nets I: Growth Functions and VC

Dimensions

4.1 Introduction

In this and the following chapter we present a detailed study, using extended PAC learning theory,
of the ability of ®-nets to perform generalization. In the last chapter we saw how the growth
function and the VC dimension of a network can be used in order to investigate its generalization
ability. This chapter presents an investigation of the growth function and VC dimension of both
general and specific ®-nets, with both fixed and adapting basis functions. We also demonstrate
that these parameters do not allow us to make a meaningful analysis of the generalization ability
of connectionist networks trained using a self-structuring training algorithm, and we introduce a
method which allows us to perform an appropriate analysis for ®-nets with fixed basis functions
in this case. We use our results in the next chapter to derive necessary and sufficient conditions on
the number of training examples required by a ®-net in order to obtain a particular generalization
performance.

In section 4.2 we provide bounds on growth functions and VC dimensions for entirely general
®-nets with fixed basis functions, and we introduce the idea of a restricted ®-net, for which we
provide further bounds. We then consider the case of networks trained using self-structuring.
In section 4.3 we consider the specific case of radial basis function networks with fixed and
adapting basis functions, for which we deduce results on the VC dimension for several commonly
encountered types of basis function. In section 4.4 we use the fact that the VC dimension can be
regarded as a measure of capacity to investigate the criticism that ®-nets can in practice require
a relatively large number of weights. Section 4.5 discusses some of our results and section 4.6
concludes the chapter.

Throughout this and the following chapter we assume that ®-nets have W = m +1 > 2
weights unless otherwise stated. Recall also that we deal only with networks which compute
functions fw : R™ — IB. Some of the results presented in this and the following chapter have been
published previously, or are accepted for publication (Holden and Rayner [108, 109], Holden and
Anthony [110], Holden [111, 112], and Anthony and Holden [113, 114]) although the exposition
provided here is considerably expanded.
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4.2 Bounds on the Growth Function and VC Dimension of ®-
Nets

4.2.1 General ®-Nets with Fixed Basis Functions

We begin by introducing the class F,, of linear threshold functions on IR™.

Definition 4.1 A linear threshold function fw : R"™ — B is a function of the form fw(x) =
plwo + wiz1 + - - - + wpzy] where w; € R for i =0,1,...,n. The class Fy, is defined as,

Fo = {fw | w € R™1}. (4.1)

The class F,, has a corresponding hypothesis space which can be identified with the set of all closed
halfspaces on IR"; clearly, it also corresponds to the usual class of linear discriminant functions
with C = IB. The following result has been proved by several different authors, although the best
known derivation is probably that due to Wenocur and Dudley [115].

Lemma 4.2 The class F,, of linear threshold functions on R™ has VC dimension V(F,) = n+1.

Similarly, it is known [71] that Az, (i) = 20(n,i — 1) for ¢ > 2, where © is the function defined
in Sauer’s lemma (lemma 3.6).

Consider now a threshold ®-net which computes a class of functions 2. As we have previ-
ously noted, this network operates by mapping input vectors into a new space — the extended
space — and computing a halfspace on this space. Intuitively therefore, we might expect the
VC dimension V(F2) of the ®-net to be bounded above with an upper bound equal to the VC
dimension of the set of all halfspaces on the new space, or V(F,,) where F,, is as defined above
and, as usual, m =| ® |. For the same reason, we would also expect Aze (i) to have an upper
bound of Az, (7). This intuition is in fact true and is formalized in lemma 4.4 below. In order
to prove this we use the following result.

Lemma 4.3 For any hypothesis space H, Ap(i) < Ag(i+1).

Proof Consider some set of points S; and the corresponding set Ag(S;). If a new random
point is added to S; to give S; ;1 then Ay (S;+1) must contain at least one dichotomy of S;; for
every dichotomy of S; induced by some h € H, as well as any new dichotomies induced. Thus,
| AH(SZ) |§| AH(SH—I) | which implies that AH(’L) < AH(’L + 1) O

We can now prove the following, which formalizes the intuition suggested above. An alternative
way of proving the first part of this lemma, based on an existing result, will be given below. We
include the following version of the proof as it is new, and as we feel that it provides a better
insight into the problem of interest.

Lemma 4.4 (Upper bounding lemma) Given any ®-net, which computes the class of func-

tions FZ2, it is true that V(FL) < V(Fm) = W and that Age(i) < Ag, (i) = 20(m,i — 1) for

n’
1 > 2 regardless of the value of m and the actual basis functions used.

Proof
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The VC dimension bound It is clearly possible to have V(F2?) = V(F,,). This is true, for
example, if the extended vector is formed as X7 =[ 1 x' ]. The case V(F?) < V(Fp,) is
possible if the set of basis functions chosen is suitably limiting, for example, if we use X! =
[1 1 --- 1]. The case V(F2) > V(Fn) is not possible; this is a direct consequence of
the definition of the VC dimension.

The growth function bound Application of the above methods of constructing % establishes
that Aze(i) < Ag, (7). A careful consideration of the case Axe(i) > Az, (i) shows that
this would only be possible if the mapping ¢ (as defined in chapter 2) maps two or more
points in the input space into a single point in the space spanned by the basis functions
and,

AF, (= k) > D7, (), (4.2)

for some positive integers j and k£ where £k < j. The inequality of equation 4.2 is not
possible by lemma, 4.3 and so the growth function bound is proved.

a

The upper bound provided by lemma 4.4 is clearly met for a threshold ®-net which com-
putes linear discriminant functions, but is it met by more general threshold ®-nets? We can
partly provide an answer to this question using the following result which is originally due to
Dudley [116], and appears in the following form in [110].

Theorem 4.5 Let S be a vector space' of real-valued functions defined on some set X, and
suppose that the dimension of the space S is d. For functions s € S define the function sT: X —
B as st =pos, and define ST = {s* | s € S}. Then the VC dimension V(ST) of ST is d.

This theorem tells us several things. Firstly, for a given set ® of basis functions, it is easily
verified that the class of real-valued functions,

F = {fw(x) =w0+Zwiq§i(x) | i € &,x € R" and w; € R for i = 0,1,...,m} (4.3)
=1

is a vector space of functions on IR™ which has dimension m+1 if the set of functions {1, ¢1,..., ¢m}
is linearly independent and has dimension less than m+1 otherwise. Note that for this set of func-
tions to be linearly independent we require that there are no constants ¢; € R, i = 0,1,...,m,

where at least one c¢; is non-zero, such that,
co + 01¢1(X) + e+ cmqu(x) =0 (4..4.)

for all x € R". Clearly therefore the upper bound of lemma 4.4 is met for any threshold ®-net
for which the set of functions {1, ¢1,...,¢n} is linearly independent; this fact is used in [110] to
show that threshold ®-nets computing polynomial discriminant functions meet the upper bound
(see also Young and Downs [118]). It can also be used to provide an alternative proof of the VC
dimension bound of lemma 4.4, and to prove lemma 4.2.

Unfortunately, proving that a given set of functions is linearly independent is usually by no
means a trivial problem, although it is obviously sensible to use such a set of functions if possible,
as otherwise some of the functions are effectively redundant.

!For completeness, we re-state the full definition of a vector space (Green [117]). A wvector space is a structure
consisting of two sets and their associated operations such that one, the elements of which are called vectors, forms
an Abelian group, and the other, the elements of which are called scalars, forms a field. Furthermore, the operation
of scalar multiplication is defined which produces a vector as the product of a scalar and a vector, distributes over
addition of both vectors and scalars, and is associative with multiplication of scalars.
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4.2.2 Restricted ®-Nets with Fixed Basis Functions

In the next chapter, we will need lower bounds as well as upper bounds on the VC dimension
of a given ®-net. We saw above that for ®-nets in which the relevant functions are linearly
independent the VC dimension is equal to the number of weights W in the network. If we cannot
prove that this is the case then finding a lower bound may be difficult; it is not possible for the
completely general class of ®-nets to derive a good lower bound on V(F?2) although a trivial
bound of V(F2) > 1 is obtained easily, again by considering the use of a network which can only
compute the extended vector X’ =[1 1 --- 1]. A simple way to obtain lower bounds is to
consider classes of ®-nets in which the set of basis functions has been restricted in some manner.
Many of the standard ®-nets introduced in chapter 2 contain basis functions which correspond
to terms in a polynomial in addition to some further basis functions, and we therefore introduce
the following definition.

Definition 4.6 (Restricted ®-net) A restricted ®-net is a standard ®-net in which n of the
basis functions have the form ¢;(x) = z;. In this case the extended vector is of the form,

K= [1 %7 Gua(x) e dm() ] (4.5)

LDFs and PDFs are clearly restricted ®-nets, as are some radial basis functions networks and
regularization networks. We can now derive a lower bound on V(F?) as follows.

Lemma 4.7 The VC dimension of a restricted ®-net has a lower bound of n+ 1.

Proof If we set w; = 0 for i = n+1,...,m, that is, we set the weights corresponding to the
basis functions ¢n41(x) t0 ¢m(x) in equation 4.5 to zero, the network computes the class F,, of
halfspaces in the input space when we vary the remaining weights. Thus V(F,,) = n+ 1 provides
a lower bound for V(F2). O

Let Fppr(n,d) be the class of polynomial threshold functions on R™ computed by an (n, d)
discriminator. In [110] it is proved that for this type of classifier,

V(Fpor(n,d)) = ( ”;’d ) . (4.6)

Clearly we can use this result to provide a lower bound of,

V(FY) > ( n;d ) (4.7)

on the VC dimension of more general types of restricted ®-net in which a subset of the basis
functions corresponds to those used to compute the polynomial threshold functions. In an even
more general sense, if we know the exact VC dimension of a ®-net constructed using a particular
set @1 of basis functions, then we can immediately obtain a lower bound on the VC dimension
of any ®-net constructed using a set & = {®1, P2} of basis functions where ®9 is any further
suitable set.

4.2.3 P-Nets with Self-Structuring

In the last chapter we noted that the capacity of a network is directly related to its generalization
performance. We therefore expect self-structuring to be advantageous in constructing networks
which generalize well, as the capacity of a network is in general directly related to its structure and

49



we can therefore design self-structuring training algorithms which attempt to optimize capacity.
In general these algorithms will attempt to minimize capacity and consequently to minimize the
size of a network (where ‘size’ is appropriately defined).

Self-structuring can be approached in several different ways, which we will summarize in
chapter 6. In this dissertation we are concerned with one particular approach, in which we begin
with a ‘large’ network and then attempt to remove weights which are not required; again, the
reasons for adopting this approach are discussed in chapter 6. In other words, given a ®-net
which computes the class of functions F2, our self-structuring algorithms bias the search for an
optimum weight vector in favour of a vector with many zero elements. Now, it is important
to note that such algorithms search over precisely the same class of functions, namely F2, as
standard training algorithms which make no attempt to adapt the structure of the network. It is
therefore not possible to directly analyse the effect of this type of self-structuring on generalization
performance within this particular formalism, because bounds on the growth function and VC
dimension for F,? are not altered in any way as a result of its use. MacKay [103] has made
effectively the same criticism against the use of the VC dimension. We can however gain some
insight into the effect of this type of self-structuring by restricting 2 in a manner which takes
into account and sensibly reflects the bias in favour of weight vectors with many zero elements.
In order to facilitate an analysis we introduce the concept of an [-restriction, which was inspired
by a similar technique used in [79] (see section 5.4). This concept will be used in our analysis in
the next chapter.

Definition 4.8 (I-restriction) Given a class of functions FL computed by some ®-net having
W > 3 weights, we define its l-restriction RYFL) C FL where | > 2 and W > [ as the subset
of F2 containing the functions computed by the ®-net when | weights are unconstrained, one of
which corresponds to the unit term in the extended vector, and the remaining weights are fized
equal to zero. Formally, if the weight vector of the ®-net is wl = [wy wi -+ wy |, let
WU be the set of all subsets of weights which do not contain wg and which have cardinality
(1 —1). For ezample, if m = 10 a possible element of W3 is {wq,ws,wio}. Then RYF2) is the
class of functions,

RYFY) = {fw(X) =p

wo + Z wiqﬁi(x)] |w e WD and w; € R for i = 0,1,...,m} .
w; Ew

(4.8)

Intuitively, the [-restriction of a ®-net is simply the set of all functions implemented by the
®-net when it is forced to have at most | non-zero weights. The requirement that wq is always
unconstrained is needed in the proof of theorem 5.8 in order to ensure that the network still
computes general closed halfspaces on the extended space. In this theorem we will also need to
know the number N(I,W) of ways of choosing a set of unconstrained weights. As wy is always
unconstrained N(I, W) is simply the number of ways of choosing (I — 1) weights from (W — 1),
without distinguishing according to the order of choice or allowing the same weight to be chosen
more than once, or (see Biggs [119]),

N(I, W) = ( v;/_—11 ) . (4.9)

Note that the [-restriction of a ®-net can be written as the union of the classes of functions
computed by N(I, W) smaller ®-nets:

N(L,W) o
RFEH= | Ar=FrurPu---uFR ", (4.10)
=1
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In equation 4.10 each term F 2 corresponds to one possible way of choosing the non-zero weights,
so we have ®; C ® where ®; is the subset containing the basis functions which do not correspond
to zero weights and | ®; |= 1 — 1. This will be important in theorem 5.8 and in appendix A.

Although we only concern ourselves with one type of self-structuring in this dissertation, it
is relevant at this point to ask whether techniques involving the use of the growth function and
VC dimension can be used effectively in circumstances where other forms of self-structuring are
employed. The obvious alternative approach to self-structuring to that mentioned above is to
begin with a small network and to increase its size during training; the next logical step is to
allow network size to increase and decrease during training. Now, note that a method such as
that introduced above can also sometimes be used to approrimately model these cases, because
we may still be searching for a ‘small’ network constructed using some available collection of
resources (in the case of ®-nets the collection of resources is the set ® of basis functions). This
fact has not previously been noted.

However, what happens if the collection of available resources is not fixed in advance, or is
infinite (for example, if we allow a self-structuring algorithm to add a radial basis function to a
network and specify its centre)? Furthermore, how can we ezactly, rather than approximately,
model self-structuring? Ultimately, the situation can become very complicated, because the class
of functions which we must deal with can change during training in a manner dependent on
the specific training data available. Research to date in computational learning theory has not
attempted to fully model these situations?, which are clearly important, and we therefore propose
this as an important subject for further research.

4.3 A Specific Case: Radial Basis Function Networks

We demonstrated above that the VC dimension of a completely general ®-net must be such
that V(F2) < W; we also demonstrated that V(F2) = W if {1,¢1,¢2,...,¢m} is a linearly
independent set of functions. We now investigate the VC dimension of various types of radial
basis function network. We mentioned briefly in chapter 2 that these networks have an excellent
mathematical foundation in interpolation theory, and it is by exploiting this fundamental work
that we obtain our results. We therefore begin with a brief review of the theory required; our
review is based on a review given in [44], however we have added some further material and made
some corrections.

Recall that a general RBFN computes a class of functions of the form fw = p o fw where
fw : R™ — R is of the form,

p q
Fw () =Y Nigllx —yill) + Y bithi(x) for ¢ < p. (4.11)
i=1 i=1

We will call functions of the form of fw = p o fw radial threshold functions. In equation 4.11,
wli=[A Ay - Ap 61 02 - 04 ]isavector of weights, ¢ : ]RE)Ir — IR is a basis function,
the vectors y; € IR™ are the centres of the basis functions, ||.|| is the Euclidean norm and
{; |i=1,...,q} is a basis of the linear space of algebraic polynomials from R" to R of degree
at most (d — 1), which we denote by m;_1(IR"), for some given d. In practice the polynomial
terms are often not included and in this case the functions fy are of the form,

Fw(x) =" Nio(lx = yil)). (4.12)
=1

*The idea of an Occam Algorithm [71] provides a starting point, but does not capture the full potential com-
plexity involved.
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Figure 4.1: Forming a dichotomy of a set S = {x1,x9, 23,24, 25} of points in R by inter-
polation using a real-valued function g(z). The dichotomy formed by p o g in this case
is ({z1,z3},{x2, x4, 25}). Provided there is some g € G which performs the interpolation
regardless of the values of the o;, G' = {pog | g € G} shatters S.

A constant offset term )\g is often added in this case, but is omitted here.

4.3.1 Interpolation, Micchelli’s Theorems and the VC Dimension

Consider now the problem of interpolating a given set Sy = {x1,X2,...,Xx} of distinct points
x; € R™ with associated values (01,09, ..., 0) where the values o; € IR can be chosen arbitrarily.
That is, we wish to find a function g such that,

g(x;) =o0; fori=1,2,... k. (4.13)

Let us assume that g is chosen from a class of functions G, and define the associated class of
functions G’ as ¢’ = {pog | g € G}. Now, assume that we have a particular set of k points Sy to
which we can assign arbitrary quantities o; € R. Clearly, if it is possible to prove that given Sy
there exists a ¢ € G which performs the interpolation regardless of the actual values o; used then
V(G') > k. To see why this is so consider any dichotomy (S;,S; ) of the set Sy. We can pick
the o; such that when x; € S,j the corresponding o; is an arbitrary positive quantity and when
X; € S, the corresponding o; is an arbitrary negative quantity. Because there must exist some
g € G which performs the corresponding interpolation, ¢’ = pog must induce the dichotomy, and
because we can start with any dichotomy, G’ shatters Si. This is illustrated in figure 4.1.

The reason that functions of the form of fw as defined in equation 4.11 are useful is that it is
always possible to interpolate points in such a set Sy for arbitrary o; using this type of function
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if p = k and the centres y; correspond to the points x;, that is,

k q
Fow(x) =Y Mid(llx = xill) + Y bithi(x) where g <k, (4.14)
i=1 i=1

provided the basis function ¢ satisfies a condition which we discuss below. We can now define
the above class of functions G as,

G = {fw | w € RFt}, (4.15)

As in chapter 2, we note that under the constraints of equation 4.13 we now have a set of k linear
equations with (k + ¢) coeflicients; we fix the remaining degrees of freedom by requiring that,

k

Z)\i%‘(xi) =0 where j =1,...,q. (4.16)
i=1

A sufficient condition on the basis function ¢ for the existence of a suitable interpolating function
is that ¢ € IP;(IR™) where we define IP4(IR™) to be the set of strictly conditionally positive definite
(SCPD) functions of order d (Micchelli [43]).

Definition 4.9 Let h be a continuous function on [0,00). The function h is SCPD of order d
on R™ if for any set Sk of k distinct points x; € R"™ and scalars c1,ca,...,cx € R (at least one
¢; # 0) where,

chﬂ(xi) =0 (4.17)

=1

for all ¢ € mg_1(R™) the quadratic form Zle Z?Zl cicih(||x; — x4|) is positive. In the special
case of d = 0 the class of SCPD functions is the class of functions for which Ele Z?Zl cicih(||xi—
x;||) is positive.

We now define IP; to be the set of functions which are in IP;(IR™) over any R",

P, = (| Pa(R"). (4.18)

n>1

A theorem due to Micchelli provides us with a simple means of determining whether a particular
basis function ¢ is in IP4, and consequently whether it is a good basis function to use in forming
fw- Before stating the theorem we need to introduce the idea of a completely monotonic function.

Definition 4.10 A function h is completely monotonic on (0,00) if it is in C*°(0,00) and its
sequence of derivatives is such that,

(=)' (z) >0 (4.19)

for x € (0,00) and i =0,1,2,....

Theorem 4.11 (Micchelli [43], Dyn and Micchelli [120]) If a function h(r) is continuous
on [0,00), h(r?) € C®(0,00) N C[0,00) and (—1)¢h D is completely monotonic on (0,00) but not
constant then h(r?) € Py.
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Consider now the special case mentioned above, which corresponds more closely to the types
of network used in practice, in which we form fy as,

P
Fw(x) =" Nio(lx = yil)- (4.20)
i=1
Once again, we will insist that p = k basis functions are used and,
yi=x;fori=1,... k. (4.21)
Clearly in this case the interpolation is possible if there exists a solution to the set of equations,
01 11 P12 -+ Puk A1
02 P21 P22 cr Do A2
Ok, Pk1 k2 v Pk Ak

where ¢;; = ¢(||x; — x;||). Thus we would like ¢ to be non-singular so that A = ¢ 'o. It is
possible to show that ¢ is non-singular if ¢ is SCPD of order 0 [42, 44]. In some cases theorem 4.11
can therefore be used to determine whether a given ¢ can be used successfully. Alternatively we
can use another theorem due to Micchelli.

Theorem 4.12 (Micchelli [43]) If a function h is continuous on [0,00), positive on (0,00),
and has a first derivative that is completely monotonic but not constant on (0,00), then for any
set Sg of k vectors x; € R™ where n s arbitrary,

(=1)* Ldet A(||x; — x;]|%) > 0. (4.23)

Now, if we choose a basis function ¢ such that ¢(,/r) satisfies the conditions provided by theo-
rem 4.12 it is not possible that det(¢) = 0. This implies that ¢ is non-singular as required.

4.3.2 RBFNs with Fixed Basis Functions

To briefly summarize the theory discussed above, consider again our original RBFNs as defined
in equations 4.11 and 4.12. Provided we choose a suitable basis function ¢ using the conditions
given in the appropriate theorem 4.11 or 4.12, an RBFN having distinct, fized centres {y;} where
i=1,2,...,p shatters the set of p vectors {x;} where x; =y; fori =1,2,...,p.

We now immediately obtain two corollaries, in which the various basis functions used are
as defined in chapter 2; note that for basis functions which include a parameter ¢ or o, this
parameter is fixed — it is not adapted during training. We have stated results only for the basis
functions given in chapter 2, which tend to be the most commonly encountered in practice; the
general theory given above can easily be used to provide similar results for other basis functions
by applying precisely the same proof techniques that we employ below.

First, we consider simple RBFNs of the form fw(x) = p[>_%_; Xi¢(||x — yil|)]. As these

networks are ®-nets without a unit term in the extended vector we need the following result.

Lemma 4.13 Consider the class .7:"7? of functions fw :IR®™ — B computed by a network where,

Fwr(x) = pl e (%) + - + App(x)]. (4.24)

In equation 4.24, the A\; are reals and the ¢; are fixed basis functions, and we therefore have a
network identical to a standard ®-net with the exception that it has no unit term in the extended
vector. For this network, the VC dimension V(FZ) is such that V(F2) < p.
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Proof As the space of real-valued functions of the form ) 7, X;$;(x) can easily be shown to be
a vector space of dimension at most p, this is a direct consequence of theorem 4.5. |

Corollary 4.14 Consider the radial basis function networks of the form,

p
fa() = p [Z A (lx — yz-n)] (4.25)
=1

where the centres {y;} are fized and distinct and ¢ is one of the functions ¢rin, ¢cavss, d)}‘wQ
or ¢ing defined in chapter 2. In each case we have V(F2) =p.

Proof By theorem 4.11, ¢gavss € Py and ¢}MQ € Py. Also the functions /7 and (r + ¢?)?
where 0 < 3 < 1 satisfy the conditions provided by theorem 4.12 [44]. Thus in all four cases we
have V(J:"f{> ) > p by the arguments given above. Also, we demonstrated in lemma 4.13 that for
this type of network V(F2) < p and thus we must have V(F2) = p. 0

We now consider the more general RBFNs as defined earlier.

Corollary 4.15 Consider the general radial basis function networks of the form,

Far(x) = p | D Xid(lx = yill) +2(6,x) (4.26)

=1
where 1(0,%) is a degree 1 polynomial,
w(e, X) =6y + 0121+ Orxs + - - - + Oy, (427)

the centres {y;} are again fized and distinct, p > n+1, and ¢ is one of the functions ¢cup or
érps. The VC dimension of the network obeys p < V(F2) <p+n+1.

Proof By theorem 4.11, ¢oyp € P2 and ¢rpg € IP3 and so by the arguments given above we
have V(F?2) > p. The upper bound is a direct consequence of lemma 4.4 and the result follows.
O

4.3.3 RBFNs with Adapting Basis Functions

Although we are primarily interested in ®-nets having fixed basis functions, we now briefly con-
sider some ®-nets having adapting basis functions. Specifically, we now consider the consequences
of allowing the centres {y;} of the basis functions in a radial basis function network to adapt
during training; consequently, the number of weights is now W; = p(n + 1) for the networks
of equation 4.25 and Wy = p(n+ 1) + n + 1 for the networks of equation 4.26. First, we note
that obviously the results given above immediately provide lower bounds of V(F) > p on the VC
dimension of networks of this type when appropriate basis functions ¢ are used. We also obtain
the following simple result.

Corollary 4.16 Consider the radial basis function networks of the types used in corollaries 4.14
and 4.15. If the centres {y;} are allowed to adapt during training then the networks are all able
to shatter any set of p distinct points. (Note that parameters ¢ or o in the basis functions are

still fized.)
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The proof of corollary 4.16 is simple — the networks can shatter the set of p points corresponding
to the centres {y;}, and these centres can be placed anywhere. It is interesting that the p points
are not required to be in any kind of general position® as is usually the case in similar results for
other types of network (see for example Cover [17]). As the corollary shows that in this case the
networks can shatter any set of p distinct points, we suggest that the lower bounds given above
for these networks are not tight; it remains an open question whether they can be improved, for
example it is interesting to ask whether it is possible to obtain lower bounds comparable to those
of Q(W logy W) proved by Maass [121, 122] for certain types of feedforward network, which we
discuss in detail in the next section.

We have been unable to obtain upper bounds on the VC dimension of radial basis function
networks with adapting centres for all but the simplest cases. We note that if the basis function
¢ is of the form,

p(r) =1 (4.28)
where ¢ is an even, positive integer then it is trivial to show that the network computes some

subset of the set of functions computed by a ®-net having fized basis functions which are of the
same form as those in a PDF. For example, if ¢ = 2, n = 2 and m = 1 we could have,

fw(x) = plAio(llx — yal)]

p (21 = 1) + (22 — 12)°)]

p[A(z] — 2z1y1 + 47 + 25 — 20095 + 43|

= pl(Ay? + A\y2) — 2y M izy — 2y Ay + Mzt 4+ Al (4.29)

and an upper bound on the VC dimension is easily obtained using lemma 4.4; in this case we
have V(F) < 5.

A further question which provides a subject for further research is that of the effect of
allowing o to adapt when using the basis function ¢gauss. An answer to this question would
be of significant importance on the basis of practical experience.

4.4 The VC Dimension as a Measure of Capacity

The VC dimension can be regarded as a measure of the capacity or ‘expressive power’ of a
network; the larger the VC dimension of a network the more powerful we expect it to be and the
more likely that it is capable of learning a given set of examples. On the other hand, as discussed
in chapter 3, the number of examples which must be learnt before we can expect to obtain valid
generalization can also be expected to increase with increasing capacity.

In this section we address the question of how the VC dimension of a ®-net is likely to
compare to that of an alternative type of network having the same number of weights. We
ask this question for the following reason. As we mentioned in chapter 2, ®-nets have been
criticized for potentially requiring a relatively large number of weights, and we are interested in
trying to determine whether this criticism will be valid in general, as it has not to date been the
subject of practical or theoretical study. This criticism is most commonly applied to polynomial
discriminant functions (recall that an (n,d) discriminator requires C?*+? weights); note however
that it has also been found in practical comparisons with multilayer perceptrons that radial basis
function networks with fixed centres can require relatively large numbers of weights (see [6] and
references therein).

3A set Sy, of k points in R™ is in general position if there is no subset of Sy containing (j + 1) points which lies
on a (j — 1)-dimensional hyperplane for j = 1,2,...,n.
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We consider, as usual, ®-nets with fixed basis functions, and compare them with feedforward
networks of linear threshold elements. The latter networks are a type of multilayer perceptron, in
which the nodes compute a weighted sum of their inputs and pass the result through a threshold
operation rather than the more usual sigmoidal function. Note however that we discuss the use
of sigmoids further below. We define these networks in a precise manner as follows (see also [79]).

Definition 4.17 (Feedforward Network) A Feedforward Network is a directed acyclic graph
G having an ordered sequence of n real-valued source nodes, called inputs, and a single sink
node, called the output. We call any node which is not an input a computation node, and any
computation node other than the output a hidden node. Fach computation node n; can compute a
class of functions F,, where f € F,, maps from R to either B or R and I(n;) is the number
of incoming edges to n;. The network itself computes the class of functions Fry : R™ — R where
the range R is either B or RR.

Definition 4.18 A feedforward network of Linear Threshold Elements (LTEs) is a feedforward
network in which every computation node computes a linear threshold function. Similarly, a
feedforward network of Linear Sigmoid Functions is a feedforward network in which every com-
putation node computes a function of the form s[wg + w11 + -+ + Wr(n,)Tr(n;)] where s is a
sigmoid, for example of the form si or sy defined in chapter 2.

Results have been found concerning the VC dimensions of various types of feedforward network
of LTEs. For completely general networks of this type, we have the following result which is due
to Baum and Haussler [79].

Theorem 4.19 Let F be the class of functions computed by a feedforward network of LTEs
having N > 2 computation nodes and a total of W weights. The VC dimension of F is bounded
above as follows.

V(F) < 2W logy(eN). (4.30)
Also, for k> W,
w
Ar(k) < (A;k) . (4.31)

It was for some time an open question whether the logarithmic term in equation 4.30 was in fact
necessary. Maass [121, 122] has recently demonstrated that certain networks of this type have
a VC dimension of Q(W log, W), answering this question in the affirmative, and this result has
important consequences in the following work.

For networks having a single hidden layer we have a further result due to Baum [123].

Theorem 4.20 Let F be the class of functions computed by a fully connected feedforward network
(there are no direct connections from inputs to the output node) having n inputs and a single

hidden layer of h nodes. Then,

V(F) > 2 EJ n (4.32)

where |x] is the floor function, giving the largest integer not greater than x € R.

Various other lower bounds of (W) on the VC dimension for different types of feedforward
network of LTEs have been proved by Bartlett [124]. In this work, the result in theorem 4.20 is
improved slightly to V(F) > nh + 1. Also, it is shown that if this type of network is not fully
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connected, but each hidden node is connected to the output node and hidden node 7 is connected
to n; inputs then V(F) > 2?21 n; + 1. Bartlett also further generalizes the result to allow direct
connections from inputs to output by showing that for a single hidden layer network in which
inputs have ¢ connections to other nodes, V(F) > ¢+ 1. Finally, it is shown that if F is the
class of functions computed by a fully connected feedforward network of LTEs having n inputs,
h1 nodes in hidden layer 1, hy nodes in hidden layer 2 and a single output, then V(F) is still
Q(W) provided hy is not too large. Again, we do not allow connections to ‘skip’ a layer, and so
there are no direct connections from inputs to output etc. Specifically, if n > hq we have,

2h
F) > nhy +hy |min ( h —1| +1; 4.33
V()‘”1+l[mm(”h%/ﬂhl/?ﬂ) ]+’ (4.33)
if 1 <n < hy > hy we have,
hi(hy — 1
V(}")Znh1+¥+1; (4.34)

and if 1 < n < hy < hy we have,

V(F)>nhi +n

+1, (4.35)

n h1
min hQ, > Zi:o CZ -1
h?/2+ hi/2 +1

where Cihl is the usual binomial coefficient.

We know that a ®-net with W weights has VC dimension V(F2) < W, and that for many
standard types of ®-net we can expect to obtain V(F?) = W. We now assume that we have a
®-net for which V(F2?) = W and compare this VC dimension with that for a typical feedforward
network of LTEs.

Consider a feedforward network IV of the type presented in theorem 4.20. We know that this
network has a VC dimension V(F) where,

V(F) >2 PJ n. (4.36)

The network also has Wy weights where,
Wy=(mn+2h+1=nh+2h+1. (4.37)

Consequently, for large n and h, we have Wy =~ 2|_%J n. Comparing the two alternative VC
dimensions, we see that the upper bound on V(F;?) is approximately equal to the lower bound for
V(F) when the feedforward network is large and the two networks have equal numbers of weights.
In other words, the maximum capacity of the ®-net is approximately equal to the minimum
capacity of the feedforward network. Similar comparisons can be made using Bartlett’s further
results for single hidden layer networks, although comparisons for two hidden layer networks are
more problematic.

In order for this comparison to be convincing at present, we must consider feedforward
networks with many inputs and hidden nodes. However, we suspect that this is because the
theorem due to Baum [123] from which the bound of theorem 4.20 is obtained actually states
that if the network has [%] hidden nodes then it can compute arbitrary dichotomies of any
set of k£ points in general position, and not just the single set of k points which is required in
order to obtain a VC dimension equal to k, and this suggests that the lower bound on the VC
dimension for the feedforward network is not tight. Also, it is possible that the VC dimension
of the feedforward network could in fact be larger than that of the ®-net in general even though
they have equal numbers of weights; this observation is supported by the fact that for general
feedforward networks of LTEs with W' weights we have the upper bound,

V(F) < 2W'logy(eN) (4.38)
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of theorem 4.19 which will generally be significantly greater than V(F?2), although we must bear
in mind that it is in general an overestimate.

We wish to show that feedforward networks of LTEs can have more capacity than ®-nets
with the same number of weights. Although the above observations are suggestive of this result,
they do not provide a definite example of a network having more VC dimension per weight than a
®-net with fixed basis functions. In order to construct some definite examples we use the results
of Maass alluded to above, and a further result due to Sontag [125].

Theorem 4.21 (Maass [121]) For arbitrary positive integers n there exists a feedforward net-
work with n inputs and at most 33n edges, constructed using step, piecewise linear or sigmoid
activation functions, which can shatter a set of nlogy n vectors in {0,1}".

Although this theorem allows us to construct a network for which V(F) > W, the catch is that
the network must have a very large number of inputs. To see this, note that a network with
33n edges can have at most 66n nodes so the number of weights is at most about 100n. We
then require V(F) > nlogyn > 100n > W which suggests that n ~ 2190 A much more realistic
example can be obtained directly using the following result.

Theorem 4.22 (Maass [122]) For arbitrary numbers of weights it is possible to construct feed-
forward networks of LTEs* using inputs in {0,1}" and having two hidden layers and at most 33W
edges, which have VC dimension at least W log, W.

Furthermore, Sontag [125] constructs a class of 2-input feedforward networks, having a single
hidden layer and direct connections between the inputs and the output node, for which V(F) >
w.

4.5 Discussion

4.5.1 Results on the Growth Function and VC Dimension

We can immediately make two important observations relating to our results for growth functions
and VC dimensions. Firstly, the number of variable weights in a network is often regarded as a
suitable approximation to the VC dimension when no better estimate is available, and we have
shown that in the case of ®-nets with fixed basis functions this approximation is often in fact
exactly correct. Note however that, as we demonstrated above and as we discuss further below,
this approximation will not necessarily be correct for other types of network. Secondly, in the
cases where we have derived bounds on the growth function or VC dimension, rather than exact
values, the bounds are tight (with the possible exception of those given in corollary 4.15 and
subsection 4.3.3).

4.5.2 Comparing the Capacities of Different Networks

Although the above comparison suggests that in general ®-nets will require more weights than
feedforward networks when applied to the same problem, it is important to remember when inter-
preting this result that the VC dimension is a rather general measure of capacity. In particular,

“Maass in fact constructs networks using LTEs which have outputs in {0,1} rather than B. This difference is
irrelevant in making this comparison because the VC dimension of a ®-net which produces outputs in {0,1} is
identical to that of one which produces outputs in B.
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it is important to remember that specific problems exist which particular ®-nets can solve using
fewer weights than feedforward networks of LTEs; a simple example is given in chapter 6.

Our comparison has concentrated on the use of feedforward networks of LTEs, whereas it is
more usual for feedforward networks to be constructed using linear sigmoid functions. In using
linear sigmoid functions we can only increase the power of a feedforward network, as such a
network can compute any dichotomy computable by a feedforward network of LTEs with the
same architecture [124]. Furthermore, results due to Sontag [125] suggest that we may be able
to increase the VC dimension of a feedforward network by employing linear sigmoid functions
rather than LTEs.

It would be useful to attempt a similar comparison of ®-nets with alternative networks using
different measures of capacity, such as that due to Cover [17]. Cover’s results apply to a class of
networks similar to ®-nets, and have recently been extended to feedforward networks by Budinich
and Milotti [126].

Note that our comparison suggests that one should be careful in equating the capacity of a
network directly with the number of its weights. We have in mind some comments made by Blum
and Rivest [23], who show that a simple multilayer network, the training task for which is NP-
complete, can be replaced by a ®-net which is at least as powerful (computes at least the same
class of functions) but which can be trained in polynomial time. These authors point out that
whereas the former network has O(n) weights for n inputs, the latter network requires O(n?)
weights; they then argue that consequently the number of training examples required by the
latter network must be increased to provide equivalent generalization. Although this observation
is entirely correct in spirit, as the latter network has at least the same capacity as the former,
our comparison suggests that considering the increase in the number of weights alone could be
misleading.

Finally, some recent results in approximation theory can be used to obtain the same conclu-
sions as we obtained as a result of our comparison, for multilayer networks with a single hidden
layer, using entirely different techniques (Sontag [127]).

4.6 Conclusion

In this chapter we have studied the growth function and the VC dimension of various ®-nets.
We began by addressing the completely general class of ®-nets, obtaining in this case tight upper
bounds on both quantities and giving a sufficient condition under which the VC dimension is
exactly equal to its upper bound. This condition is important because it shows that the VC
dimension of a ®-net will often be exactly equal to the number of its variable weights; this is
often assumed to be the case in practice when no exact value for the VC dimension is known. We
then studied the VC dimension in the case of some restricted forms of the most general ®-nets,
and we discussed the way in which the present formalism can be used in order to study the use of
self-structuring training algorithms. We then studied in detail the VC dimensions of radial basis
function networks having both fixed and adapting centres, obtaining further exact results and
bounds. Finally, we used the idea that the VC dimension can be regarded as a measure of the
capacity of a network to propose an explanation for the observation that ®-nets can in practice
require a relatively large number of weights.
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Chapter 5

The Generalization Ability of

®-Nets II: Network Size and the
Number of Training Examples

5.1 Introduction

Perhaps the best known, and most frequently cited, theoretical analysis of generalization to date
is that of Baum and Haussler [79], based on the extended PAC learning formalism introduced in
chapter 3. This analysis is aimed specifically at multilayer feedforward networks of LTEs, that
is, networks in the style of the multilayer perceptron. The primary purpose of this chapter is
to extend the analysis to the class of ®-nets with fixed basis functions. In using the extended
PAC learning formalism, we will be using a definition of generalization which can be stated in
an intuitive sense as follows:

Definition 5.1 (Generalization (intuitive)) Consider a connectionist network which has been
satisfactorily trained using a sequence of training examples for a particular problem. If there is
a ‘high enough’ probability that the actual error of the network for future examples drawn from
the same problem is ‘small enough’ then we say that the connectionist network generalizes.

As usual, we assume that both the training and testing examples are drawn from the same,
arbitrary distribution P’ on IR™ x IB. Of course, by using this particular formalism in our
analysis we are again limited to discussing networks having a single output, taking two distinct
values, and hence to discussing problems with two classes.

We have already seen that in general the computational complexity of the training process for
a ®-net with fixed basis functions is smaller than that for a comparable multilayer perceptron,
and that there are fundamental and significant differences between the two types of network.
This chapter therefore also attempts, using the results obtained, to address the obvious question
of how the generalization performance of a ®-net with fixed basis functions compares to that of a
comparable MLP. To our knowledge no significant attempt has previously been made to approach
this question either experimentally or theoretically. The initial analysis of ®-nets presented in
this chapter closely follows that of [79] in order to facilitate a comparison of the two types of
network.

In section 5.2 we derive necessary and sufficient conditions on the number of training examples
required in training a ®-net with fixed basis functions and W weights such that we can expect
a particular generalization performance. We then briefly discuss the way in which these results
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should be interpreted, and we address the question of whether adaptation of the basis functions
can be introduced without invalidating our results or increasing training time by an unacceptable
amount. In section 5.3 we compare our results to similar results for feedforward networks of LTEs
and in section 5.4 we use the idea of an [-restriction to approximately model the effect of the use
of self-structuring training algorithms on our sufficient conditions. Section 5.5 discusses the way
in which the comparative results should be interpreted, and suggests ways in which our results
are open to improvement. It also shows how further relevant bounds can be derived, argues that
further, experimental work is now desirable, and briefly discusses some alternative formalisms
for the analysis of the generalization ability of ®-nets. Section 5.6 concludes the chapter.

5.2 (Generalization, Network Size, and the Number of Training
Examples

In this section we use two theorems from extended PAC learning theory in conjunction with the
results of chapter 4 in order to derive distribution independent upper and lower bounds on the
number of training examples required in order to train a ®-net with fixed basis functions such
that it can be expected to deliver a given generalization performance. Subsection 5.2.1 deals
with sufficient conditions and subsection 5.2.2 with necessary conditions.

In this chapter we assume that some measurability conditions on the classes of functions
used are satisfied. These conditions are given in Blumer et al. [73] and Pollard [128] which
should be consulted for further information. It is important to note that such conditions are
extremely unlikely to cause any problem for practical connectionist networks (Haussler [129] and
Anthony [130]).

5.2.1 Sufficient Conditions

In order to derive sufficient conditions we use the following theorem from extended PAC learning
theory; this theorem is stated in the following form in [79] and follows from work presented
in 73, 78].

Theorem 5.2 Consider a class F of functions' f : R™ — 1B, and a sequence T}, of k examples
drawn independently according to some distribution P' on IR"™ x B. Let v and € satisfy 0 <y < 1
and 0 < e. Define P as the probability that there is a function f € F which disagrees with at
most a fraction (1 — ~y)e of the examples Ty, but has error greater than €. Then P satisfies the
inequality,

P < 8AF(2k) exp (ﬂjek) : (5.1)

This theorem is important because if we can obtain an upper bound on Ax(7) then we can say
something about the ability of a network that computes F to generalize. Specifically, if we can
train the network to correctly classify a fraction 1 — (1 — v)e of the k training examples, then
the probability that its error — which is a measure of its generalization ability — is less than or
equal to € is at least 1 —P. As Ax(i) tends to depend quite specifically on the size of a network
measured in terms of, for example, the total number of variable parameters, we can generally
relate the size of a network to the number of examples which must be learnt.

Note that this theorem also applies for environments X which are subsets of R™, for example X = [0,1]™ or
X ={0,1}" (see [73, 74]). In this case we consider functions f : X — B and distributions P’ on X x B.
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Combining this theorem with the results of section 4.2, in particular the bound,
Aroli) < D (i) (5.2)

derived in lemma 4.4, we can prove the following. Note that this theorem applies to any P-net
having fixed basis functions, regardless of the actual form of the basis functions.

Theorem 5.3 Consider a threshold ®-net having n inputs and a set ® of m basis functions. This
network has W = m+ 1 weights and computes the class F2 of functions; we assume that W > 4.
Suppose we have a sequence T}, of k training examples drawn randomly from a distribution P’
on R™ X B, and some fized value ¢ where 0 < € < %. If k > ky = @ln%, and if it is
possible to find a weight vector w which allows the ®-net to correctly classify at least a fraction
1 — § of the training exzamples in Ty, then the probability (which we will call the confidence)
that the actual error of the network is at most € for future ezamples drawn from P’ is at least
1 — 8exp(—1.5W). If the number of training examples is k > ko = % In % then the probability

is at least 1 — Sexp(g—g“).

Proof Application of lemma 4.4 and Sauer’s lemma gives,

w
Brsl) < B0 < (1) (5.9

when £ > W. We now let v = % and apply theorem 5.2. This gives,

P<sg (%)Wexp (‘1—;'“) . (5.4)

Now, note that an upper bound on P when v = % gives the required lower bound on the
probability 1 — P (the confidence) that a ®-net trained to correctly classify all but a fraction §
of the training examples will have an actual error of at most e for future examples. For the first

proposed value of kg, inserting the value of k = kg = @ In % and re-arranging gives,

9 w
P<8 (263% In 3—) . (5.5)

€

We now use an inequality from [79] which tells us that for W >4, N =2 and € < 2,

€ 32Nv\"
8(2632N]n - ) < 8exp(—1.5W). (5.6)

Noting that this inequality still holds if we set NV = 1 and restrict € to the range 0 < ¢ < %, and
comparing 5.6 with 5.5, we have,
P < 8exp(—1.5W) (5.7)

which implies a confidence of at least 1 — 8 exp(—1.5W).

For the second proposed value of ky, we use a further inequality from [79] which states that
for W >4, N > 2, and > S 1n 648,

(2];;6’“)W < exp (%) (5.8)

when 0 < € < % Again, restricting € to the range 0 < € < %, we obtain for W >4, N = 2 and
k> 8% In % the inequality,

2ek\ W o2Nek\ "W ek

— < — ). 5.9
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Thus, comparing 5.9 with 5.4 we have,

ek —ek —ek
P < 8exp 32 ) P | 15 = 8exp ETN (5.10)

which implies a confidence of at least 1 — 8 exp (_362’“) i

Recall that theorem 5.2 also applies for environments X which are subsets of R™, such as
X =[0,1]". It is easily verified that our upper bound on Aze (i) also holds when X C IR", and
consequently that theorem 5.3 also holds in this case.

5.2.2 Necessary Conditions

In order to derive necessary conditions we use the following theorem from extended PAC learning
theory. Again, this theorem is stated in the following form in [79], and in this case follows from
results in [73, 85].

Theorem 5.4 Consider a class F of functions f : R"™ — B for which the VC dimension is
V(F) > 2. Let A be an algorithm for which the input is a sequence of labelled training examples,
and which produces a function g : R™ — IB. Given any 6 and € where 0 < § < ﬁ and 0 < € < %,
and,

1—e, 1 V(F)-1

k In = 5.11
< max —Ino, ——- (5.11)
there exists f € F, and a distribution P' on R™ x B for which,

Pr[(x,a) such that a # f(x)] =0, (5.12)

such that for a sample Ty, of k examples chosen according to P', there is a probability of at least
0 that the algorithm A produces a function with error greater than e.

Using the various results derived in sections 4.2 and 4.3, providing lower bounds on the VC
dimension for various ®-nets, we can immediately state the following corollaries.

Corollary 5.5 Consider a restricted ®-net which has n inputs and W = m + 1 weights. Also,
let0 <e< %. If any training algorithm for this ®-net uses fewer than k training examples where,

n

= — 5.13
32¢ ( )

then there exists some distribution P’ such that there exists a weight vector w for the ®-net which
will correctly classify all inputs according to P'. However the probability of finding a w such that
the error, defined as the probability according to P' that fw(x) # o where (x,0) is a random
example, is in fact greater than € is at least ﬁ.

Proof This is a direct consequence of lemma 4.7 and theorem 5.4 when we let § = ﬁ. |

Clearly we can easily obtain similar results for the more general restricted ®-nets suggested
in chapter 4. If we have a restricted ®-net for which ® = {®;, P2} where ®; is the set of basis
functions corresponding to an (n,d) discriminator then

V(FR) > ( n;rd ) (5.14)
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and the necessary number of training examples, under the same conditions as in corollary 5.5, is,

n+d
(i)
k=——0«7

5.15
32¢ ( )

Similarly, if we know the VC dimension of a ®-net constructed using any particular set ®; of
basis functions then further, similar bounds are easily obtained for any ®-net constructed using
the set of basis functions ® = {®1, Py} where @5 is any further suitable set of basis functions.

As pointed out in section 4.2, it is not possible to derive a sensible lower bound on V(F2) for
completely general ®-nets; it was the fact that such a lower bound is required in order to obtain
necessary conditions using theorem 5.4 that motivated us to define restricted ®-nets. Clearly, for
any ®-net having a VC dimension which meets the upper bound of lemma 4.4, that is, for which
V(F2) = W, a further corollary can be obtained as follows.

Corollary 5.6 Let F2 be the class of functions computed by a ®-net, where V(F2) = W. Under
precisely the same conditions as in corollary 5.5 the minimum necessary number of training
examples is at least,
W—-1
32¢

k=

(5.16)

The value given in corollary 5.6 is valid, for example, in the case of an LDF or a PDF, and in
the case of some of the radial basis function networks considered in the previous chapter. It
is also valid for any ®-net in which the set of functions {1, ¢1,..., ¢n} is linearly independent.
However, this value will in some cases be an overestimate of the necessary number of examples.

In the case of the radial basis function networks considered in the previous chapter we know
that V(F) > p where p is the number of radial basis functions, and we also know that this lower
bound applies whether the centres are fixed or adapting. We therefore have the following result.

Corollary 5.7 For the different types of radial basis function network considered in corollar-
1es 4.14 and 4.15, and under the same conditions as in corollary 5.5, the minimum necessary
number of training eramples is at least,

p—1

k= 5.17
32¢ ( )

regardless of whether the centres {y;} are fized or adapting.

5.2.3 Interpretation of the Results

The results presented above are at first sight rather impenetrable, and we now try to give some
further insight into their meaning. Table 5.1 summarizes the results obtained above on necessary
and sufficient numbers of training examples.

Necessary Conditions

The necessary conditions tell us simply that, if we do not use enough training examples, then
although a weight vector may exist which gives an error of zero, there is in this case a probability
of at least ﬁ that, no matter what training algorithm is used, the actual network produced has
an error greater than e. This is illustrated in figure 5.1.
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‘ Sufficient conditions for ®-nets. 0 < e < i ‘

Characteristics of ®-net Sufficient number of Confidence
training examples
W weights. k>ky=32"1n2 | 1—8exp(—1.5W)
W weights. k>ky= @ In % 1 —8exp (—%)
Necessary conditions for ®-nets. 0 < € < %
Characteristics of ®-net Necessary number of training examples
Restricted ®-net with n inputs. k= 55
n+d _
General restricted ®-net (having a subset k= Cdsze !

of basis functions corresponding to
those of an (n,d) discriminator).
®-net having W weights and

such that V(F2) = W.

RBFNs as described in k=21
corollaries 4.14 and 4.15.

Table 5.1: Summary of Results on the Sufficient and Necessary Numbers of Training Examples
Required Such That we Expect a Particular Generalization Performance when Using a ®-Net

® -net Training agorithm could

/ with error =0 potentially find this network.

Training examples
T, with k too small.

\ ] Thereis a probability of

i digtributi ! at least 1/100 that th

From a specific distribution P. with error > € frzining aigorithm fiﬁds
this network.

Figure 5.1: Interpretation of the necessary conditions. Although a network exists which has
zero error there is a finite probability that the training algorithm produces a network with
error greater than e.
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In the light of the discussion in the previous chapter, we can expect that in general around
% examples will be the minimum necessary. For a small error of € = 31—2 this is approximately
equal to the number of weights in the network, and so this result upholds and justifies one of the
well known ‘rules of thumb’ regarding the training of connectionist networks: that one should
use at least as many training examples as there are weights in the network. A similar observation

was made in [79] relating to feedforward networks of LTEs.

Sufficient Conditions

Note that for all practical values of W, the confidence values given in table 5.1 are very close to
unity. In chapter 3 we saw that there appears to be a direct relationship between the size of a
network, measured in an appropriate manner, and its ability to generalize. The results of our
analysis of sufficient numbers of training examples uphold this observation and can be interpreted
in an intuitive sense as follows:

1If it is possible to load enough training examples into a small enough network then there
15 a high probability of obtaining a given generalization performance.

Again, similar interpretations have been suggested for other networks by other authors. The
meaning of the results is further illustrated in figure 5.2.

These conditions, although fully applicable bounds in their own right on the sufficient number
of training examples, are not as easily interpreted in a practical sense as the necessary conditions.
Inserting some realistic values for W and e into the two expressions for ky immediately shows
that extremely large sets of training examples are required in order to apply these results. For

example, taking the condition,
32w 1 32
n —_

€ €

k>ky=

(5.18)

and inserting values of W ranging from 10 to 500 and four different values of € gives the values
for kg illustrated in figure 5.3.

We thus see that independence to the distribution P’ from which the training examples
and the examples encountered during operation are drawn is very much a two edged sword.
It has the obvious advantage of providing bounds which can be applied without requiring this
particular piece of a priori knowledge about the environment in which the network operates to
be specifically introduced. However the requirement that the bounds hold for any distribution,
even those which may be highly unrealistic, leads to bounds which are perhaps unreasonably
high. The available research in distribution-dependent learning, which we mentioned briefly in
chapter 3, could be applied in order to overcome this problem, while of course weakening the
results somewhat; we suspect that, in common with the observations made in [79], the logarithmic
terms in our bounds may not be necessary if only realistic distributions are considered. However,
if you can obtain and deal with enough training data, distribution independence is obviously a
significant advantage.

There are two further reasons for the unwieldy nature of these bounds, and with further
research it may be possible to significantly improve the situation. Firstly, recall that we have
deliberately produced bounds comparable to those in [79] in order to facilitate a comparison
with an alternative type of network. However, it is possible to improve the constants used,
and we discuss this further in section 5.5. Unfortunately, the improvements possible at present
still do not lead to truly practical bounds. Secondly, the bounds apply regardless of the precise
characteristics of the algorithm used to train the network. In particular, they will apply in the
worst possible case, in which the algorithm picks a function in F2 that correctly classifies the
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Figure 5.2: Interpretation of the sufficient conditions.
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relevant number of training examples but has the worst possible performance on future examples
(see Haussler et al. [92]). This is not a situation that we would reasonably expect to occur in
practice. The further improvement of our upper bounds provides an important potential area
for continuing this research.

5.2.4 Choosing a Set of Basis Functions: Can We Cheat Theorem 5.37

Theorem 5.3 applies specifically to the case of fixed basis functions. If we can find a ®-net with
fixed basis functions and with the appropriate number of weights, which correctly classifies the
required number of training examples, then we can predict with high probability its performance
on new examples. As we mentioned in chapter 2, the use of fixed basis functions has been
criticized for being too restrictive, although we argued that this is not necessarily the case and
that there are significant advantages in not allowing basis functions to adapt. Also, recall that we
mentioned training algorithms, in particular one due to Moody and Darken [30], which appear
to allow us to introduce adaptation of basis functions while retaining the major advantage (fast
training) associated with fixed basis functions. We now discuss the use of adapting basis functions
in the context of the preceding work.

Firstly, note that, in the context of the preceding work in this chapter, we cannot directly
introduce any scheme which adapts the basis functions at the same time as the weight vector
w using nonlinear optimization, as the overall network is then likely to be much more flexible
than in the fixed basis function case and can therefore be expected to have a significantly larger
VC dimension. The larger VC dimension in turn increases the minimum sufficient number of
training examples (see the proof of theorem 5.3). Also, the need for nonlinear optimization makes
training significantly more difficult and time consuming, and this is something that we want to
avoid.

What has not previously been appreciated however is that it appears that we can use a
simple technique allowing us to adapt the basis functions without invalidating the bounds of
theorem 5.3 applying to the case of fixed basis functions. The essence of the technique is simply
that we adapt basis functions entirely separately from the weight vector w, and we shall call
training algorithms which use this technique hybrid training algorithms. In the following we use
radial basis function networks as a source of examples, however it is important to remember that
hybrid training algorithms can in principle be devised for any ®-net in which the basis functions
are parameterized. In the remainder of this subsection we first provide a theoretical, and then an
intuitive argument in favor of the use of hybrid training algorithms. Our theoretical argument is
based on the application of theorem 5.3, which is itself derived in part using theorem 5.2. The
reader should note that the question of whether theorems 5.2 and 5.3 can strictly be applied in
the manner suggested in the remainder of this subsection has attracted controversy, and a further
investigation into the extent to which our theoretical argument is valid consequently forms an
important, and potentially rich area for future research.

To begin with a very simple example, consider the standard technique for choosing radial
basis function centres which we summarized in chapter 2: fixed centres are chosen corresponding
to randomly chosen training examples. This provides us with a ®-net with fixed basis functions to
which theorem 5.3 can be applied; note however that because this technique for choosing centres
depends directly on the training data it can be regarded as a very simple method for adapting
the basis functions. The important difference between this type of adaptation and the type which
is not compatible with theorem 5.3 is that, in the former, adaptation of basis functions takes
place entirely separately from adaptation of w such that the basis functions can be fixed before
adaptation of w begins.

As a more realistic example, consider the algorithm reviewed briefly in chapter 2 (subsec-
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tion 2.5.3) and originally introduced by Moody and Darken [30]. This algorithm applies to
networks of the form,

fw(x) =D wigi(x) (5.19)
=1

where,

¢i(x) = ¢ <M> (5.20)

g;

and the weights w;, centres y; and widths o; are variable. It allows the values of y; and o;
to be chosen and fixed using unsupervised techniques, thus producing a ®-net with fixed basis
functions (provided we add a term wg to equation 5.19), before the weight vector w is found
using supervised training. We can thus in principle take a network size and the corresponding
required number of training examples from theorem 5.3, and use unsupervised methods to obtain
a ®-net with fixed basis functions and the appropriate number of weights such that the basis
functions are well matched to the structure of the training examples. We then train the resulting
network by adapting w as usual in an attempt to learn the training examples.

The precise difference between this type of two-stage, hybrid training algorithm and the
alternative approach using global nonlinear optimization is, for the purposes of analysing gen-
eralization ability, quite subtle. In the latter case, we use the entire class of functions available
in order to learn the required number of examples and this leads to the problems mentioned
(namely, increased training time and increased sufficient number of training examples for gen-
eralization in the extended PAC learning framework). In the former case we use our knowledge
of the available training examples to discard many of these functions — the ones which do not
seem to be appropriate — and use the resulting reduced class of functions to learn the training
examples. We therefore appear to be reducing the capacity of the class of functions available,
before we attempt to adapt w. (In one sense therefore, the procedure can be regarded as similar
to self-structuring.) The procedure also has the major advantage that it is in general considerably
faster than global nonlinear optimization.

In the consideration of generalization performance, these arguments justify the use of hybrid
training algorithms, such as that of Moody and Darken, using theorem 5.3. However, it is
interesting to ask whether our conclusion — that the use of hybrid training algorithms may lead
to a reduction in the number of training examples required to obtain valid generalization, when
compared with the number required by training algorithms using global nonlinear optimization
— is likely to be correct in general. We conjecture that this conclusion will hold in practice for the
following reasons. Consider the intuitive explanation for the importance of capacity introduced
in chapter 3. Using this intuitive framework we would expect the conclusion to hold if the first
step of a hybrid training algorithm discards functions in such a way that:

1. During subsequent adaptation of w the probability that the network can compute a function
which performs well on the training data is not significantly reduced.

2. The class of functions which the network can compute that perform well on the training
data ¢s reduced, but in such a way that those providing ‘good’ generalizations are retained.

Now, provided we are careful in devising the first step of a hybrid training algorithm, in which
we fix the basis functions, we can reasonably expect that both of these requirements will be met.
To see this in a specific case?, consider Moody and Darken’s algorithm, in which we use basis

.12
functions ¢;(x) = exp [—”x;%”], which is the type of basis function used in the experiments

2The following example is most applicable if we consider a network with a real-valued output, however similar
examples can be constructed for the case of other types of output, such as %1.
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Figure 5.4: A function which performs well on the training examples but which generalizes
badly. This type of function will be discarded by a suitable hybrid training algorithm before
adaptation of w begins.

in [30]. Assume that we have a set of training examples, and a network with a sufficient number
of basis functions which we attempt to train using simultaneous nonlinear optimization of all
available parameters. The class of functions available to the network is likely to contain functions
which perform well on the training examples but which generalize badly; for example, we may
be able to construct a function which performs well on the training data by making centres y;
correspond to the examples, making all values of o; very small, and setting the remaining weights
appropriately. This function would be unlikely to perform well in general on new examples; this
is illustrated in figure 5.4 for a network with a single input. However, if Moody and Darken’s
hybrid training algorithm (or a suitable alternative) is applied, we discard functions such as this
when the basis functions are fixed (because the o; are chosen more sensibly®) while retaining
many other functions which perform well on the training examples.

This argument is clearly an intuitive one, and is at present quite tentative; it has been
included primarily as motivation for future research, as hybrid training algorithms appear to be
an excellent approach to training connectionist networks (this is supported by the experimental
results reported in [30]). Clearly, a more rigorous, theoretical investigation would be desirable.
Similarly, we know of no practical study to date that attempts to verify our suggestions, and this
also provides an open area for further research.

Although this technique could in principle be extended to apply to feedforward networks of
LTEs or linear sigmoid functions — it corresponds to fixing a subset of the available weights to
values which we think will be appropriate — we know of no practical training algorithm which
allows us to do so. (Note that we can regard the training of a feedforward network of LTEs or

3The simplest method suggested in [30] for setting o; is to make all values o; equal to the average distance
between centres and their nearest neighbour.
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Sufficient conditions for feedforward networks
of LTEs with graph G and 0 < € < %
Characteristics of network | Sufficient number of Confidence
training examples
W weights, N > 2 LTEs, |k >ko=32"1n?2N | 1 — 8exp(—1.5W)
E edges. chkozglnM 1 —8exp (—%)

€

Table 5.2: Summary of Results due to Baum and Haussler on the Sufficient Number of Training
Examples Required to Effectively Guarantee a Particular Generalization Performance using a
Feedforward Network of LTEs

linear sigmoid functions as analogous to the global nonlinear optimization case for ®-nets.) This
is probably a result of the fact that the local nature of the actual basis functions used in many ®-
nets allows them to be tailored in an obvious manner to fit the structure of the available training
examples, whereas it is more difficult to see how this could be done for feedforward networks of
LTEs or linear sigmoid functions. The Cascade-Correlation technique introduced by Fahlman
and Lebiere [131] is perhaps the technique closest in spirit to a hybrid training algorithm for
MLP type networks.

5.3 Comparison of ®-Nets with Feedforward Networks of LTEs

Table 5.2 summarizes the sufficient conditions derived in [79] for feedforward networks of LTEs
having N computation nodes. These are equivalent to the set of sufficient conditions we have
derived for ®-nets, which were summarized in table 5.1, in the sense that they tell us the sufficient
number of training examples such that if a fraction 1 — 5 of the training sequence is correctly
classified then the confidence that the actual error of the network is at most e for future examples
is as stated. In this section we attempt to compare the generalization ability of ®-nets to that of,
in general multilayer, feedforward networks of LTEs, and hence address one of the questions raised
in the introduction to this chapter: can we expect to obtain superior generalization performance
if we use a ®-net in preference to a comparable feedforward network of LTEs in order to solve a
problem? We will consider two networks to be comparable simply if they have the same number

of variable weights; this assumption is discussed further below.

5.3.1 A Simple Comparison

We begin by making a simple comparison between the two different types of network, assuming
that in preference to a feedforward network of LTEs we use a ®-net with the same number of
weights. We also assume that each network is capable of learning to correctly classify the neces-
sary fraction (1 — §) of the relevant number of training examples; both of these assumptions are
discussed in the next subsection. A conclusion which can immediately be drawn from the suffi-
cient conditions summarized in tables 5.1 and 5.2 is that, under these assumptions, the current
bounds suggest that considerably fewer training examples are required by the ®-net than by the
feedforward network in order to effectively guarantee* the same generalization performance.

To give a specific example, if we use networks with W = 200 weights, a feedforward network
having N = 50 computation nodes, and a value of ¢ = i, the sufficient number of training

*Note that the confidence values are very close to unity for realistic values of W. For example, if W = 10 we have
a confidence of 1 — 8 exp(—15) = 0.999998. A similar observation applies when the confidence is 1 — 8 exp (—%)
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examples for a ®-net is,
32W - 32
KD = 225 122 ~ 124,000 (5.21)
€ €

whereas that for the feedforward network is,

32W
= 1Y+ 22 1 N ~ k8 + 100,000 (5.22)
€

In
€ €

32W 32N
B = 25
and the difference between kél) and k(()2) clearly increases as we impose a more rigorous accuracy
requirement by decreasing €. In both cases we obtain the same confidence.

Figure 5.5 provides a further comparison, plotting k(N) = (k((]z) / k((]l)) for W = 500, different
values of NV and four different values of €. Clearly, for the cases of interest, in which the feedfor-
ward network has at least one hidden layer and hence N is likely to be significantly greater than
2, the use of a ®-net leads to a significant reduction in the sufficient number of training examples.
Note that in plotting (k(()2) / k(()l)) we cancel the leading constants. This is highly desirable because,
as we have already observed, they are likely to be larger than necessary. The same comment
applies to the graphs presented in figure 5.6 in the next section.

A similar conclusion can be drawn using the alternative sufficient conditions,
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k(()l) = @ In8%  (for ®-nets)
k) = $W 1 64N (for feedforward networks of LTEs)

if we make the reasonable assumption that the difference in the confidence for the two cases is
negligible.

5.3.2 Discussion: How Comparable are Comparable Networks?

In the above comparison we made the assumption that the two networks have equal numbers
of variable weights; we introduced this assumption because it is the obvious way in which to
make two networks ‘comparable’. Now, note that in order to apply the bounds used above, we
must first be able to load the networks with a specific number of training examples. A possible
problem with the above comparison is that it effectively assumes that the two different types of
network have comparable power, in terms of their ability to learn to classify the required number
of training examples to a sufficient accuracy, as a result of the fact that we have given them equal
numbers of weights. We must obviously address the validity of this assumption.

In the light of the results presented in chapter 4 we suspect that in general the ®-net can
be expected to be less likely than the feedforward network of LTEs to be capable of learning
some given sequence of training examples. Note however that the ®-net is at an advantage in
one respect, because the number of training examples that it has to learn such that we can
apply the bounds is less than that for the feedforward network of LTEs. This complicates the
situation somewhat, and the precise validity of the assumption that the two networks are equally
powerful for the purposes of applying the bounds is not at present clear. Consequently, our
second assumption — that each network can in fact learn to correctly classify a fraction 1 — 5 of
the relevant number of training examples — is clearly an important one. Whether this second
assumption is valid will clearly be dependent on the specific characteristics of the networks used,
and on the actual problem addressed.

5.4 The use of Self-Structuring

Recall that in chapter 4 we argued that self-structuring cannot be analysed directly using methods
based on the growth function and VC dimension, and introduced the idea of the [-restriction
of a ®-net in order to allow us to obtain some insight into the effect of self-structuring. We
now generalize the results of theorem 5.3 by obtaining a sufficient condition for networks which
compute the class of functions RW’ (F2) rather than F2, where F2 is the class of functions
computed by a ®-net with W > 5 weights. We assume that W/ > 4 and W > W'. In effect,
although we are still using a network with W weights, we are now insisting that the training
algorithm finds a weight vector with at most W' non-zero weights.

Theorem 5.8 Let RW’(}"E) be a class of functions computed by a ®-net as described. Then
under the conditions described in theorem 5.3 we can obtain a confidence of 1 — 8exp(—1.5W")
using k > ko = @ In 22W training examples.

€

Proof We begin by restating equation 4.10 which allows us to write R"' (F2) as,

RV (FE = | FE=FMUEP U URW (5.23)
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and which allows us to think of the W'-restriction in terms of a collection of smaller ®-nets. Now,
as in the proof of theorem 5.3, we have from lemma 4.4 and Sauer’s lemma,

W’
B o, (F) € Biry ,(F) < (%) (5.24)

for £ > W'. Also, as the binomial coefficient obeys,

(5)=0m)+ (5 (5.25)

for 1 < j < (see for example Biggs [119]) we have,

W -1 w
N(W’,W)z(W,_1><<W,>. (5.26)
Combining these results we obtain,
W\ ek \"

when k > W'. It is easily verified that,

< W ) < WW—W, (5.28)

and hence for k& > W',

wek\"'
ARW’(fg)(k) < (W) . (5.29)
As in the proof of theorem 5.3, we let v = % and apply theorem 5.2. Inserting the upper bound
of equation 5.29 and the proposed value for kg and re-arranging yields,

e . aw\"
82 1 . 5.30
P < ( o 2 ) (5.30)
In the proof of theorem 5.3 we obtained the inequality,
32\’
§(2e=In=) < Sexp(—1.5W). (5.31)
32 €
The final step is thus to prove that,
e nW\" e 32\"
82 1 <8(2e—1In— 5.32
(eszwne) —<e32ne> (5:32)
when W > W', This is true if,
1. ew\"V 32\"’
—1 <|[In— 5.33
(wn5) = () o
for 0 < e < % and W > 5. This inequality can be proved by noting that,
1. w\W 1,32 1 W
—1 ==In—+ =W . 5.34
(Wn€) (Wne+Wn> (5:34)
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We therefore need to show that for W > 5,

1. 32w 32
—1 <In— 5.35
Wl =T (5:35)

which is true if,

W—-1_ 32

In —. (5.36)
€

1
WIHW S

Setting € at its maximum allowable value of € = % such that the term ln?’e—2 takes its smallest
possible value, we now need to show that,

W -1 W—-1_ 32

1
— InW <

In128 < In — 5.37
W [ T (5.37)
or

InW < In(128" 1) (5.38)
which is clearly true for W > 5. This completes the proof of theorem 5.8. O

As was the case for theorem 5.3 it is easily verified that, because theorem 5.2 and our upper
bound on Aze (i) hold when the environment X is a subset of IR", theorem 5.8 also holds when
this is the case.

What does this theorem tell us? Self-structuring is in general a means of finding the smallest
d-net capable of learning to classify a set of training examples to an acceptable accuracy. The
confidence value provided by this theorem is again very close to unity for realistic values of
W', and if W' is small enough in comparison to W then we can obtain values of kg which are
significantly smaller than those provided by theorem 5.3, which corresponds to the case where
we allow as many as W weights to be non-zero. The theorem therefore suggests that by training
using a self-structuring algorithm we might expect to require less training data than when using
a standard training algorithm in order to obtain the same generalization performance.

In order to further illustrate this we now use the bounds derived in theorems 5.3 and 5.8 to
make a comparison between the bounds on the sufficient numbers of training examples in the
two different cases. Assume that on the one hand we have a ®-net with W weights, trained using
a standard training algorithm. We compare this to a ®-net having W weights in total which we
train using a self-structuring algorithm such that we attempt to find a solution with at most W’
non-zero weights. In the former case, the sufficient number of training examples is,

32W 32
In —

€ €
where 0 < € < 1, and this leads to a confidence of 1 — 8exp(—1.5W). In the latter case the

sufficient number of training examples is,

kD = (5.39)

In
€ €

32W  32W
B =22 (5.40)

where 0 < e < 1 leading to a confidence of 1 — 8exp(—1.5W’). In both cases € is set to

the same value, and we assume that the network learns the necessary fraction (1 — §) of the
training examplesS. Although the actual confidence values obtained are different, they are both
extremely close to unity for any realistic value of W or W’, and in fact differ by only a very small
amount. We therefore disregard this difference and simply compare k(()l) and k(()2) for appropriate
values of W, W' and e. As an example we use W = 500 and examine values of W' ranging

from 20 to 450, with four different values of e. Figure 5.6 illustrates the resulting values for

®Because, in applying the above methods, the VC dimension for the case involving self-structuring can be
expected to be lower than that for the case without self-structuring, this is again an important assumption. As
in subsection 5.3.2, we note that its validity will be dependent on the specific characteristics of the network used,
and on the actual problem addressed.

7



14

| | Epsilon=1/4

P ! -
=z 12 | Epsilon=1/8
X : T
% | Epsilon = 1/16
%’ 10 Epsilon = 1/32
Py ;
2
D B
Ju
3
4 6 e e R R PR
QO
£
>
[
S5 A [ NN
2
s
a4

2 T sttt

0 : : : : ‘ ‘

0 50 100 150 200 250 300 350 400 450

Number of unconstrained weights W'

Figure 5.6: Comparison of sufficient numbers of training examples using the bounds derived
for cases with and without self-structuring. For both cases the total number of weights is
W = 500, and in the case with self-structuring W’ denotes the number of unconstrained
weights. The quantity k£(W') is defined in full in the text.

78




k(W' = (k(()l) / k(()z)). Clearly, a significant saving in the number of training examples appears
to be possible, particularly if self-structuring significantly reduces the number of weights in the
network.

Notice that for high values of W' we in fact obtain (k(()l) / k(()2)) < 1. This is surprising because

we would like (and expect) the value of kéz) to approach that of k(()l) as W' approaches W.
The ratio is incorrect for large W’ simply because the bound on the growth function used in
proving theorem 5.8 (equation 5.29) is a significant overestimate when W' approaches W, and

consequently the W in the logarithmic term of k(()z) must be introduced to compensate (if it is not
introduced then the inequality of equation 5.32 no longer holds). Note that this suggests that
for relatively small values of W’ we may be significantly underestimating the degree to which the
sufficient number of training examples can be reduced.

In addition to telling us about the utility of self-structuring training algorithms, our obser-
vation is important in the light of the criticism of theorem 5.3 that we raised earlier: that the
bounds it provides are impractical. Our new theorem allows us to reduce one of the upper bounds
significantly; in the above example, which is reasonably realistic, the bound can be reduced by
as much as a factor of about 10.

In [79], the application of self-structuring to feedforward networks of LTEs was considered.
Specifically, networks having N’ > 2 LTEs and E' > N’ edges where considered, and training
algorithms were required to find networks having at most £ > 2 edges with non-zero weights,
and at most N > 2 nodes having non-zero weights on incoming edges. A sufficient number
kg = 331y %E’ of training examples was obtained with a corresponding confidence value of

€

1 — 8exp(—1.5W), where W = E + N.

5.5 Discussion

5.5.1 The Interpretation of the Comparative Results

The results we have obtained in this chapter on necessary and sufficient numbers of training
examples for ®-nets are quite easily interpreted (subsection 5.2.3) and we will say no more about
them here. Some comments are in order however on the manner in which the comparative results
presented in sections 5.3 and 5.4 should be interpreted.

Our comparison between ®-nets with fixed basis functions and feedforward networks of LTEs
suggests that an approach in which we make a choice of fixed basis functions and then train the
resulting ®-net using a simple optimization algorithm for w may be preferable to the more usual
approach of training a multilayer feedforward network having the same number of weights using
a nonlinear optimization technique such as the HLBP algorithm. This is because in the former
case training is invariably significantly faster, and because we obtain the observed reduction in
the sufficient number of training examples for valid generalization. As we pointed out earlier, we
have to assume that each network can learn a sufficient number of training examples to begin
with in order for our comparison to be valid.

This is precisely the conclusion that we would expect, given the usual intuitive understanding
of the relation of generalization ability to capacity; what we have actually done is to formalize
the intuition that given the choice between two alternative networks capable of learning a set of
training examples, the one with the least capacity will in general provide the better generalization
(provided, of course, that they are both capable of computing a function close to the ‘best’ one).
Given the results of chapter 4, ®-nets with fixed basis functions can be expected to have lower
capacity (measured using the VC dimension) in general. Note however that hybrid training
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algorithms appear to allow us to exploit the full capacity available with adapting basis functions
in learning the training examples, but to apply the smaller capacity associated with fixed basis
functions for the purposes of considering generalization. A similar intuitive explanation, in terms
of capacity, can be applied to the results of section 5.4 relating to self-structuring.

For the same reasons as mentioned in chapter 4, the situation is likely to move further in
favour of ®-nets if we use linear sigmoid functions instead of LTEs. Furthermore, we do not think
that improvements to the results we have used from [79] will necessarily change our conclusions,
because we have used exactly analogous proof techniques and hence our own results should
immediately be subject to improvement in the same way.

Finally, it is important to appreciate that our results in no way imply that ®-nets are
superior to feedforward networks for all problems. The results are based on very general, worst
case bounds, and consequently should be interpreted as general results about the behaviour of
different networks rather than predictions regarding behaviour in specific cases. Again, similar
comments apply to our results on self-structuring.

5.5.2 Improving the Main Results

There is some potential for improving the bounds that we have derived for ®-nets with fixed
basis functions, in particular those providing sufficient conditions. In deriving these results we
specifically aimed to obtain bounds which would allow us to make comparisons with the existing
results for feedforward networks of LTEs, and so we tried to produce results which were directly
comparable to those of [79]. The results for both of the relevant types of network, including
those derived in order to consider self-structuring, are all based on theorem 5.2. The constant in
this theorem has recently been improved from 8 to 4 by Anthony and Shawe-Taylor [74], and so
there is immediate potential for improving the relevant bounds. Unfortunately, the improvement
is still unlikely to make the bounds fully practical. We suspect that further improvements to
theorem 5.2 are possible.

The bounds derived in this chapter relating to sufficient conditions may also be open to
further improvement if we use the tight bounds on the growth function for ®-nets derived in
lemma 4.4, rather than the bounds based on Sauer’s lemma employed in proving theorems 5.3
and 5.8.

Our bounds relating to necessary conditions are at present quite stable, because the bounds
on VC dimensions for ®-nets that we derived in chapter 4 are tight® and because we know of no
existing improvements to theorem 5.4.

5.5.3 Other Bounds

By using the VC dimension results derived in chapter 4 it is possible to obtain further bounds
on sufficient numbers of training examples for ®-nets with fixed basis functions, trained using
standard training algorithms. In order to do this we use existing results obtained from theorems
similar to theorem 5.2. For example, the following result is given in [87].

6 Again, the bounds on the VC dimensions for radial basis function networks with adapting centres are a possible
exception here, and improvements to these bounds would allow us to obtain improved necessary conditions for this
case.

80



Theorem 5.9 Let 0 < €, 6§ <1 and 0 < v < 1 and consider a probability distribution P’ on
X x{0,1}. If the class F of functions f : X — {0,1} has finite VC dimension d then for,

k> ko= m [41n (%) +6dln (ﬁ)] (5.41)

the probability that a network computing the class of functions F can misclassify at most a fraction
(1 —7)e of a sequence Ty of k training examples and have error erp:(f) < e, where erpi(f) is as
defined in chapter 3, equation 3.15, is at least 1 — 6.

Recall the simple example that we introduced in section 5.3 for a ®-net having W = 200 weights.
Under the reasonable assumption (see the discussion in chapter 4) that in this case V(F) = 200,
using the same values for € and 6 of € = % and § ~ 4 x 10730, and the appropriate value for v
of vy = %, this result provides a value of,

ko ~ 162, 500. (5.42)

This is worse than the value obtained previously using our result. Furthermore, theorem 5.9 was
derived using the improved version of theorem 5.2 mentioned above, which suggests that our
result can indeed be improved further as suggested. Theorem 5.9 does have the advantage that
it allows us to obtain bounds for larger values of § than we can deal with using theorem 5.3.

A further result is presented in [73] which can also be used to obtain further bounds, and
similar comments apply. Also, techniques are introduced in [87] which may allow us to extend
our results to ®-nets with several outputs.

5.5.4 The Need for Experimental Studies

The theory presented in this chapter has allowed us to make various suggestions regarding the
use of connectionist networks in practice; in particular, we have made suggestions regarding the
use of hybrid training algorithms, the use of ®-nets versus multilayer feedforward networks, and
the use of self-structuring training algorithms. It is important that these suggestions should now
be investigated experimentally in order to further assess them. We have not attempted such
an investigation, as we believe that in order to obtain significant results, quite an involved and
long-term study will be required, and this falls outside the scope of the present work.

5.5.5 Other Formalisms

We end this section with some brief comments on the use of alternative formalisms (see chapter 3)
for analysing the generalization performance of ®-nets.

We have already pointed out that although the sufficient conditions derived herein provide
very powerful and general results, the resulting bounds on numbers of training examples are
rather impractical. This is a well-known problem with bounds derived using this type of com-
putational learning theory, and has also been noted by other authors in other circumstances.
An experimental study which investigates the quality of this type of bound has been performed
by Cohn and Tesauro [132], who investigate the way in which the average generalization per-
formance of LDFs and multilayer feedforward networks, applied to various different problems,
compares with worst case VC dimension type bounds. They find that, as expected, the average
generalization obtained can be significantly better than that suggested by these bounds. How-
ever, they also consider a distribution independent upper bound derived by Haussler et al. [92]
which applies to a Bayes-optimal learning algorithm, and find that this performs significantly
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better. A detailed consideration of ®-nets using the methods of [92] would therefore be interest-
ing. Similarly, further consideration of ®-nets using the techniques based on statistical physics
mentioned in chapter 3 would be useful.

In chapter 3 we also mentioned the theoretical framework for generalization introduced by
Wolpert [99]. This work considers ®-nets as a special case. Specifically, it considers ®-nets with
real-valued outputs which compute functions Y ;- w;¢;(x) where wy, # 0, the functions ¢; are
infinitely differentiable and non-zero and m is as small as possible. It is assumed that a network
learns the available training examples exactly. Wolpert proves that PDFs are the only ®-nets of
this type that are able to obey a particular invariance requirement forming part of the formalism.
The consequence of this is that the use of any other set of basis functions implies the introduction
of a preferred origin, scaling dimension, orientation or combination of the three. Thus, if these
preferences are inconsistent with the problem being addressed then a PDF is the preferred ®-net
in the context of generalization subject to the conditions given above.

5.6 Conclusion

In this chapter we have used various techniques from PAC learning theory to analyse the ability
of ®-nets to generalize, concentrating on the number of training examples that must be learnt if
we are to be confident that the network will provide a specified performance when used to classify
further examples. We have derived various new bounds which provide necessary and sufficient
conditions on the required number of training examples for both general and specific ®-nets,
and we have extended one of our sufficient conditions in an attempt to take into account the
effect of using a self-structuring training algorithm. We have also used our results, along with an
intuitive argument, to attempt to justify the use of hybrid training algorithms. Our results apply
regardless of the probability distribution governing the occurrence of examples, and our most
general results apply to all ®-nets, including all the standard networks described in chapter 2.

Some of the results obtained in this chapter provide an extension of the work of Baum and
Haussler [79] to a new class of networks; the results in [79] apply to a class of networks similar to
multilayer perceptrons, and we have compared the bounds for these networks with the new bounds
obtained for ®-nets. The results of this comparison suggest that under certain circumstances ®-
nets may be preferable to feedforward networks of LTEs and multilayer perceptrons in terms of
their ability to generalize. We have also performed a similar comparison using our results on
self-structuring; this comparison suggests that in a similar manner it may be advantageous to
use self-structuring training algorithms rather than standard training algorithms.
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Chapter 6

Self-Structuring Training
Algorithms for ®-Nets

6.1 Introduction

In this chapter we address the second of the main aims of this dissertation: the theoretical
analysis of the manner in which the best architecture for a ®-net can be selected, as well as
the values of the corresponding weights. On the basis of our analysis, we then derive a new
self-structuring training algorithm for ®-nets, and we test its performance experimentally.

The underlying reasons for studying self-structuring were mentioned briefly in chapter 1,
and we expand on them below. Self-structuring has been studied by various authors (see sec-
tion 6.3), most of whom consider multilayer perceptrons, and most of whom use rather ad hoc
techniques; furthermore, there has tended to be little or no attempt to determine whether the
network architectures obtained are the optimum (in an appropriate sense), or even close to opti-
mum, architectures, and some of the techniques that have been used are highly computationally
demanding. We saw in chapter 2 that ®-nets with fixed basis functions can be considered, for
the purposes of training, to be essentially linear systems, and that training can consequently be
re-cast as a linear least squares problem. We will exploit this fact in the following work in order
to provide a rigorous analysis of the problem; this analysis leads directly to our self-structuring
training algorithm.

One of the contributions made in this chapter is of particular importance. Perhaps the
most common technique for performing self-structuring presented in the literature, which is
commonly known as the weight decay technique, involves starting with a relatively large network
and attempting to remove weights by setting them to zero using a technique that attempts
to minimize the Euclidean norm of a vector containing all the weights. There is an obvious
assumption involved here, namely that the weight vector having the minimum Euclidean norm
among the set of all weight vectors that perform satisfactorily on the training examples is the
weight vector in that set having the largest number of zero elements. We show that in certain,
realistic circumstances this assumption is wrong for ®-nets with fixed basis functions, and we
argue intuitively that it is likely to be incorrect for other types of network. We also suggest a
simple modification to the weight decay technique on the basis of our main analysis. Our main
result in fact provides a definite lower bound on the extent to which self-structuring is possible
in specific cases for this type of connectionist network; to our knowledge this is the only result
of this type obtained to date.

In section 6.2 we discuss the way in which the ‘best’ architecture for a ®-net with fixed basis
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functions should be defined. In section 6.3 we outline the various different approaches to self-
structuring that are available and review some recent results on the computational complexity of
this type of problem. In section 6.4 we describe and motivate the use of the particular approach
to self-structuring studied in the chapter, and in section 6.5 we provide the main analysis of
this approach to self-structuring; this analysis leads us to suggest a modification to the well-
known weight decay training technique. In section 6.6 we use the preceding analysis to derive a
self-structuring training algorithm which we then test experimentally. In section 6.7 we extend
our initial analysis of the self-structuring problem. In section 6.8 we suggest ways in which our
approach can be improved and we discuss some alternative approaches; we also briefly discuss
our suggested modification to the weight decay technique. Section 6.9 concludes the chapter.

Some of the research presented in this chapter has been published in Lynch et al. [133, 134],
although once again the exposition provided here is significantly expanded. In order to maintain
mathematical tractability we assume in this chapter that C = IR, although the use of C = B is
discussed briefly in section 6.8.

6.1.1 Notation

The notation IR**7 is used to denote the set of all i-by-j matrices with real-valued elements.
Also, for any matrix A € R/ we let rank(A) denote the rank of the matrix. The Euclidean
norm of a vector a € R’ is, as usual, denoted by ||a||. We use the notation 0;; and I; to denote
the i-by-j matrix of zeros and the i-by-i identity matrix respectively; the dimensions are omitted
when they are clear from the context. We use the notation diag(ai,as,...,a;) where each a; is
real to denote the diagonal matrix,

ay
as
A= . (6.1)
a;

where all elements not on the main diagonal are zero. The notation span{aj,as,...,a;} denotes
the set of all linear combinations of the vectors a; where j = 1,2,...,4, that is, the set of all
vectors of the form,

A1a; + Aqag + - + Na, (6.2)
where [ A1 Xy --- X | € R'. The row space rs(A) of a matrix A is the set of all linear

combinations of its rows and the column space cs(A) is the set of all linear combinations of its
columns. Finally, we use the notation dim(V') to denote the dimension of a vector space V.

6.2 How do we Define the ‘Best’ Architecture?

In chapter 1 we argued briefly that in general it is desirable to minimize the size of a network
because this reduces storage requirements and because it reduces the amount of computation
required, both to classify an input and to determine the required weight values during training
(the latter case, of course, applies most directly when the network architecture is fixed; when the
architecture is variable the situation is more complicated). It was also stated in chapter 1, and
argued briefly in chapter 4, that minimizing the size of a network is in general advantageous in
terms of generalization performance; the theoretical results presented in the last chapter suggest
that this is true in the case of ®-nets with fixed basis functions, and that the number W of
variable weights is an appropriate measure of size in this case.
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It is more difficult to define a single, appropriate measure of the size of a ®-net for the
purposes of considering storage and computation requirements, because a truly optimum measure
will depend on the precise nature of the basis functions that are available for the purposes of
constructing a network. For example, storage requirements are obviously lower for a PDF basis
function such as ¢;(x) = 2? than for a RBFN type basis function, because in the former case we
do not have to store a centre y; € IR". In order to maintain a degree of generality we will use W
as a measure of size; it is clearly an appropriate approximate measure.

Consequently, when we refer to the ‘size’ of a ®-net in this chapter, we assume that size
is measured as the number W of weights in w. Our approach to self-structuring will involve
trying to find the smallest network capable of providing a specified performance on the available
training examples, and is defined fully in section 6.4 below. Note that although approaches which
minimize size can also be applied to types of network other than ®-nets, different measures of
size may be appropriate.

6.3 Basic Approaches to Self-Structuring

An obvious method of searching for an optimum architecture for a specific problem is to train,
using a standard training algorithm, a large collection of networks with different architectures
and see which performs best. In the present scenario we would search for the smallest network
capable of providing an acceptable error on the training examples. This is clearly not a good
approach because it represents an unrealistic computational effort, even for ®-nets with fixed
basis functions, for which training can often be accomplished relatively quickly. The reason for
this is that the total number IV of architectures which can be tested will generally be very large.
For example, for a ®-net derived from a fixed set ® of m fixed basis functions we have,

wom =3 ("), (6.3

=1

where a single architecture corresponds to a ®-net constructed using some choice of m’ basis
functions from those available where 0 < m/ < m. The value N(m) becomes very large very
quickly; for example, we have N(10) = 2047, N(20) = 2097151, and N(50) ~ 2 x 10'®. For
networks such as MLPs the situation is likely to be even worse.

A much better approach is to develop a training algorithm which attempts to determine an
optimum architecture using the available training examples. We might however expect that, in
the light of equation 6.3, the task of finding a true optimum solution, that is, the smallest possible
network, is computationally very difficult. Although no extensive study has been made of the
computational complexity of architecture selection, this proposition is supported by two results
due to Lin and Vitter [135]. These authors have considered the design of networks that compute
linear threshold functions which are the same as those of definition 4.1 but for the fact that they
produce outputs in the set {0,1} rather than IB. They also consider the design of feedforward
networks constructed from these linear threshold functions but otherwise as described in our
definition of a feedforward network (definition 4.17). Consider the following problem, called the
optimal consistent network problem.

Definition 6.1 (Optimal consistent network problem)

Instance: A set of training examples and a positive integer . Inputs to the network are either
in {0,1}™ or R™.
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Question: Is there a feedforward network which is consistent with the training examples and
such that the size S of the network, defined as the number of computation nodes, satisfies
S <i?

Lin and Vitter show that this problem is NP-complete. They also consider the following problem,
called the optimal consistent perceptron problem, which is of greater relevance to our investigation.

Definition 6.2 (Optimal consistent perceptron problem)

Instance: A set of training examples, inputs of which are in {0,1}™.

Problem: Construct a linear threshold function which is consistent with the training erxamples
and such that the number of non-zero weights is minimized.

Lin and Vitter show that this problem is NP-hard.

There are three obvious ways in which we can approach the problem of architecture selection
in practice (which we mentioned briefly in chapter 4). Firstly, we can start with the smallest
possible architecture and increase its complexity until a network capable of an acceptable level of
performance is obtained. We hope that this network has a size near to the smallest possible. This
is the strategy used by the GMDH algorithm [9], and the approach has also been used by, for
example, Debenham [136] and Kadirkamanathan [137] for RBFNs with adapting basis functions,
and by Fahlman and Lebiere [131] for MLP type networks.

Secondly, we can begin with a large network — that is, one which is assumed or known to be
large enough to solve the problem in question — and remove weights or nodes in order to obtain
a smaller network, which we again hope has a size near to the smallest possible. This approach
has been used for MLP type networks by Le Cun et al. [138], and is also the approach used in
the research presented in this chapter for reasons which we give below.

Finally, we can use a combination of the previous two approaches. This strategy has been
used by Alpaydin [139].

As usual, the literature for this area of study is rather large and consequently we will not
attempt an exhaustive review; the references cited above represent a subset of the literature
available. A more extensive review can be found in [139] (see also Nelson and Rogers [140]).

6.4 The Self-Structuring Problem for ®-Nets

In order to analyse self-structuring in this chapter we use an approach which is most similar
in spirit to the second method suggested above: we start with a large network and try to find
a smaller one which provides comparable performance. Specifically, we address the following
problem.

Definition 6.3 (The self-structuring problem) Assume we have a ®-net,
N = (n,m,®,w,R) (6.4)

which we use to solve a problem represented by a sequence Ty of k training examples. Let the
error of N on the training examples (which we define fully below) be §0pt- What is the smallest
network,

N' = (n,m',® w',R) (6.5)

where ®' C ® which is also capable of providing an error of §0pt?
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The reason for addressing self-structuring in this manner is that it allows us to obtain a good
theoretical hold on the problem. Note that an underlying assumption here is that we begin with
a network A which is thought or known to be large enough to achieve an acceptable error §0pt'
We then attempt to reduce the size of A/ for the reasons stated above. Furthermore, note that
by beginning with a set ® containing a wide variety of basis functions, perhaps corresponding
to various different standard ®-nets as described in chapter 2 (and perhaps much larger than we
expect is necessary), we can regard the self-structuring process described in definition 6.3 as a
method of choosing basis functions that are well suited to the problem being addressed.

Note that, in our original definition of a ®-net, the unit term in the extended vector, which
corresponds to the weight wy, is regarded as being separate from the basis functions. Clearly we
can alternatively regard this term as a basis function which has the value 1 for all inputs and
include it in ® while removing the unit term from the extended vector. This provides an exactly
equivalent ®-net, although the notational alteration is required for the purpose of interpreting
definition 6.3 correctly.

Although this way of considering self-structuring is most similar to one in particular of the
approaches outlined above, it is also applicable in some circumstances when considering the
others. This is because, in some cases, even when we allow the size of a network to start small
and increase during training, the set ® from which we can choose basis functions to add may be
fixed in advance; for example, ® could be the set of all PDF basis functions for PDFs of some
fixed degree d.

6.5 Which Network is the Smallest?

We now provide an analysis of the self-structuring problem defined in definition 6.3. We begin
by reviewing the way in which the task of training the network A using a standard training
algorithm (one which does not attempt to optimize the architecture) can be cast as a least
squares problem. We then address the problem of how to search for a network N”.

At various points in this section we introduce and briefly review some standard least squares
techniques. A complete account of these techniques can be found in Press et al. [26], Haykin [27],
Ljung [141] and Golub and Van Loan [142].

6.5.1 Training as a Least Squares Problem

We begin by reviewing the way in which the task of training a ®-net with fixed basis func-
tions can be regarded as a least squares problem. Agssume, as usual, that we have a sequence
T = ((x1,01),(x9,09),...,(Xk,0)) of k training examples where x; € R™ and o; € R for
i=1,2,...,k. Also, we have an initial ®-net N' = (n,m, ®,w,R) as introduced in definition 6.3
and defined in chapter 2, and so we can form extended vectors X; = ¢(x;) fori =1,2,... k. We
define P € R¥*(™+1) to be the matrix containing as rows the extended training inputs,

soi(xl) 5(?
X X
¢ (x) i

and we define o € IR¥ to be the vector containing the training outputs (which we will also refer
to as the desired outputs),
ol =[o1 o0y - o] (6.7)

89



The output of the ®-net in response to some input vector x € R" is fw(x) = wlp(x) = wlx.
We define the error ¢;(w) for the ith training example as,

€(wW) = 0; — fw(xi). (6.8)

As usual, we model the process of training the network as the process of searching for a weight
vector w which minimizes the error {(w), defined as,

P(w)

{(w) =

€

M-

o
Il
—

[Oi - fw(xi)]2

I
N

1

.
Il

[0; — w!%,]?, (6.9)

Il

.
Il
N

for the particular training sequence T%. In order to determine the values for w which minimize
¢(w) we differentiate equation 6.9 with respect to w and equate the result to zero. This leads to
the well-known normal equations,

Rw=p (6.10)
where,
k
R=) %% =PTP (6.11)
=1
and
k
p=)>» %o0; =Po. (6.12)
=1

Direct solution of the normal equations is not in general the best way to calculate w numer-
ically [26], however for the purposes of our further development below the normal equations
provide the most convenient starting point.

We now make an important observation. It is tempting at this point simply to assume that
the matrix R is non-singular. If this is the case then there is a unique weight vector Wopt = R !p
which provides an optimum error fopt =¢ (Wopt)a and consequently we cannot perform self-
structuring without increasing the error. Furthermore, although we can obviously remove any
basis function corresponding to a zero weight in Wopt, We can only regard the resulting reduction
in the size of the network as a lucky outcome; it is not self-structuring of the type in which we
are interested. However, although the assumption that R is non-singular is often correct in other
applications of least squares techniques, it is not necessarily correct when considering the training
of connectionist networks!. This observation is important, and we now elaborate on it. We will
see below that when R is singular we have significantly more flexibility in reducing the size of
the network A without increasing {(w). Of course, the case in which R is non-singular is still
relevant, and we extend our analysis to take this case (among others) into account in section 6.7;
our extended analysis shows that when R is non-singular it may be possible to reduce the size
of the network while causing only a small increase in &(w).

6.5.2 The Matrix R can be Rank Deficient

We now show that, when training a network A/, the matrix R defined in equation 6.11 can be
rank deficient, that is, we have rank(R) = r < m + 1. Of course, when R is rank deficient, it is

!This was originally pointed out to the author by Dr. P. Rayner and Dr. M. Lynch.
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also singular. The fact that R can be rank deficient in realistic circumstances has not previously
been widely appreciated.

There are two distinct situations which can lead to rank deficiency when training a ®-net N
using the least squares techniques described, and we deal with them separately.

Rank Deficiency and the Set ®

Recall that, in defining our version of the self-structuring problem, we suggested that the initial
network N can be constructed by including many different types of basis function in ®, and that
in this case self-structuring can be regarded as a method for finding particularly suitable basis
functions. If we use this approach then it is likely to be quite easy in practice to construct a
network A for which W > k, where W and k are, as usual, the number of variable weights and
the number of training examples respectively. Now, note that in this case we have,

k
rank(R) = rank (Z xxT> <k<W=m+1 (6.13)
=1

and consequently R is rank deficient. We will see below that as a consequence of this it is always
possible to reduce the size of the network such that we obtain a new network A/ for which W < k.

The result given in equation 6.13 may not seem obvious at first glance. To see that it is true,
consider any square matrix A € IR*? having rank r < i; this means that the column space of A
has dimension r. It is easily verified that the column space of (A 4+ xxT) for any vector x € IR’
consists of vectors of the form,

fr1a; + bray + -+ + G;a; + 0;11x (6.14)

where the 6; are reals and the a; are the columns of A, and consequently the matrix (A +xx7)
has a rank of either r or (r + 1).

Some further justification is required here. The reader may wish to raise the following
objection: it is well-known that when training a network we should in general use significantly
more training examples than there are variable weights if we wish to obtain good performance
after training. If we begin with more variable weights than training examples, are we merely using
a network which will be likely to learn the training examples well, but will also be likely to suffer
from the usual problems due to overfitting that are associated with this situation? Although
this objection would be entirely fair if our aim was merely to train the initial network A/ using
ordinary least squares techniques, while making no attempt at self-structuring, it is important
to remember that this is not in fact the case. In the present scenario we are attempting to find
a new network N’ which has a reduced size. We expect that the final network A’ is rather less
likely to overfit the examples if, firstly, it has significantly fewer than k variable weights, and
secondly, it is re-trained on the available examples, this time using a standard training technique
such as ordinary least squares. In this context, self-structuring can be viewed as a technique
for reducing or eliminating any overfitting which might occur as a result of using a large initial
network. Indeed, this is one of the reasons often advanced for the use of self-structuring training
algorithms.

Rank Deficiency and Specific Problems

We now demonstrate that the matrix R can be rank deficient even when the number of training
examples used is significantly greater than the number of variable weights. We will do this
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Figure 6.1: Four different instances of the two-spirals problem. Each instance has 100
examples in each class; members of class 1 are shown as a ‘o’ and members of class two
as a ‘4+’. The top left instance is not corrupted by noise; in the remaining instances the
inputs are corrupted by additive zero mean Gaussian noise of the variances shown. In each
of these diagrams the scale for input 1 is the same as that for input 2.

by examining the matrix R obtained when applying a particular ®-net to a well-known two-
class classification problem: the two-spirals problem. The particular ®-net used is an (n,d)
discriminator, as defined in chapter 2, which computes polynomial discriminant functions. We
use this type of network because it is the ®-net most often criticized for requiring too many
weights, and hence the network which is likely to benefit the most from self-structuring.

The two-spirals problem has two inputs and two classes. The two classes are in the form
of interlocking spirals; this is illustrated in figure 6.1 in which four different instances of the
problem are shown. In each case there are 100 examples in each class. In one instance no noise
has been added to the examples, and in the other three instances the inputs have been corrupted
by additive zero mean Gaussian noise of the variances shown. This problem was originally
introduced because it is an extremely difficult problem for the hidden layer back-propagation
training algorithm to solve [131].

Figure 6.2 shows the way in which the rank of the matrix R for a (2,8) discriminator, that
is, one which computes polynomial discriminant functions up to eighth degree, increases with
the number of training examples for four instances of the two-spirals problem as illustrated in
figure 6.1. In this case, the size of R is 45-by-45 (equation 2.25). Note that when the examples
are not corrupted by noise we need to use nearly four times as many training examples as there
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are variable weights in order to make R non-singular. For a noise variance of 0.0001 this reduces
to about twice as many examples as weights, and for variances of 0.001 and 0.01 the number
required is less again, although still greater than the number of variable weights. In section 6.7
we extend our analysis in a manner which allows us to deal with any increase in rank caused by
the presence of noise.

6.5.3 The Solution Space and the Minimum Norm Solution
The Solution Space

Having established that R can be rank deficient, and that this in fact needs to be the case if we
are to have any genuine flexibility to reduce the size of ' without increasing £(w), we must now
address the question of how the normal equations can be solved when R is singular. Throughout
the remainder of this section we assume that rank(R) =r <m+1=W.

We begin by defining the range of a matrix as follows.

Definition 6.4 The range R(A) of a matriz A € R™J is the set of vectors x defined as follows.
R(A) = {x | x = Ab where b € R’}. (6.15)
Clearly R(A) = cs(A).

Thus, if we consider A as a mapping, R(A) can be interpreted as the range of the mapping; it
is the set of all vectors that can be ‘reached’” by A. It is a well-known result (see for example
Green [117]) that if rank(A) = r then R(A) is a subspace of R* and dim(R(A)) = r.

Given a completely general set of linear equations, say Ab = c, then the fact that A is
rank deficient means that either the set of equations has no solution, or that it has an infinite
number of solutions which constitute what we will refer to as the solution space. The former is
the case if ¢ ¢ R(A) and the latter if c € R(A). We now make the important observation that,
because of their structure, a set of normal equations always has at least one solution. Although
this result is intuitively appealing given the nature of the function £(w), and is often hinted at
in the literature, we have been unable to find a convincing general proof; as the result is by no
means trivial to prove we now include a full derivation.

In order to obtain the required result we show that it is always the case that p € R(R).
Note that, because p is a linear combination of training input vectors (equation 6.12), it suffices
to show that

R(R) =rs(P). (6.16)

To begin, we also need to define the nullspace of a matrix.

Definition 6.5 The nullspace N(A) of a matriz A € R is the set of vectors x defined as
follows. '
N(A) = {x|x € R’ and Ax = 0}. (6.17)

Thus, if we consider A as a mapping, N(A) is the set of all vectors that map to 0. It is a well-
known result (see [117]) that if rank(A) = r then N(A) is a subspace of IR7 and dim(N(A)) =
j —r. Also, for any matrix A,

R(A)t = N(AT) (6.18)

where R(A)' denotes the orthogonal complement of R(A). As usual, the orthogonal complement
S+ of some subspace S of IR? is defined as,

St ={yeR|yTx =0 for all x € S}. (6.19)
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Lemma 6.6 Let A € R™ be any matriz. Then N(A) = N(ATA).

Proof Clearly if Ax = 0 for some vector x then ATAx =0, andsox € N(A) = x € N(ATA).
Conversely (see Strang [143]), if AT Ax = 0 for some vector x then,

xT'ATAx = (Ax)TAx = ||Ax||* =0 (6.20)
and hence Ax = 0; this means that x € N(ATA) = x € N(A) and the proof is complete. O

A simple corollary of this result is that rank(A) = rank(ATA); in the current scenario
we therefore have rank(P) = rank(PTP) = rank(R). Now, it is easily verified (see [117])
that rs(PTP) C rs(P), and consequently as rank(PTP) = rank(P) we must have rs(R) =
rs(P). To see that this is true note that because rank(P) = rank(P?P) we have dim(rs(P)) =
dim(rs(PTP)) = r. There therefore exists a linearly independent set {aj,as,...,a,} of 7 vectors
in rs(PTP) which span rs(PTP). However, because rs(PTP) C rs(P) these vectors also form a
basis for 1s(P) (see [117]) and hence rs(PTP) = rs(P). Finally, as R is symmetric we have,

R(R) = cs(R)
= rs(R)
= 13(P) (6.21)
which is precisely the result we set out to prove.

We now return to the normal equations. When R is rank deficient, and as we have seen,
p € R(R) such that the normal equations have an infinite number of solutions, the normal
equations have a solution space defined as the set of all vectors of the form,

(m+1)—r
Wopt = Wsol + Z 0;n; (6.22)
i=1
where w ) is any single solution of Rw = p, the 6; are reals and the set of vectors {ni,ny,..., n(m+1),r}

is a basis of N(R).

We now prove in full a further important result, which is again often hinted at, but not fully
verified, in the literature.

Lemma 6.7 Let Rw = p be a set of normal equations where R is rank deficient and hence there
are an infinite number of solutions. Then all solutions provide the same error {(w).

Proof Let,

(m+1)—r
w] = Wg,t+ Z 91(1)112_
=1
(m+1)—r
Wy = Wg+ Z 491(2)ni (6.23)
=1
be any two solutions to the normal equations. Also, let the corresponding errors be & = &(wq)
and &y = {(wy). Then,

k
&G o= Y lo—wix)
z;l
& = ) [oi—wj %] (6.24)
=1
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The important terms in equation 6.24 are those of the form W;r)”q and so we consider them
separately. We have,

(m+1)—r T
Wff(l = WSOI+ Z 9l(j)nl X;
=1
(m+1)—r .
= wl i+ Y 69nlx (6.25)
=1

where n; € N(R) for l =1,2,...,(m + 1) —r. Now, from the results obtained above we have
N(R) = R(R)* = 1s(P)* and consequently we have nf%; =0 for [ = 1,2,...,(m + 1) — r and

1=1,2,...,k. Each term in the summation in equation 6.25 is therefore zero and we have,
k
fl = fg = Z[oz — Wgolfq]z. (6.26)
=1

d

The Minimum Norm Solution

In the solution space defined by equation 6.22 there is a unique vector which has the minimum
Euclidean norm.

Definition 6.8 The minimum norm weight vector w i, s the weight vector the Euclidean norm
|Woninll of which satisfies,
[Winll = min{||w|| | Rw = p}. (6.27)

In order to calculate w,;, we use the Moore-Penrose pseudoinverse R of R; the vector w:
is,
n=R'p. (6.28)

Wi

Henceforth, we will refer to A™* for some matrix A simply as the pseudoinverse of A. In order to
define the pseudoinverse of a matrix we now introduce the singular value decomposition (SVD).
The pseudoinverse can be defined without referring to the SVD, however we will need the latter
in order to construct a self-structuring training algorithm below and so we now introduce the
following result. For a complete treatment of the SVD see [142], or Klema and Laub [144].

Theorem 6.9 (Singular value decomposition) Consider a matriz A € R where rank(A) =
r. There erist orthogonal®> matrices U € R and V € R?*? such that,

A =UxVT (6.29)
In equation 6.29,
S 0
= [ " o ] (6.30)
where S = diag(o1,02,...,0.) and where 01 > 09 > -+ > 0, > 0.

2In the sense that UTU =1 and VIV =L
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The values 01,09, ...,0, along with 0,11 = 0,0,42 =0,...,0; = 0 are the singular values® of A.
They are equal to the positive square roots of the eigenvalues of A7 A. The columns of U are the
left singular vectors, and the columns of V the right singular vectors of A. The matrices U and
V are useful in characterizing the nullspace and range of a matrix. Let U= u; uy --- u; |
and let V.= [ vy vy --- v; |. The columns of U with same-numbered singular values that
are non-zero span the range of A and the columns of V with same-numbered singular values that
are zero span the nullspace of A. Also, note that as in the present case R is symmetric, we have
R” = R and hence,

RT = (UxvhH)T =vzUT =R. (6.31)

Consequently we have U = V and U alone provides a basis both for R(R) and for N(R). The
SVD can be calculated in practice in a highly stable manner, and it is the only entirely reliable
tool for dealing with rank deficient problems of this type in practice. It is for these reasons that
we introduce it at an early stage, with a view to using it as the basis for a self-structuring training
algorithm below.

Definition 6.10 (Pseudoinverse) Let the matric A € R™ have rank r and singular value
decomposition A = UEVT where X is as defined in theorem 6.9. The pseudoinverse AT of A
18,

!/
At =V [ % g uT (6.32)
where the matriz S' is defined as,
1 1 1

We can now use the SVD to obtain an expression which describes the solution space and
which can be calculated in practice. The solution space is the set of all vectors of the form,

m+1

Wopt = R+p + Z 0;v;. (6.34)
1=r+1

In equation 6.34 we have used w;,, in place of wg,) as the latter can be any solution, and we
have used the matrix V to provide a basis of N(R). Again, the 6; are real-valued; different values
for the 6; provide different solutions Wopt-

The Use of the Minimum Norm Solution in Self-Structuring

As we mentioned briefly in the introduction to this chapter, perhaps the most commonly en-
countered technique for performing self-structuring involves beginning with a large network and
attempting to reduce its size by considering the set of all weight vectors which provide an accept-
able error on the training examples and penalizing weight vectors therein having relatively large
Euclidean norms. Typically this is done by attempting to minimize an error £'(w) of a form such
as,

€'(w) = &(w) + Alwlf?, (6.35)

3In numerical work using the SVD of a matrix A it is often necessary to decide whether a singular value is
‘small enough’ to be regarded as zero. A numerically stable way in which to make this decision is to regard a
singular value as non-zero if it is greater than (s x o1 x fp), where s is the largest dimension of A and fp is the
floating point relative accuracy [145]. This is the technique used in the experimental work presented later in this
chapter.
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where {(w) is as defined above and A > 0 is a real-valued term which allows us to set the
importance of norm reduction relative to the minimization of £(w). This approach to self-
structuring is usually referred to in the literature as the weight decay approach.

The weight decay technique has been applied to various different types of network, and
incorporates a basic assumption that the resulting vector is likely to have a larger number of
zero elements than one obtained by simply attempting to minimize {(w). In the context of the
development presented above, note that, when we consider general ®-nets, if we have an infinite
number of solutions described by equation 6.34 then the solution that minimizes '(w) is Wiy,
because as we have seen, all solutions correspond to the same error {(w), and w;,, is the unique
minimizer of the term A||w||?> when A > 0. We now demonstrate that for general ®-nets w i,
is not necessarily the weight vector in the solution space having the smallest possible number of
non-zero weights, and hence does not necessarily provide the best reduced size network N’/. We
do this using a simple example.

Consider the following simple problem. We wish to train a (2,2) polynomial discriminant
function network using the following training examples.

x?:[o 1] 01 =1
x, =[1 0] 09 =—1
xi=[1 1.5] 03 =1 (6.36)

xI'=[05 025] o4=—1.

The matrix R in this case has size 6-by-6 and rank 4. The set of normal equations in this case
has an infinite number of solutions, and the minimum norm solution is,

T
Winin = | —0.8703 —0.7076 0.5870 0.5779 —1.1786 1.2833 |. (6.37)
The minimum norm solution clearly has no zero elements, or in fact any elements which could
reasonably be assumed to be close enough to zero that the corresponding basis functions can be
removed without causing a significant decrease in the performance of the network. However, we
also have the following three alternative solutions, each of which has two zero elements,

Wopt = [0 0 —3.1667 —1.0000 —1.7500 4.1667 ]
Wopt = | —0.8667 —0.1333 0 0 —1.4667 1.8667 ]
woot = [—0.3333 —3.3333 13333 2.6667 0 0 ]. (6.38)

These solutions were calculated using the self-structuring training algorithm which we develop
below.

6.5.4 Why Isn’t Minimizing the Norm a Good Approach?

Self-structuring techniques based on the minimization of an error of a form such as £'(w) as
defined in equation 6.35 were originally introduced on the basis of an intuition that at first
glance appears quite sound: that the minimum norm solution is likely to be a good one. Having
established that this is not necessarily the case it is interesting to ask why.

The explanation is quite simple. The term \||w||? places a relatively high penalty on a small
increase in magnitude of an already large weight, and gives only a relatively small reward if
a small weight is set to zero. Altering the term to A||w]| improves the situation slightly but
does not solve the problem, because clearly in order to perform self-structuring we should use a
term which is relatively insensitive to fluctuations in the magnitude of large weights but rewards
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A 1(w)

Y

Figure 6.3: The general form of the function /(w;) used in our modification of the weight
decay technique.

changes which set weights to zero. We therefore suggest an approach* in which we attempt to
minimize an error {’(w) of a form such as,

¢"(w) = £(w) + AR(w), (6-39)

where A > 0 is again a real-valued term and the function R(w) is of the form,

m

R(w) =Y _I(w), (6.40)

=0

where w; are as usual the weights in w and [ is any function of the general form shown in
figure 6.3. The optimum form for the function ! would be,

. C iwaéO
zmg_{oﬁmzo, (6.41)

where c is a constant. However, in practice it may be preferable to use a function such as,
I(w;) = tanh(w?), (6.42)

especially if any form of gradient descent is to be used in order to minimize £”’(w); we pursue
this approach in section 6.8.

Intuitively, we expect that by using an error of a form such as £”’(w) a training algorithm
will be able to find better solutions than w,;,, because it will now be able to set weights to zero
if this dictates that other weights take on values with relatively large magnitudes. Evidence that
this ability is necessary can clearly be seen if we compare the minimum norm solution given in
equation 6.37 for the simple example in the last subsection with the three alternative solutions
given in equation 6.38, and also if we examine the experimental results provided in section 6.6.

Our criticism of the use of the term \||w||?> extends readily to the case of networks other
than ®-nets, and for this reason we suggest that the use of this term will not in general provide a

“This modification to the weight decay technique has been suggested independently by Dr. M. R. Lynch.
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good self-structuring technique. Similar criticisms of the simple weight decay approach to those
advanced in this subsection have been made independently by Nowlan and Hinton [146]. To our
knowledge, the simple modification that we have suggested in equations 6.39 and 6.40 has not
previously been applied to the training of general ®-nets.

6.5.5 A Better Solution

Let us briefly summarize the results of the analysis presented above. When training a ®-net
by selecting w in order to minimize the error {(w) for the available training sequence T} we
need to solve a set of normal equations. If the relevant matrix R is non-singular then there is a
single, unique solution and we cannot perform self-structuring without increasing {(w). However,
in certain realistic circumstances R is singular and in this case we have an infinite number of
possible solutions each providing the same error; in this case the space of all solutions consists

of the vectors of the form,
m+1

WOpt =Wnmin T Z 0;v;. (6.43)
i=r+1
We therefore appear to have some freedom to perform self-structuring because we can attempt
to search for a wop¢ containing many zero elements.

We saw earlier for a simple specific example that, contrary to the common assumption, Wi
is not necessarily the weight vector having the largest possible number of zero elements, and that
in fact it may have no zero elements at all. When addressing a given problem we must therefore
ask the following question if we wish to perform self-structuring: is it possible to choose values
for the #; in equation 6.43 such that some of the elements of the resulting Wopt (ideally as many
as possible) are set to zero? We now show that it is always possible to obtain a vector Wopt
which has at least (W —r) zero elements where, as usual, W is the number of variable weights in
w and 7 = rank(R). This in fact follows directly from a standard result in linear algebra [117].

Lemma 6.11 Let Ab = c be a set of equations where A € R™, b € R?, ¢ € R’ and rank(A) =
j < i. Assume that the set of equations has an infinite number of solutions. Then there exists a
set of (i—7) elements of b which can be given arbitrary values, such that the remaining elements
of b can then be assigned values which make b a solution of the set of equations.

Our result follows directly from this lemma when we use zeros for the arbitrary values. Note that
when we calculate the remaining weights, having set a subset of them to zero, we may obtain
further zero weights as well. The important question is now that of how to find the elements
that can be set arbitrarily in the manner stated. Although we can in principle find a suitable
set of elements using a method involving the transformation of R into an echelon matriz [117]
we will introduce in the next section an alternative algorithm which has two major advantages
over this approach: firstly, it is based on the use of the singular value decomposition which, as
we have already noted, is the only entirely reliable numerical tool for dealing with rank-deficient
problems in practice and, secondly, it can often find more than one suitable set of elements, and
it can also in general find one or more alternative, suboptimal sets of less than (W —r) elements
that can be set to zero.

6.6 A Self-Structuring Training Algorithm

In this section we use the theory developed above to construct a self-structuring training algo-
rithm which we then test experimentally. We begin by developing the algorithm, which is based
on lemma 6.11. We then present and discuss some experimental results.
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6.6.1 The Self-Structuring Training Algorithm

Recall that, because R is symmetric, we can write its SVD as,
R =UxUT (6.44)
where 3 and U are as defined above and U can be written using its columns as,
U=[u u - uy ] (6.45)

We also know that span{u;,us,...,u,} = R(R) and span{u,41,ur42,...,uw} = N(R), and we
can therefore express the solution space S as the set of all vectors,

w
Wopt = Wmin T Z fiu;
i=r+1
= Wy, + N6 (6.46)

where N is the matrix defined in terms of its columns and rows as,

T
nj

ny
N = [ Ur41 UWpyg - Uw ] = . (647)
T
Dy
and 07 =[ 60,41 6,40 -+ Oy | Let I = {i1,92,- -y iw—r)} €{1,2,..., W} be a set contain-
ing the indices of the elements of wq,¢ that can be set arbitrarily, and which we will set to zero,
and let w, i, be written as,

T _ (1) (2)
Wmin_[ min  “min

w™) . (6.48)

min
We can think of the task of setting the arbitrary elements of Wopt 0 zero as one of choosing @ such

that the vector N ‘cancels’ the corresponding elements of w,;,; in other words, lemma 6.11
tells us that the set of equations,

(1)

nT w_
71 Nn1n
i “m
; !
N'§ = .2 0=— mn = —w! (6.49)
T .
0 W)
| “min J

is consistent. Our task is to find a set I which leads to a consistent set of equations of this type.

The obvious way in which to search for a suitable set I is to search over all (W — r)-element
subsets of the set {1,2,...,W}, constructing the set of equations described by equation 6.49
and testing for consistency until we find a suitable subset. However, as there are C(VII//V_T) such
subsets this is not in general a computationally feasible approach. We now suggest an alternative
algorithm which is computationally feasible; this algorithm unfortunately does not guarantee to
find a set of (W — r) zero weights. However, in practice it is very successful in doing so, and
furthermore, if it is unable to find such a set it attempts to return a smaller set of weights that

can be set to zero.

We first describe the algorithm informally. Beginning with a set I' = {1,2,..., W} of
available indices we attempt to construct a set of consistent equations as in equation 6.49 by
beginning with a single equation,

nf 6 = —ul) (6.50)
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for an arbitrary index i; € I’ (this equation clearly always has a solution) and adding further
equations one at a time such that the overall set of equations is always consistent. If at any time
we obtain a consistent set of (W — r) equations then we have a valid set I. Alternatively, if we
find that a set of less than (W — r) equations cannot be added to while still being consistent we
put aside the set of indices used so far, as we can use them later if necessary as a suboptimal
solution (we also store such a suboptimal solution if we exhaust the supply of available indices).
After finding a valid set I or a suboptimal solution we delete the indices used from the set I’
and begin the process again using the reduced set I' of available indices. This process continues
until I’ is empty. We can think of this process as one of forming a partition of the set I’; each
equivalence class in the partition contains a set of indices which either provides a valid set I or
a suboptimal solution.

In order to make the operation of this algorithm clearer, we now provide a pseudo-code
version. In the following, ‘FINISHED’ is a Boolean variable which can take the value ‘TRUE’ or
‘FALSE’, T is a set used for temporary storage of indices and I’ is a set containing available
indices. The pseudo-code is as follows.

Begin
Let I' ={1,2,...,W} and let T = 0.
While I' # ()
Choose an arbitrary i; € I’ and let T = {i1}.
Let FINISHED = FALSE.
While (I'\T #0) and (| T |< W —r) and (FINISHED = FALSE)
Search through the indices 7 € I’ \ T. One of the following must occur:
(a) We find an 7 such that on adding the corresponding
equation to the set of equations given by T" we obtain
a new set which is consistent. In this case let T =T Uz.

(b) We find that no ¢ € I\ T lets us add a new equation
such that the new set is consistent. In this case let
FINISHED = TRUE.
End
Store T and let I' = I' \ T.
End
End

In the implementation of this algorithm used in the experiments described below, i; is always
chosen as the smallest element of I, and the search through the indices in I’ \ T is by numerical
order. Note that, if at some point during the construction of a set of equations it is found that
some index cannot be included in the set T because the resulting set of equations is inconsistent,
then it is not necessary to attempt to include this index again at a later stage in the construction
of this particular set of equations, as clearly the attempt must be unsuccessful.

6.6.2 Experiments with the Self-Structuring Training Algorithm

We now experimentally test the training algorithm developed above using two problems: the
well-known parity problem and the two-circles problem. We have chosen these problems because
when they are addressed using appropriate polynomial discriminant function ®-nets, that is,
(n,d) discriminators which use all possible basis functions up to an appropriate degree d, there is
in each case a known weight vector which solves the problem and which has only a small number
(one or two in the problems of interest) of non-zero weights®. Consequently, whenever we have

5The use of these particular problems was suggested by Dr. P. Rayner.
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Experiment Number of Number of non-zero weights in the different
number n,d, W,r | examples solutions
per class | Minimum norm | Semi-optimum | Non-optimum
1 2,6,28,4 2 6 2 4
2 2,8,45,4 2 10 2 8
3 4,4,70,16 8 1 1 1,%
4 4,5,126,16 8 1 1 *,1
5 4,4,70,12 6 12 1 10
6 4,5,126,12 6 26 3 23

Table 6.1: Results obtained for various instances of the parity problem using various different
networks. ‘Semi-optimum’ solutions are those found by our algorithm which are known to have at
least (W —r) zero weights. ‘Non-optimum’ solutions are other solutions found by our algorithm.
All weights having a magnitude of less than or equal to 10~'" were regarded as zero. See the
main text for an explanation of the ‘¥’ entries.

an infinite number of possible solutions w,,t we can test the ability of the algorithm to find a
known optimum solution corresponding to a small ®-net.

In the following we will refer to the weight vectors which are known to be the optimum
solutions to the specific problems addressed as true optimum solutions. We will refer to weight
vectors produced by our algorithm which are known to have at least (W — r) zero weights as
semi-optimum solutions, and to other weight vectors produced by our algorithm as non-optimum
solutions. Note that ‘optimum’ in this case refers to the quality of a solution in terms of the
size of the corresponding network; semi-optimum solutions and non-optimum solutions have the
same error £(w). Note also that this nomenclature is intended only as a means for identifying
different types of solution; in some cases, as we shall see, non-optimum solutions can be better, in
terms of network size, than semi-optimum solutions, and either can be as good as a true optimum
solution.

The Parity Problem

We first test our algorithm using an (n,d) discriminator applied to the standard parity problem.
In this problem, inputs to the network are drawn from the set {—1,4+1}", and an input should
be assigned to class one if it contains an even number of +1s and to class two otherwise. If,
as usual, the index for class one is +1 and that for class two is —1, and if n is even, then we
can solve the problem using a (n,d) discriminator having only a single non-zero weight provided
d > n because clearly the function,

fe)=]]= (6.51)

solves the problem perfectly. Also, as there are 2" possible input vectors and C”+% weights in the
network we will in general have more weights than possible training examples and consequently
there will be an infinite number of possible solutions.

Table 6.1 summarizes the results obtained when using our self-structuring training algorithm
to train various different polynomial discriminant function ®-nets for various instances of the
parity problem. Results obtained by calculating the minimum norm weight vector in each case
are also included. Weights were regarded as non-zero if they had magnitude greater than 10~1!;
it was straightforward in the cases examined to decide a good point at which to discriminate
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between zero and non-zero weights, as the smallest weight magnitude of a non-zero weight under
this criterion was approximately 0.05. In all cases the semi-optimum solutions found by our
algorithm have at least (W — r) zero weights as expected. In all cases our algorithm produces a
network which is either as small as, or smaller than that obtained by calculating the minimum
norm solution, and in experiments 3, 4 and 5 it finds the known true optimum solution. The
most interesting result is obtained in experiment 5, in which our algorithm finds a solution
which corresponds to the known true optimum network, whereas the minimum norm solution
corresponds to a larger network.

In each of experiments 3 and 4 our algorithm obtains an important non-optimum result;
these results are marked in table 6.1 using ‘x’. Recall that this particular problem can be solved
in all the cases examined using only a single weight which has value 1 (equation 6.51). In
experiment 3 our algorithm tries while searching for a semi-optimum solution to set the weight
corresponding to the true optimum solution to zero along with others which have already been
found during its search, but finds that it cannot; eventually it constructs a non-optimum solution
which guarantees only to set this single weight to zero. In experiment 4 our algorithm at one point
attempts to begin searching for a new semi-optimum solution by setting the weight corresponding
to the known true optimum solution to zero as its starting point, but then finds that none of the
remaining available weights can be set to zero concurrently and thus again obtains a non-optimum
solution which only guarantees to set this single weight to zero. We know from equation 6.50
that it is always possible to set any single weight to zero, however in the two special solutions
described we are setting the weight to zero which would equal 1 in the true optimum solution,
and the consequence of this is that some of the remaining weights in the solution have very large
magnitudes (approximately 2 x 10'® in experiment 3 and 9 x 10'® in experiment 4). In fact in
these two cases the solution calculated suffers from numerical error to the extent that it is an
inaccurate solution to the normal equations. We discuss further below the potential problem of
requiring weights with large magnitudes.

The Two-Circles Problem

An instance of the two-circles problem is shown in figure 6.4. In this problem inputs to the
network are in IR? and classes one and two correspond to two concentric circles, centred at the
origin and having different radii. In the following, class one has radius % and class two has radius
1, and training examples are chosen at random such that they are uniformly distributed around
the circles. Clearly, provided the class indices are chosen correctly (in this case o; = 0.25 and
0; = 1 for classes one and two respectively) this problem can be solved using a (2, d) discriminator
provided d > 2 because the function,

f(x) = 2% + 23 (6.52)

solves the problem perfectly.

Table 6.2 summarizes the results obtained when using our self-structuring training algorithm
to train various different polynomial discriminant function ®-nets for various different instances
of the two-circles problem. Results obtained by calculating the minimum norm weight vector in
each case are also included. In all cases R is rank deficient and consequently we always have
an infinite number of solutions to the normal equations. Weights were regarded as non-zero if
they had magnitude greater than 1072, In all cases the semi-optimum solutions found by our
algorithm have at least (W — r) zero weights as expected. The most important conclusion that
can be drawn from table 6.2 is that our algorithm produces smaller networks than those obtained
using the minimum norm solution in all of the 14 cases. Unfortunately however, in no case do
we obtain the known, true optimum solution.
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An instance of the 2-circles problem

1- o © o .
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Figure 6.4: An instance of the two-circles problem. Inputs in class one lie on a circle centred
at the origin and having radius %, and inputs in class two lie on a circle centred at the origin
and having radius 1. Twenty examples for each class are shown.
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Experiment Number of Number of non-zero weights in the different
number d,W,r examples solutions
per class | Minimum norm | Semi-optimum | Non-optimum
1 6,28,20 10 26 7,7,6 24
2 7,36,20 10 35 20,6 32
3 8,45,20 10 45 20 25
4 9,55,20 10 55 20 34
5 10,66,20 10 66 20 46
6 8,45,30 20 15 9,18,28 —
7 9,55,34 20 15 9,28 42
8 10,66,37 20 61 11,36 15
9 11,78,37 20 58 37 39
10 12,91,39 20 59 34 52
11 12,91,46 30 27 20,45 24
12 12,91,46 40 27 13,45 25
13 12,91,46 50 26 13 45,24
14 12,91,46 100 26 13,45 26

Table 6.2: Results obtained for various instances of the two-circles problem using various different
networks. ‘Semi-optimum’ solutions are those found by our algorithm which are known to have at
least (W —r) zero weights. ‘Non-optimum’ solutions are other solutions found by our algorithm.
All weights having a magnitude of less than or equal to 1072 were regarded as zero.

Unlike in the case of the parity problem, the point at which to discriminate between zero
and non-zero weights was not obvious in most of the cases studied here. We also examined the
results obtained when using values of 107, 10~* and 10~2 instead of 10~3; although we do not
at present have a systematic method for choosing these values, the values used are appropriate as
none of the weights in any of the minimum norm solutions for the cases examined had magnitude
greater than 0.6 and as the values used often provide values of precisely (W — r) for the numbers
of zero weights in the semi-optimum solutions provided by our algorithm. For a value of 1074
we again found that in all of the fourteen experiments our algorithm produces a smaller network
than we can obtain using the minimum norm solution, and for values of 1076 and 1072 our
algorithm produces the smaller network in all but two of the experiments.

One possible drawback of our approach is that, as we might expect from the discussion
in subsection 6.5.4, the cost of obtaining a smaller network can be that this network needs to
use weights having relatively large magnitudes. An example is shown in figure 6.5 in which we
show the minimum norm weight vector obtained in experiment 4 alongside the semi-optimum
solution obtained by our algorithm in the same experiment. The exceptional results obtained
when addressing the parity problem are extreme examples of this effect. We suggest that a simple
way to prevent this problem from arising, in any case in which certain basis functions are known
to be important and consequently should not be removed, is to restrict the search for sets of
(W —r) zero weights to sets which do not include weights corresponding to these important basis
functions.

6.6.3 How Hard is it to Find a Set of (W — r) Zero Weights?

On the basis of the theoretical development of the self-structuring training algorithm above, an
obvious question to ask is whether all possible sets of (W — r) weights can be set arbitrarily. Our
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Figure 6.5: Use of a small network may be at the expense of the need for weights having
relatively large magnitudes. The upper graph shows the minimum norm weight vector
calculated in experiment 4, and the lower graph shows the weight vector for the semi-
optimum solution calculated by our algorithm in the same experiment, which allows us to
use a network having fewer weights. However, the magnitudes of some of these weights are
clearly much larger.
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experimental results for the parity problem show that this is not in fact the case. However, our
experience in applying the algorithm suggests that sets of (W — r) weights that cannot be set
to zero are the exception, rather than the rule. This is a highly desirable property as it suggests
that our algorithm will in general be successful in finding a suitable set of weights.

6.7 Removing Further Basis Functions

Having constructed and tested a self-structuring training algorithm, we now make a return to
our theoretical analysis and address a further relevant question: by how much do we increase
the error £(w) if we attempt to force more than the maximum possible number of weights (as
dictated by the solutions of the form of equation 6.43) to be zero?

When we calculate the SVD of R in practice it is often found that some singular values are
close to, but not in fact equal to zero®. For example, if we take an instance of the two-circles
problem having 20 examples in each class and construct R for an (n,d) polynomial discriminator
with d = 8 then we find that R has size 45 x 45 and rank(R) = 30. However, only 24 of the
singular values of R are larger than 10~%. If zero mean Gaussian noise with variance 1073 is
added to the original data then R has rank 40 but only 28 of its singular values are larger than
10~%. As the solution space is constructed using columns of the matrix V which correspond to
zero singular values it is natural to ask what happens if we augment the solution space using
further columns of V which correspond to these small singular values. Intuitively, we would like if
possible to obtain a further reduction in the size of our network, in addition to any obtained using
the standard solution space, by searching in the new space having an increased ‘size’. However,
by using a solution waug from the new, augmented space we will increase the error {(waug) of
the resulting network, and we now address the question of by precisely how much the error will
be increased. Although intuitively we would like to use additional columns of V corresponding
to small singular values (and the following analysis indicates that this is a sound intuition) our
work below applies regardless of which additional columns of V are used.

We can now define the augmented solution space S’ as the set of all vectors of the form,

w
Waug = Win + Z O;u; + Z A U;. (6.53)
1=r+1 el
In equation 6.53, I C {1,2,...,r} is a set containing the indices of the additional columns of U

used and the \; are reals” for i € I. Clearly, S C S’. We will now prove the following result
which tells us about the error {(waug) obtained if we use a weight vector wayug € 5.

Theorem 6.12 Let o; where i = 1,2,..., W be the singular values of R where o; > 0 for
i=1,2,...,7and 0;, =0 fori =7+ 1,7 +2,...,W. Then the error {(wWaug) obtained using a
weight vector from the augmented solution space S’ is,

{(Waug) = &(Wopt) + Z Nai, (6.54)
iel

where I is the set defined above.

Proof Beginning with any vector waug € S’ we have,

k

{(waug) = 2:[0]'—""£ug7~(j]2
7=1

5This was originally pointed out to the author by Dr. P. Rayner.
"Note that the \; used here are not related to the parameter X introduced in section 6.5.
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j=1 | I=r+1 icl
£ [ w T 2
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i=1 | I=r+1 icl
kT 2
= Z (0j — othJ (Z)\u ) ] . (6.55)
j=1 L el

Applying lemma 6.7 we obtain,

k k 2
{(waug) = {(Wopt) — 2 Z othJ (Z )\Z-uZTi]) + Z (Z )\iuZTi]) . (6.56)

Jj=1 iel j= icl

We now deal with equation 6.56 in two separate parts. Firstly, we have,

k k k
22( optxJ (Z)\u x]) = 2<2Aiu;> ZOjij—Ziji?wopt

j=1 el i€l j=1 j=1
= 2 (Z )\Z-u;fr) (p - Rwopt)
i€l
= 0 (6.57)

where the final step follows because Wqpy is a solution to the normal equations. We must now
consider the term,

k 2 k
Z(Z)\iu;i]) = > A ul X + Apul % + -+ Ay ul %5)° (6.58)

j=1 \icI j=1

where the indices i1, 19, ...,7; are the members of I and ¢ =| I |. This can be written as a sum
of terms of the form,

k k
Z (Mg ul aXj) )\bub X;) = )\a)\quancjijTub
i=1 i=1
)\a)\buaTRub
= A NulUzUTy, (6.59)

where a € T and b € I. Because U is an orthogonal matrix we have UTU =1 and it is therefore

easily shown that,
0 ifa#b

Ao, ifa=b " (6.60)

Al UZ Uy, = {

We therefore have,
k 2
> (Z )\iu;fpij) => Mo (6.61)
j=1 \ierl il
Combining equations 6.56, 6.57 and 6.61 we obtain the required result. O

Theorem 6.12 tells us that by augmenting the solution space in the manner suggested we
may be able to obtain further reductions in the size of our network without causing a significant
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increase in the error obtained. Specifically, provided we form S’ using extra columns of U
corresponding to small singular values, and the magnitudes of the \; required are not too large,
then we can cause only small increases of size ) ; ; Ao; in the error obtained. The alternative
situation, in which we use columns of U corresponding to large singular values but insist that
the magnitudes of the A; are small, is rather less relevant as in this case we can obviously only
make small changes to an existing solution Wopt-

This result generalizes easily to the case in which R is non-singular, but has some small
singular values. For example, if we again construct R for a (2, 8) polynomial discriminator, using
training examples for the two-spirals problem with 100 examples in each class and additive zero
mean Gaussian noise with variance 0.001 (see figure 6.1), then R is non-singular (rank(R) = 45).
However, only 28 of its singular values are greater than 10~2 and only 36 are greater than 103,
If R is non-singular then there is a unique solution w = R~!p to the normal equations, and in
this case we can form an augmented solution space containing vectors of the form,

Waug = W+ Z Aiu; (6.62)
iel
where I C {1,2,...,W} is a set containing the indices of small singular values. Using a proof
exactly analogous to that of theorem 6.12, it is easily verified that in this case we have,
E(waug) = E(W) + Y _ Mo, (6.63)
icl

6.8 Discussion

6.8.1 Selecting the Initial Set ®

An important point that should be remembered when applying our approach to self-structuring
is that the error {(w) that will be obtained depends on the initial set ® of basis functions used,
from which we attempt to remove basis functions in order to obtain a smaller network. In general,
this error will decrease as ® is made larger, which suggests that it may be sensible to start with
as large a set ® as possible. Although this approach may be effective if the training examples
are relatively noise free, it should be used with great care if they are noisy in order to avoid
overfitting.

The technique introduced in section 6.7, which allows us to make small increases in §(w)
by removing certain basis functions provides a potential method for reducing overfitting in the
latter case. An experimental evaluation of this technique provides a subject for future research.

6.8.2 Improvements to Our Approach

At present our self-structuring training algorithm needs to compute the singular value decompo-
sition of the matrix R. This step has two drawbacks: it can be time consuming when R is large
and it requires that all the relevant training examples are available before training begins. It
may be possible to improve matters here using SVD updating algorithms such as those of Bunch
and Nielsen [147] or Moonen [148].

It may be possible to improve the numerical accuracy of our approach by calculating solutions
on the basis of the set of equations Pw = o, rather than the normal equations [26]. It would also
be useful to obtain systematic techniques for deciding how small a weight should be such that
it can be regarded as zero, and for dealing with the potential problem of weights having large
magnitudes which we mentioned above.
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Finally, at present we can only guide our algorithm’s search for sets of weights that can be
set to zero if we know in advance that some basis functions are, or are not desirable. We also
cannot in fact guarantee that the algorithm will always be successful in finding a set of (W —r)
such weights, although our experience suggests that it would be very unusual for the algorithm
not to. We mentioned above that it is in principle possible to apply a technique which converts
R into an echelon matrix in order to guarantee that a suitable set of (W — r) weights is found,
and we suggest that it may be possible to incorporate such a technique into our algorithm.

6.8.3 Classification Problems

In this chapter we have concentrated on networks having real-valued outputs, that is, for which
C = R. Any two-class pattern classification problem having C = IB can clearly also be addressed
using the methods developed in this chapter because we can simply train a network having
real-valued outputs, using arbitrary positive real-valued class indices for patterns in class 1 and
arbitrary negative real-valued class indices for patterns in class 2. There is clearly a large degree
of freedom in the way in which we choose appropriate real-valued class indices, and the Ho-
Kashyap Procedure [4] provides an automatic method for making this choice. A technique for the
automatic choice of class indices introduced by Rayner and Lynch [36] may also be applicable
here.

6.8.4 Other Approaches

Chen et al. [149, 150] have also introduced a method which can be used to determine a small
architecture for certain types of ®-net. Furthermore, it should be possible to perform self-
structuring using subset selection techniques from the statistical literature, see for example [142]
and Young [151], and it would be interesting to apply the Bayesian framework presented in [102,
103] to self-structuring for ®-nets. The experimental comparison of alternative approaches such
as these with the algorithm developed in this chapter forms an obvious, and important subject
for future research.

6.8.5 The Modified Weight Decay Technique

In subsection 6.5.4 we suggested a method for modifying the error measure used in the simple
weight decay technique. We have conducted some initial experiments on the basis of this idea
by devising a modified form of the Least Mean Squares (LMS) algorithm [27].

The modified algorithm is derived as follows. We define the error ¢;(w) for the ith training
example as,
ei(w) = [0; — fw(x:)]2 + AR(w) (6.64)

where A and R(w) are as described in subsection 6.5.4. The task of training the network is now
that of adjusting w such that the error,
¢"(w) = E[e;(w)] = E[o?] — 2wl p’ + wIR'w + AR(w) (6.65)

is minimized. In equation 6.65, we have p’ = E[0;%X;] and R/ = E[X;%}]. In order to minimize
¢"(w) we use a simple gradient descent method. Starting with a randomly chosen initial weight
vector wg, we update this vector as training examples are presented using the equation,

9" (wi)

6.66
pr (6.66)

Wit =W; —«
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where « is the usual parameter specifying the step size that we wish to use. Equation 6.66 can
be written as,

OR(w;
Wil =W; — [—Zp' +2R'w; + A (w )} . (6.67)
8wi
As in the standard LMS algorithm we now replace p’ and R’ with instantaneous estimates thereof,

giving,

Wit1 = Wi—a [—20,-59- + 2%;%] Wi + AM]
BWZ'
e - OR(w;)
= Wit 20%(0; = %[ wi) = N =5l 6.68
v+ 2ekilon =% w) ow; ( )

where X = o).

Some initial experiments using the algorithm described by equation 6.68 have shown that it
works very well when applied to the parity problem; results are described in [134]. The results
obtained were significantly better than those obtained using the standard LMS algorithm, and
also better than those obtained using a similar method derived by Lynch [152] which uses the
standard weight decay approach. In these experiments o was chosen using a method due to
Yassa [153] and X was set to an initial value chosen by trial and error and reduced linearly to
zero during training®. Also, the function R used was R(w) = Y it tanh(w?). Unfortunately,
we found that in tackling other problems using this algorithm it was not possible to obtain
performance significantly better than that obtained using the two alternative algorithms. We
suspect that better results could be obtained if it is possible to obtain a justifiable and robust
method for setting the value of ' during training, and for deciding when to stop training, as we
found that when using the method described the number of non-zero weights fell quickly shortly
after training commenced but later increased again. A further drawback of this algorithm is that
it suffers from the usual problems associated with the LMS algorithm, which are described in
full in [27].

6.9 Conclusion

In this chapter we have addressed the problem of finding an optimum structure for a ®-net with
fixed basis functions, as well as the corresponding values for the weights.

Having discussed the best way in which to define which architectures should be regarded
as ‘optimum’, we performed an analysis of the problem based on the idea that training can
be regarded as a least squares problem, and on the observation that there is often an infinite
number of possible solutions to any given problem, all of which are equally good in terms of the
error £(w). This analysis allowed us to construct a new algorithm for finding the structure of a
connectionist network, based on the important result that under certain realistic circumstances
it is always possible to reduce the size of an initial network. Experimental evaluation of this
algorithm, which can be used to train any of the ®-nets described in chapter 2, shows that it
usually provides a better solution than the minimum norm solution, which is often erroneously
regarded as a good solution in the literature, and that it is capable of obtaining the best possible
solution to a problem.

Perhaps one of the most important results presented in this chapter is the demonstration that
the minimum norm weight vector is not always the optimum one when attempting to determine
a good structure; this has not previously been widely appreciated. This result led us to suggest

8The reduction of X' during training was suggested by Dr. M. Lynch.
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a modification to the well-known weight decay training technique, although initial experiments
using this idea are rather inconclusive.

Finally, we have extended our theoretical analysis of the problem of structure determination,
providing results which should allow our main algorithm to be significantly improved; these
results, along with further suggested improvements, provide a good basis for further research.
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Chapter 7

Summary, Conclusions and
Suggestions for Future Research

7.1 Summary and Conclusions

The work presented in this dissertation was originally motivated by the desire to investigate the
capabilities of ®-nets; this class of networks is similar to a class which has been available for many
years, and includes many networks which have appeared in the literature. The primary reason for
our interest in networks of this type was that they appeared on the basis of experimental results
to be a good, but nonetheless relatively unpopular alternative to the multilayer perceptron, their
main attraction being that they could often be trained significantly more quickly. Our aim was
to perform a theoretical study of these networks; this was motivated by the fact that the general
study of connectionist networks has often been criticized for having produced relatively little
supporting theory allowing a fundamental understanding of their properties to be obtained. As
our aim was to make a theoretical study, the fact that ®-nets are quite analytically tractable
provided a further motivation for the study of this particular class of networks.

We have concentrated on two particular aspects of ®-nets: their ability to perform general-
ization, and the problem of how to select a good architecture on the basis of the available training
examples. A subsidiary aim of the dissertation has been to compare ®-nets with multilayer per-
ceptrons. The generalization performance of a network is one of its most important properties,
and the fact that connectionist networks have exhibited the ability to generalize is perhaps the
single most important reason for the significant degree of interest that has been shown in the
subject in recent years. This, and the fact that a true, fundamental understanding of generaliza-
tion in the form of a widely applicable, general theory is still lacking, provided the motivation for
the first part of the study. The motivation for the second part of the study was firstly that the
selection of a good architecture for a network is important for good generalization and for several
other reasons, and secondly that research into algorithms for the selection of a good architecture
(self-structuring training algorithms) has tended to lack a good theoretical basis.

In chapter 2 we introduced and reviewed the class of ®-nets along with the relevant super-
vised training algorithms, and we introduced the required material on multilayer perceptrons. In
particular, we demonstrated that many standard connectionist networks, some of which are quite
recent in origin and some of which have significant theoretical support, are included in the class of
®-nets; this has not previously been widely appreciated. We also summarized some experimental
results which demonstrate that ®-nets can provide comparable performance to multilayer percep-
trons. It appears that the predominance of the multilayer perceptron in connectionist network
research is largely a result of unfamiliarity with the available literature, and of fashion. The main
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conclusion that can be drawn from this chapter is that ®-nets can indeed be a good alternative to
multilayer perceptrons in practice; we cannot, of course, claim that they will always be superior,
although given the simplicity of the available training algorithms we expect that their advantage
in terms of training time is likely to be present in many cases. We discussed some possible crit-
icisms of ®-nets, concluding that they were in most cases unlikely to cause significant problems
in practice. Possible exceptions to this rule are that for some problems large weights, or a large
network may be required, and this merits further research. However, in attempting to solve a
given problem ®-nets should certainly be included as candidate networks; there is certainly no
reason to reject them outright.

In chapter 3 we introduced and reviewed the PAC learning formalism used in our analysis
of generalization. This chapter serves mostly as a tutorial; a quite detailed exposition was
deemed necessary as this formalism is relatively recent and has not been widely assimilated by
the connectionist network research community. The PAC learning formalism is one of only two
formalisms which have made a significant impact to date in investigating generalization. It allows
us to study performance in the worst case, whereas the alternative, which is based on techniques
from statistical physics, allows us to study performance in the average case. A consequence of
this is that the formalism at present provides results which are very powerful, and this was one of
the reasons that we chose to use it in preference to any alternative formalism. A further reason
for the choice of this formalism was that results are available elsewhere for the generalization
performance of feedforward networks of LTEs, providing a basis for comparison. A shortcoming
of this formalism at present is that bounds obtained as a result of its use tend to be rather
impractical, however significant improvements in the results are likely to be possible with further
research. The growth function and the VC dimension of a network are of fundamental importance
in studying the network using this formalism. Also, the concept of capacity is in general important
in the study of generalization. This chapter also briefly reviewed some alternative approaches to
the analysis of generalization, and some further results in computational learning theory. Finally,
in an appendix related to this chapter we proved some new results showing that the hypothesis
spaces corresponding to all ®-nets, and to their [-restrictions, satisfy some conditions related to
measurability which are required when using one type of PAC learning theory.

In chapter 4 we studied in detail the growth function and VC dimension associated with
different types of ®-net, obtaining several new results. We obtained tight upper bounds on both
quantities which apply to completely general ®-nets, and we provided a sufficient condition for
the bound on the VC dimension to be met by a given network. We then considered lower bounds
on the VC dimension for restricted versions of the most general ®-nets. We demonstrated that
the PAC learning formalism used does not allow us to directly consider the effect of using a
self-structuring training algorithm, and we introduced the idea of an [-restriction in order to
allow us to gain some insight into this situation. We then obtained several new results on the VC
dimension of radial basis function networks having both fixed and adapting basis functions. Our
results for the VC dimension of ®-nets allow us to conclude that the common approximation,
in which the VC dimension is assumed to be equal to the number of weights in a network,
will often be correct in practice when considering ®-nets, whereas for feedforward networks of
LTEs, and multilayer perceptrons, it can be an underestimate. Also, unlike many VC dimension
results in the literature, many of our bounds are tight. Finally, we compared our VC dimension
results with various results regarding the VC dimension of feedforward networks of LTEs, and
multilayer perceptrons. This comparison allowed us to suggest a theoretical explanation for the
experimental observation that ®-nets can require a relatively large number of weights in practice.

In chapter 5 we used the PAC learning formalism along with our growth function and VC
dimension results to investigate the ability of ®-nets to generalize. We derived new sufficient
conditions on the number of training examples which must be learnt by a network of a given
size, such that there is a specific confidence that it provides a specified performance for future
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inputs. These conditions apply to completely general ®-nets. We also extended one of these
conditions in an attempt to model the use of self-structuring training algorithms, by applying
the idea of an [-restriction, and this led to a further new bound. Furthermore, we derived
new necessary conditions for various different types of ®-net, relating to the number of training
examples which should be learnt by a network of a given size. All of our results for necessary
and sufficient conditions are independent of the distribution which governs the occurrence of
examples. Our necessary conditions provide quite practical bounds on the number of training
examples required, however our sufficient conditions suffer from a common problem associated
with this formalism: the number of training examples required is very large. The improvement
of the latter bounds therefore forms an important subject for future research. These results
are the only ones obtained to date specifically for ®-nets, and they extend the work presented
in [79] relating to feedforward networks of LTEs. The existence of the latter results allowed us to
compare our sufficient conditions for ®-nets with those for feedforward networks of LTEs. The
results of this comparison suggest that in some circumstances (specifically, if the two networks
have equal numbers of weights and can learn a specified number of training examples) ®-nets
may in general be preferable to feedforward networks of LTEs in the sense that they may require
fewer training examples in order to achieve comparable generalization performance. We argued
that this conclusion is likely to hold for multilayer perceptrons, as well as feedforward networks
of LTEs. We performed a similar comparison of our sufficient conditions for standard training
algorithms with those for self-structuring training algorithms, and obtained a similar conclusion:
that the latter algorithms may in general require fewer training examples in order to provide
comparable generalization performance. It is in fact probable that our current bound for self-
structuring training algorithms underestimates the degree to which it may be possible to reduce
the required number of training examples. Finally, a particular interpretation of one of our
sufficient conditions led us to suggest that, if we wish to adapt the basis functions of a ®-net
during training, hybrid training algorithms may have specific advantages relative to standard
training algorithms, and we suggested an intuitive argument in support of this view; these ideas
are at present somewhat tentative and provide an interesting subject for future research.

In chapter 6 we addressed the problem of how to select the best architecture for a ®-net
as well as the values for the corresponding weights; our results apply to all ®-nets. We argued
that, given an initial network having a particular set of basis functions, a good way in which to
optimize the architecture is to search for a smaller network which uses a subset of these basis
functions and which is capable of providing the same error on the available sequence of training
examples. An appropriate measure of the size of a ®-net is the associated number of weights,
and ideally we would like to find the smallest possible network. The obvious way in which to
approach this problem is to examine networks constructed using all possible subsets of basis
functions, however this is completely impractical. As ®-nets are essentially linear when the basis
functions are fixed we were able to analyse the problem of self-structuring using least squares
techniques. In particular we were able to show that under certain circumstances some degree of
size reduction is always possible without increasing error, and we were able to produce an exact
lower bound on the extent to which this size reduction is possible. This is, to the knowledge of the
author, the only result of this type obtained to date. On the basis of our theoretical analysis we
designed and experimentally tested a new self-structuring training algorithm for ®-nets, which is
based on the singular value decomposition. The new algorithm was compared with the technique
of calculating a minimum norm solution, and was found to provide better performance in most
cases. In some cases it was able to find the best possible solution to a problem. Although
the performance of the algorithm is not at present guaranteed to meet our theoretical lower
bound it was found to meet or exceed it in most cases. One potential drawback of this type
of self-structuring appears to be that the networks produced can require weights with relatively
large magnitude. As a result of our analysis and our experimental results we were able to show
that the standard weight decay technique will not necessarily find an optimum architecture. We
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proposed a simple modification to the weight decay technique, which we tested experimentally.
These experiments were somewhat inconclusive and further research is required in order to fully
evaluate this approach. Our theoretical work to this point assumed that the matrix R is singular,
and our final step was to extend the analysis to the cases where R is non-singular, or where R
is singular and has some small but non-zero singular values. This extension forms the basis for
an improved version of our self-structuring training algorithm to be developed.

7.2 Suggestions for Future Research

7.2.1 ®&-Nets

We have mentioned some theoretical results which suggest that for some problems ®-nets may
require weights having very large magnitude. It is not entirely clear to what extent this is likely to
be a problem in practice, although in the experimental results that we have seen it has certainly
not made the use of ®-nets impractical. A subject for future research is the investigation, both
theoretical and experimental, of whether conditions exist which are likely to be encountered in
practice and under which the weights required will have impractically large magnitude. Further
theoretical and experimental work which compares ®-nets with multilayer perceptrons and other
networks would also be desirable, investigating in particular the conditions in which ®-nets are
particularly desirable, or otherwise, and the conditions in which ®-nets are likely to require
significantly more weights than alternative networks. Finally, theoretical work attempting to
derive good sets of basis functions for ®-nets would be useful.

7.2.2 Computational Learning Theory

There are many aspects of computational learning theory which merit further research, however
we will limit our suggestions to those which are relevant to the work presented here, or which
are particularly relevant to the design of connectionist networks. Perhaps the most important
problem to be addressed is that the upper bounds obtained on numbers of training examples
using this theory tend to be impractical, in the sense that they are large enough to be effectively
inapplicable as a practical design tool. Future research on improving the current bounds is
therefore important. Also, further research on versions of the formalism which make the bounds
more practical by reducing the power of the theory in a sensible manner would be desirable;
we have in mind further work in the spirit of Haussler et al. [92], in which certain assumptions
have been made about the training algorithms which will be used. The modification of PAC
learning theory such that self-structuring training algorithms can be fully analysed provides an
important subject for future research, and similarly, it would be useful to fully analyse hybrid
training algorithms using this type of formalism. Finally, a consideration of the generalization
performance of ®-nets using alternative methods, such as those based on statistical physics, or the
more recent results in computational learning theory, provides obvious opportunities for further
research.

7.2.3 Growth Functions and VC Dimensions

Although we have proved that V(F) = W for various different radial basis function networks
with fixed centres, and we have provided a sufficient condition for when this will be the case for
general ®-nets, a question that needs to be addressed is that of when V(F) = W for other ®-nets,
in particular some of the other specific ®-nets mentioned in chapter 2. Similarly, there are at
present no upper bound results available for the VC dimension of radial basis function networks
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having adapting centres, and we suspect that our lower bound results for these networks can be
improved. Also, it is possible that our VC dimension result for radial basis function networks
with fixed centres and basis functions ¢cyp or ¢rpg (corollary 4.15) can be improved. Similarly,
there is at present a lack of tight bounds on the VC dimension for multilayer perceptrons. Further
work on the comparison of the capacity of ®-nets with that of alternative networks using the VC
dimension as well as alternative measures of capacity would be desirable.

7.2.4 Network Size and the Number of Training Examples

The most important subject for future research arising from the work of chapter 5 is the improve-
ment of our upper bounds (sufficient conditions). One way in which to begin further research of
this nature would be to attempt to improve theorems such as theorem 5.2; further improvements
to our results may be obtainable using the methods suggested in subsection 5.5.2. An alternative
approach to future research in this direction would be to apply to ®-nets more recent formalisms
such as that presented in [92], or the alternative theoretical approaches to generalization outlined
in chapter 3. A further subject for future research is the extension of our results to networks
with more than one output; this should be possible using the extensions to the PAC learning
formalism which are presented in [87].

A further important subject for future research is the experimental investigation of some of
the conclusions drawn from our theoretical work. In particular, experimental studies on the use
of ®-nets as opposed to multilayer perceptrons and the use of self-structuring versus standard
training algorithms. Finally, our initial comments regarding hybrid training algorithms provide
significant scope for experimental work, along with further theoretical work.

7.2.5 Self-Structuring Training Algorithms

The most important subject for future research arising from chapter 6 is the extension of our
self-structuring training algorithm using theorem 6.12 and the extension of this theorem for the
case in which R is non-singular, along with the experimental evaluation of the resulting algo-
rithm. Several other possible modifications to our approach were also suggested in section 6.8,
and it would also be interesting to try to produce a version of the algorithm that is capable of
finding networks which do not have weights of more than a specified magnitude. Experimental
comparison of our approach to self-structuring with the alternative available approaches is also
an important subject for further research, and further work on the modified weight decay tech-
nique along the lines suggested in section 6.8 would be desirable. Finally, the analysis of the
computational complexity of structure selection problems has to date received relatively little
attention, and this provides an interesting subject for research.
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Appendix A

Technical Conditions on Concept
Classes and Hypothesis Spaces for
Standard PAC Learning

A.1 Introduction

In our introduction to standard PAC learning in chapter 3 we mentioned some technical conditions
that must be satisfied by the concept class C' and the hypothesis space H; namely, that members
of C' and H must be Borel sets, and that C' must satisfy some conditions related to measurability.
In this appendix we consider these requirements in further detail. Although the requirements
are not directly relevant to the research presented in chapters 4 and 5, which use extended PAC
learning theory, an understanding of them, and in particular a knowledge of the circumstances
under which they are met by a given ®-net, is certainly useful in any consideration of ®-nets
using standard PAC learning theory. It should be remembered that these conditions are very
unlikely to be violated by any system likely to be used in practice. Section A.2 considers Borel
sets, and section A.3 considers conditions related to measurability.

A.2 Borel Sets

If, when using standard PAC learning, the environment is X = IR™ for some positive integer n,
we require that each ¢ € C' and each h € H is a Borel set. We will not attempt a full exposition
of the properties of these sets here; a full definition is rather technical, and the reader interested
in a full definition and further detail should consult Barnsley [154] or Bauer [155].

We do however make the following observations. Firstly, note that in dealing with ®-nets
having fixed basis functions it is quite often possible (and for the purposes of the requirements
stated above sufficient) to think entirely in terms of hypotheses which are halfspaces in the
extended space formed using the basis functions. Consequently, as halfspaces of a Euclidean
space are Borel sets the relevant requirement is met in these cases.

If any exception to this rule is encountered, the mapping from input space to extended space
must be such that each hypothesis is a Borel set. This requirement is not very restrictive because
it is quite difficult to construct a subset of a Euclidean space which is computed by a realistic
®-net and which is not a Borel set.
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A.3 Well-Behaved Concept Classes

In our introduction to standard PAC learning in chapter 3 we mentioned that when using the
environment X = IR™ it can be necessary for the concept class C' being considered to satisfy
some conditions related to measurability. These conditions are encapsulated in the definition of
a well-behaved concept class, which is given in full in Blumer et al. [73].

It is often (although not always) assumed that C' = H. In this appendix we prove that the
hypothesis space H computed by a ®-net with fixed basis functions and corresponding to the
class of functions F?, and also the hypothesis space corresponding to any I-restriction of F®, are
well-behaved regardless of the set of basis functions used. This is in some sense not surprising
as virtually any H likely to arise in practice in machine learning will be well-behaved, however
it is a useful and important result as exceptions do exist. In order to prove the necessary results
we do not use the original definition of a well-behaved H, for which [73] should be consulted
for further information, but instead use the idea of a universally separable hypothesis space and

some associated results.

Definition A.1 (Blumer et al. [73]) An hypothesis space H associated with an environment
X s universally separable if there is a countable subset Hy of H where each h € H 1is the
pointunse limit of a sequence of sets h; € Hy. This means that, for all h € H there exists a
sequence hi,ha, ... where h; € Hy such that for each x € X there exists an n such that for all
i1>n,X € h; < x € h.

Lemma A.2 (Blumer et al. [73]) Any H which is universally separable is well-behaved.

We can thus proceed by showing that the relevant classes of sets are universally separable.
Note that not all well-behaved hypothesis spaces are universally separable. An example given
in [73] is the hypothesis space defined using X = [0, 1] where,

H={{z} |z e X} (A1)

The results presented in this section were originally proved using different methods to those
used below. The original proofs can be found in Holden and Rayner [109]; they are much
lengthier and quite complicated, although we think that they provide greater insight into why
hypothesis spaces computed by ®-nets are universally separable. We have included the results
in their present form, in which the first is stated as a corollary of a quite general result due to
Pollard [128] and the second has a significantly shortened proof, in the interest of simplicity;
as this appendix deals with rather technical conditions, which are of relatively little practical
interest, we do not believe that there is anything to be gained by including lengthier and more
difficult proofs of the same results.

A.3.1 Standard ®-Nets

We first examine the case of completely standard ®-nets. Consider the following lemma due to
Pollard [128, page 38].

Lemma A.3 Consider a finite-dimensional vector space F of real functions on some set S. The
class of sets,
{fz0]fer} (A.2)

1s universally separable.

120



Recall that in chapter 4 we established that given a ®-net N' = (n,m,®,w,C) the class of
real-valued functions,

F= {fw(x) :w0+2wi¢i(x) | ;i € ®,x € R" and w; E]RforizO,l,...,m} (A.3)
=1

is a finite-dimensional vector space of functions on IR"™ (provided & has finite cardinality). We
immediately obtain the following result.

Corollary A.4 Let N = (n,m,®,w,C) be any ®-net. Then the hypothesis space H correspond-
ing to F2 is universally separable and hence well-behaved.

A.3.2 &-Nets with Self-Structuring

Having considered whether the hypothesis space computed by a standard ®-net is well-behaved,
we now ask whether the hypothesis space corresponding to the [-restriction of the class F> of
functions computed by a standard ®-net is well-behaved. In this case we cannot apply lemma A.3
directly, because it is easily verified that R!(F2) is not necessarily a vector space (if f; € RI(F2),
fo € RYF2) and f1 # f» it is not always true that f1 + fo € RY(FL)). However, recall that in
chapter 4 we noted that R(F2) can be expressed as,

N(L,W) o
R(FH= | FE=FruFrPu. uFR"™"™ (A.4)
=1

where each F2i is the class of functions computed by a standard ®-net. Let H be the hypothesis
space corresponding to RY(F?). From equation A.4 we can express H as,

N(@1,W)
H= |J H (A.5)
=1

where H; is the hypothesis space corresponding to F2i. As each H; is therefore the hypothesis
space computed by a standard ®-net it is universally separable by corollary A.4 and consequently
we have the following result.

Corollary A.5 Let H be the hypothesis space corresponding to the l-restriction Rl(}";?) of F2
where F2 is the class of functions computed by any ®-net having W > 3 weights, | > 2 and
W > 1. Then H is uniwersally separable and hence well-behaved.

Proof This follows directly from equation A.5 and definition A.1. Because each H; is universally
separable it has an associated countable subset H(()Z) such that each h € H; is the pointwise limit

of a sequence of sets in H(gi). We therefore define the countable subset Hy of H as,

NLW)
Ho= | H (A.6)
=1

and note that because H can be written as shown in equation A.5, each h € H is the pointwise
limit of a sequence of sets h; € Hy and consequently H is universally separable. O
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A.4 Conclusion

In this appendix we have considered some technical conditions on concepts classes and hypothesis
spaces which are required when using standard PAC learning theory. We have argued that the
requirement that concepts and hypotheses are Borel sets will present no problem in practice, espe-
cially when dealing with ®-nets having fixed basis functions, and we have proved that hypothesis
spaces computed by ®-nets with and without self-structuring (where ®-nets with self-structuring
are modelled using an [-restriction) are always well-behaved as defined in [73].
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