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Summary

This dissertation describes new applications of uncalibrated and weakly calibrated
stereo vision to facilitate pick-and-place operations by a robot manipulator.

A ‘weakly calibrated’ stereo rig is one for which only a small number of reference
observations have been made (for instance, by observing the robot itself making
deliberate motions) and which might be subject to vibrations and small movements
during use. Thus the epipolar geometry and camera parameters will be known only
approximately. In such an environment, it is shown that an approximate linear
model (the affine camera) is well suited to estimating both the epipolar constraint,
and the relation between image measurements and the robot’s coordinate system
(the hand-eye relation).

The stereo system is used to track a pointing hand, implementing a vision-based
user interface which allows the operator to specify objects to be grasped and to
guide the robot’s motion around the workspace. By considering only the plane
projectivities between the images and a ground plane, it is shown that points on the
plane may be indicated without calibration.

A novel stereo algorithm is developed to match line segments in weakly calibrated
views and recover a description of the planar surfaces of objects in the robot’s
workspace. These can then be reconstructed in an approximate metric frame for
grasp planning.

The tracking system employed in this project is a novel type of edge-seeking
active contour, based on a template which can deform only affinely in the images.
This can be used for tracking the operator’s hand, the robot’s gripper, and planar
facets of objects in the workspace.

By tracking the robot itself, visual feedback can be employed to align the robot’s
gripper accurately with the surface to be grasped, even in the face of disturbances
to the stereo cameras or the robot’s control systems. Visually guided grasping is
implemented in real time on standard hardware.
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Chapter 1

Introduction

This chapter sets out the motivation for the project, and introduces robot
hand—eye coordination with a survey of existing robot vision systems.

The contributions of the dissertation are summarised.

1.1 Motivation

When humans grasp and manipulate objects, they almost invariably do so with the
aid of vision. Visual information is used to locate and identify things, and to decide
how they should be grasped. Visual feedback helps us guide our hands around
obstacles and align them accurately with their goal. Hand-Eye Coordination gives
us a flexibility and dexterity of movement that no machine can yet match.

Robot manipulators have traditionally been restricted to performing repetitive
tasks in highly ordered environments. Reliable and flexible computer vision would
enable them to operate in less structured environments containing displaced or un-
familiar objects; to overcome operational errors using visual tracking and feedback;
and to be programmed more easily via novel user interfaces such as gestures and
pointing.

Because most robots need to move in all three dimensions, we exploit stereo
vision, the use of two (or more) cameras to obtain 3-D information about the robot
and its workspace. The scope of stereo vision applications is generally limited by
the need to calibrate the vision system — the camera geometry must be measured to
a high level of precision [129]. A well-calibrated stereo rig can accurately determine
the position and shape of things to be grasped; however, if calibration is erroneous

or the cameras are disturbed, the system will often fail gracelessly.

1



CHAPTER 1. INTRODUCTION

Here we explore the use of robust algorithms for stereo vision and hand-eye
coordination which require minimal calibration and can tolerate some uncertainty
in camera and robot positions and orientations. We develop a novel visual grasping
system which uses vision to help plan and execute grasps of unmodelled objects
placed at unknown positions in its workspace. The user indicates an object by a
pointing gesture, and uncalibrated stereo vision is used to reconstruct its surfaces.
Finally, the object is grasped by the robot under visual control.

Two strategies are employed to reduce dependence on calibration: firstly, by the
use of tnvariant cues and representations of scene structure which are independent
of camera geometry; secondly by the use of image-based feedback to correct for errors
and align the robot with a visible target. Implementation is based on monochrome

CCD cameras and a standard workstation environment.

1.2 Robot vision hardware

1.2.1 Configurations

A number of systems have been proposed using machine vision to help robot manip-
ulators perform pick-and-place operations. The vision hardware may consist of one
or more monochrome or colour video cameras, or more sophisticated devices such
as structured light or laser rangefinders [16, 116, 75]. Figure 1.1 shows two common

configurations:

Eye-in-hand systems have a camera mounted on the last link of the robot manipu-
lator. This gives a detailed view of objects to be grasped, and facilitates visual
servoing to align the gripper prior to grasping [21, 31, 27]. It also permits dy-
namic inspection of the target object from multiple viewpoints, affording a

3-D reconstruction of their surfaces [22, 125].

Eye-in-hand cameras typically suffer from a limited field of view and depth
of field, so do not provide an overall picture of the workspace. They require
camera calibration and a priori knowledge of the camera pose relative to the
gripper, since these parameters cannot be recovered by self-calibration [48].
The entire visual field also moves whenever the robot does, which can increase

image-processing overheads [134].
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External camera or ‘independent-eye’ systems view both the manipulator and its
workspace using one or more distant cameras. By observing the manipulator
making known motions, self-calibration is possible [61], and feedback may be
used to drive the gripper to a visually-specified target configuration regardless

of camera position [134, 48].

With static external cameras, objects in the workspace tend to be viewed at a
lower resolution than with a robot-mounted camera. The cameras may instead
be mounted on pan/tilt heads, or an integrated stereo head [89]; zoom lenses
may be employed for detailed inspection of parts as well as a broader view
of the workspace [124]. Additional flexibility may be gained by mounting one
or more cameras on an independent robot arm to allow dynamic control of

viewpoints [19, 90], although this is clearly more expensive to implement.

1.2.2 Experimental setup

For this project, an external camera system is employed, with a pair of monochrome
CCD cameras arranged for stereo vision (figure 1.2). The cameras view a robot
manipulator and its workspace from a distance of about 2m; their field of view can
also accommodate an operator, who can communicate with the system by means of
pointing gestures. The angle between the cameras is in the range of 15-30 degrees.
There is some flexibility in the positioning of the cameras, which are mounted on free-
standing tripods: since these tend to be disturbed frequently, accurate calibration
data are not available.

The experimental system is based around a Sun SPARCstation 20 with a Data
Cell S2200 frame grabber. The manipulator is a Scorbot ER-7 robot arm, which
has 5 degrees of freedom and a parallel-jawed gripper. The robot has its own 68000-
based controller which implements the low-level dynamic control loop and provides
a Cartesian kinematic model: the computer controls the robot and supplies it with

visual feedback by means of a serial interface.
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Figure 1.1: Robot/camera configurations: (a) eye-in-hand (b) external cameras

Figure 1.2: The experimental setup showing the robot, its workspace, stereo cameras

and operator.



1.3. EXISTING SYSTEMS

1.3 Existing systems

Here previous work in computer vision for robot manipulator guidance is reviewed
(particular techniques and relevant theory will be surveyed in more detail in later

chapters).

1.3.1 Look and move

The earliest paradigm for hand-eye coordination has become known as the ‘ook-
and-move’ approach [48]. Vision is used only in the planning of motions, which are

executed without visual assistance.

In two dimensions. Early robot vision systems [15, 97, 51], and many still in
widespread use, have a single overhead camera to extract two-dimensional
information about the positions of features on a part to be grasped, to recover
its 2-D pose or to select different robot actions based on object recognition.
This approach minimises the computation spent on vision, since the camera is
used only once per operation, to analyse a static scene. Frequent recalibration

is required to maintain satisfactory operation [15].

Binocular stereo vision. A recent hand—eye system [112] based on the Sheffield
TINA stereo vision algorithms of Pollard et al. [103] uses a pair of calibrated
cameras which view straight-edged objects taken from a modest repertoire.
The system constructs a wire-frame model of the objects’ edges [100] which is
matched against stored models of the objects [99]. Objects are identified and
picked up by an RTX robot using pre-determined grasps.

Other ranging techniques. An experimental system of Tkeuchi et al. [62] recon-
structs the contents of a workspace using photometric stereo, in which a camera
takes multiple images of the scene under different lighting conditions, to recover
local surface orientation. This information is supplemented by range data pro-
vided by the PRISM stereo system [93], which projects random texture onto
the scene and matches the resulting views by a multi-scale algorithm. These
techniques allow it to reconstruct, recognise and grasp objects with smooth,

featureless surfaces which would otherwise be difficult to see.

Robot planning systems have been proposed using other specialised sensors,

such as laser rangefinders which reconstruct surface shapes from a single ‘view’
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[16, 75, 111]. Range imaging can recover the shapes of arbitrary surfaces more
accurately than stereo [16]; however the sensors are expensive and require

precise calibration.

Tracking and interception of moving targets. Vision can also be used to per-
form dynamic tasks involving moving objects. Allen et al. [1] describe a stereo
vision system which can track a single target at frame rate, using a Kalman
filter to estimate and predict its motion. The system is demonstrated using
a robot arm to intercept and grasp a model train. Other high-speed stereo
tracking systems have been used to perform tasks such as striking a ping-pong
ball [2, 107]. As with all of the above systems, there is no visual feedback of

the grasping operation, which is not robust to physical disturbances.

Open loop robot vision has become very sophisticated, and has been demonstrated
successfully in pick-and-place and other applications. However, it requires accurate
calibration so that the imaging and kinematic processes can be inverted without
error, and demands high repeatability from the robot manipulator. The need for
precision is most acute in the 3-D case, due to the increased number of parameters

to be known and the added complexity of both robot and vision systems [119].

1.3.2 Visual feedback in two dimensions

In these systems, a single camera observes a manipulator from above, to guide the
gripper’s motion in two dimensions. The third dimension of movement is assumed
to be constrained or controlled by an independent mechanism, as in many ‘2-and-a-
half dimensional’ robots which manipulate objects on a flat table, and whose vertical

motion is limited and independent of the main X-Y motion.

Visual feedback for gripper alignment. The seminal work of Shirai and Inoue
[117] reported the use of visual feedback to align a square prism over a box
into which it is then fitted. The dimensions and heights of the objects were
given, but the initial position of the box was unknown, and there was some
uncertainty in the alignment of the prism within the gripper. Vision was used
to estimate the two-dimensional position and orientation of the box, to place
the prism over it. The system then observed the prism, estimated the error in

its position and orientation, and made corrective motions.
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A similar system was presented in [19] as a ‘behavioural module’ for an exist-
ing model-based manipulation system (the Edinburgh somAss system [77]).
Here the manipulator moves across a horizontal approach plane to align itself
vertically with a target, in preparation for grasping. Vision is used to track
markers on the two fingers of the gripper, to provide visual feedback. It is
noted that there is a 1-to-1 mapping between the approach and image planes,
so that feedback can be based directly on the difference between observed and

desired image positions.

Dynamic visual control. Most visual feedback systems use a hierarchy of two
control loops: an inner one using joint sensors to control the robot’s dynamics
and an outer, slower loop incorporating vision. However, a few systems at-
tempt to integrate the two using field-rate tracking of simple features on the
manipulator [48]. In one experimental setup, a manipulator moves across a
flat table and is viewed from above by a single camera [134]. The same camera
is used to locate the target object during the planning phase. A point on the
end-effector is marked by a beacon which allows it to be tracked at 50Hz to
provide position-based feedback during execution. It is shown that the inte-
gration of visual feedback into the controller permits efficient operation and
fast convergence despite significant errors in camera calibration or kinematic

modelling.

Because of the simple 1-to-1 mapping between world and camera coordinates, visual
feedback is an effective way to null positioning errors in two dimensions [136]. For
fast, efficient operation, visual tracking of the end-effector (and/or its target) is
required, to continuously update the estimate of the error between the manipulator’s

actual and desired pose.

1.3.3 Single camera feedback for 3-D tasks

These systems deal with the positioning of a robot in three dimensions under visual

control, using either an eye-in-hand or external camera.

Hybrid system with 2-D vision. Harrel et al. [54] describe an eye-in-hand sys-
tem to guide a fruit-picking robot. This system is notable by its use of colour
vision to segment citrus fruits from the background and track them. The

vision system provides two-dimensional feedback, controlling two degrees of

7
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freedom of the arm to keep the camera fixated on the fruit as it approaches;

the distance is measured independently by ultrasonic ranging.

Single camera pose estimation. Espiau et al. [31] consider the use of visual feed-
back to place a calibrated camera in a given pose relative to visible features.
They derive analytically the image Jacobian (that is, the matrix encoding the
differential relation between camera motions and changes in image measure-
ments) as a function of image feature positions. Inverting this relation allows
the robot to make appropriate movements to bring the image features into a
specified configuration, constraining the camera pose with respect to the tar-
get. This is demonstrated for the alignment of an ‘eye-in-hand’ camera with

respect to a known target object.

Affine visual servoing. In the case where the target features are confined to a
plane, the interaction between image and world motion is simplified. Colombo
and Crowley [27] present a system which tracks features on a target surface
and positions a camera at a given pose relative to the surface, deriving the
gains for image-based control from a weak perspective [108] approximate pose

estimation.

Spratling and Cipolla [121] present a similar system which requires no calibra-
tion but continuously re-estimates the image Jacobian from recent motions,
to bring the camera into the pose corresponding to a goal image. They track
the target surface using an active contour, and estimate the affine transforma-
tion between observed and goal configurations from area moments, making it

correspondence-free [113].

The construction and attainment of an image-based goal requires a model of the
camera and of the object to be manipulated [133, 31]; and pose estimation from
a single view is ill-conditioned when the camera is distant [53]. Therefore, single-

camera servoing is best suited to calibrated eye-in-hand systems.

1.3.4 Stereo visual feedback

Systems have also been proposed using stereo visual feedback to improve the accu-

racy of 3-D manipulation.

Image-specified manipulation. Skaar et al. [119, 18] consider the case in which

known points on a manipulator are sporadically observed by two or more cam-
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eras, but continuous stereo tracking is not possible. They introduce a simple
orthographic camera model and show that the estimated camera parameters
also absorb linear errors in the kinematics: this allows the system to predict
the configuration which will bring the gripper to a visually-specified target in
two or more views. By appropriately weighting a set of observations, they are
able to solve for the local hand-eye relation in any region of the workspace,

allowing 6-DOF! alignment of a gripped object with a visually-specified target.

Stereo image-based feedback. Hollinghurst and Cipolla [61] demonstrated the
use of stereo tracking of a robot manipulator whose kinematics are (approxi-
mately) known, using visual feedback to align it with a target. A linear camera

model is assumed. An extension of this system is described in chapter 3.

Hager et al. [50] present a similar system, using stereo image-based feedback
for 6-DOF positioning. Approximate camera calibration is used to estimate
the image Jacobian, but the system is shown to be insensitive to calibration
errors. Hager then considers the use of visual feedback to enforce one or
more constraints (with 6 DOF or less) between the end-effector pose and that
of another object, using least-squares solutions in both the underconstrained
and overconstrained cases [49]. Visual constraints are used to assist dextrous

tasks such as the insertion of a floppy disk into a drive.

Multiple cameras simplify the problems of setting and attaining visually-specified
goals for 3-D positioning, and allows the manipulation of unmodelled objects (whose
pose cannot be determined in a single view). Such systems are robust to small errors

in the robot’s kinematic model and allow precise manipulation tasks to be performed.

1.3.5 Learning systems for hand—eye coordination

Some systems deal with unknown robot kinematics as well as unknown camera pa-
rameters by considering the visual kinematic relation between actuator settings and
parameters extracted from the image. Since robot kinematics are usually highly
nonlinear, the structure of this relation must be learnt either before or during oper-

ation.

Mel’s MURPHY. Mel [85, 86] took inspiration from human learning to devise a

vision-guided control and planning system that learns by doing. It controls

IThat is, control of both position and orientation in three dimensions.
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a 3-DOF planar arm and guides it to a visible target whilst avoiding obsta-
cles. MURPHY learns the forward visual kinematic relation, taking an unusual
approach by learning to ‘envisage’ an entire 64 X 64 image of the arm in any
configuration. It is this whole-image-based approach that is the key to its
collision-avoiding behaviour. It also learns the inverse differential kinematic
relation by observing how the gripper position responds to changes in actuator
settings. Learning takes place in an initial ‘random flailing’ stage in which it
views about 17000 of the 3 million legal arm configurations. These models
are used by a path planner, which is based upon heuristic depth-first search.
A trajectory is planned in joint space, to reach the target avoiding obstacles.
Despite promising initial results and a refreshingly simple approach, MURPHY
is slow, and scales badly to higher degrees of freedom. Its neural network
architecture could not efficiently model the simple geometry underlying the

camera and kinematic relation.

3-D visual kinematic learning. Hervé et al. [58, 59] take a qualitative approach
to visual kinematic learning by identifying the singularities in the joint space /
sensor space transformation (points where |J| = 0, i.e. the inverse differential
relation is not defined). Away from these singularities, the hand—eye relation is
smooth and can be navigated using feedback. The robot makes experimental
motions to determine the gradient of its Perceptual Control Surface. It builds
up a qualitative model of the PCS by noting when it encounters a singularity

in the Jacobian, and plans paths which avoid these singularities.

Visual memory-based control can be used to control manipulation by a multi-
fingered hand, whose kinematics are difficult to model analytically, by tracking
the position and orientation of a grasped object. The system of Jagersrand et
al. [63] estimates the Jacobian of the wvisual kinematics relation; that is, the
matrix of coefficients relating the movement of each joint to movements in the
image of the grasped object [48], using exploratory movements to obtain its
components in various directions. As it moves, it builds up a piecewise linear
model of this relation, with uncertainty analysis used to ascertain the region
of trust for each linear patch.

Learning-based control can be useful when controlling a redundant or multi-fingered

manipulator (which would otherwise be difficult to model [63]), but in general this

is unnecessary and inefficient. Qualitative modelling of the hand-eye relation can

also be used in conjunction with visual feedback [59].
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1.4 The approach

Traditional robot vision systems have attempted accurate reconstruction, using met-
ric information to plan and execute motions in an open loop [112, 1, 107]; but
these require calibration and are not robust to disturbances. Systems have also
been proposed using image-based feedback with varying calibration requirements
[117, 134, 31]. Sometimes the characteristics of the robot itself are learnt along with
the parameters of the vision system [59, 133, 63].

Here we address the case in which the cameras are uncalibrated but the robot’s
kinematics are known (perhaps imperfectly), allowing the end-effector to be con-
trolled in terms of Cartesian coordinates with a small, smooth error function. In
the absence of accurate calibration, it is reasonable to resort to an approximate
linear model of stereo vision. The Cartesian hand-eye relation is monotonic and can
be modelled by a linear relation.

The use of a kinematic model simplifies the learning of the hand-eye relation
(a linear estimator will suffice), whilst the use of visual feedback retains robustness
against small kinematic errors and even non-stationary camera parameters. Such an
approach has been used very successfully for visual robot control in two dimensions.
Here it is applied to stereo vision for three-dimensional control of position and
orientation. We track the robot’s gripper in stereo with active contours, and use
visual feedback to servo its image position in the two views.

To exploit visual feedback in grasping operations, the manipulator’s goal config-
uration must be specified in terms of image measurements. Indication of the target
object must therefore be image-based, and this can be achieved using a visual user
interface. We use stereo vision to form an affine reconstruction of the facets of the
target object in an image-based coordinate frame. This representation is used in
conjunction with visual feedback to align the robot gripper with a suitable facet of
the target object, so that it may be grasped.

Thus the entire grasping operation is to be facilitated by uncalibrated stereo

vision.

11
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Figure 1.3: Surface reconstruction for grasping: (a,b) stereo images of the workspace
with edges superimposed; (¢,d) unmatched (light) and matched (dark) line segments;

(e) cyclopean view with planar facets identified; (f) proposed grasping sites.
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1.5 Contributions

1.5.1 Affine stereo

In this dissertation, it is argued that a linear approximate camera model is well suited
to practical uncalibrated stereo, both for solving the correspondence problem and
for modelling the relation between world and image motions, whenever the camera
configuration resembles the typical ‘parallel” arrangement with equidistant cameras
fixating on a compact scene. It is noted that the epipolar geometry of a stereo rig
is qualitatively different from that found in many navigation/structure-from-motion
applications in which the camera motion is largely along the optical axis. The
restricted form of the affine camera makes it easier to compute approximate camera
parameters from a small number of measurements, than the projective camera model
estimated in the traditional manner. Affine stereo is shown to be more robust to

image coordinate noise and disturbances to the cameras.

1.5.2 Pointing interface

A novel form of human-robot interface is presented, based on real time stereo vision
tracking of the operator’s pointing hand. We do not use a full 3-D reconstruction of
the hand in space, but consider only plane projectivities between a ground plane and
the images. This formulation allows objects on a plane to be indicated by pointing,
without the need for camera calibration. Simulations and experiments measure the
accuracy of the system, both in open loop and as a means for the operator to servo

the position of the robot’s gripper.

1.5.3 Weakly calibrated stereo reconstruction

A new stereo matching algorithm is developed for matching line segment images
in weakly calibrated stereo pairs (in which the epipolar geometry is only approx-
imately known because only a few reference correspondences have been observed)
under weak perspective. Integrated into the system is the grouping of line segments
into planar facets. This provides a model of the scene which is suitable for grasp
planning with a parallel gripper (figure 1.3). It also allows the visible surfaces to be
reconstructed accurately despite uncertainty in the epipolar geometry, which is not
generally possible for individual line segments. The reconstruction is used to select

a suitable grasp of the target object.

13
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1.5.4 Visual feedback for grasping

The linear approximation to the ‘hand—eye relation’ between the robot’s movements
and motion in the images is used as the basis of a visual feedback control loop,
allowing the robot to be guided in three dimensions towards a visually specified
target. The robot is aligned so that a surface of its gripper is near to and coplanar
with a given surface of the object; then rotated into the grasping configuration. It
is shown that such an approach is robust to calibration errors of either the robot or

vision system, and even to disturbances to the system occurring during operation.

1.6 Overview of the dissertation

Chapter 2 gives a general introduction to the geometry and modelling of stereo
vision systems, and derives the camera models which are referred to later in

the dissertation.

e Conventional projective and affine models of video camera imaging are
introduced. The theory of camera calibration and the epipolar geometry

of stereo vision are reviewed for each model.

e The affine and projective camera models are compared in the context of
parallel-camera stereo vision, and it is concluded that the affine camera

is more robust to errors and more easily calibrated.

e This is supported by experiments and simulations comparing projective
and linear models degraded by noisy data. It is shown that the systematic
error due to the linear approximation is of comparable magnitude to other

errors, e.g. noise in image in feature localisation.

Chapter 3 describes the use of the affine stereo formulation developed above to
achieve alignment of the robot with a visually-specified target, using stereo

visual feedback.

e A visual feedback scheme is developed for the affine stereo formulation.
It is noted that, for point alignment, image-based and position-based

servoing are equivalent under this model.

e We extend the feedback scheme to align both the position and orientation

of planar features on the robot and target object.

14
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e The system is implemented using affine active contours to track a surface
of the robot’s gripper. By tracking the target facet as well as the robot,
we close the visual control loop and enable the system to track and grasp

objects despite movements and disturbances to the cameras.

e Experiments show that this system is robust to camera motions and small

errors in the robot’s kinematic model.

Chapter 4 describes a novel human-robot interface based on pointing. This is the

proposed means for indicating to the system which object is to be grasped.

e The geometry of pointing at a ground plane is analysed, and it is shown
that this does not require camera calibration, apart from 4 matching

reference points on the plane.

e [t is shown how this method may be used to indicate points on a single

plane or in an environment containing multiple planes.

e Methods for tracking a pointing hand are summarised, and a novel im-
plementation is developed using a pair of affine active contours to track

the thumb and index finger.

e Experimental results and accuracy evaluation are presented.

Chapter 5 discusses the stereo correspondence and reconstruction of a scene com-

posed mainly of straight edges and planar surfaces.

e Previous approaches to solving the correspondence problem in stereo vi-
sion are reviewed, and their shortcomings discussed in the context of

uncalibrated or weakly calibrated setups of the kind used in this project.

e A stereo matching algorithm is developed, based on existing work for line
segment matching but explicitly allowing for a bounded error in epipolar

constraint estimation.

e Uncalibrated plane grouping is incorporated into the system, exploiting

the geometry of weak perspective views of coplanar features.

e The groupings are used to extract a description of the planar surfaces of
objects for reconstruction, and to improve the accuracy of uncalibrated

reconstruction.
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Chapter 6 is concerned with the implementation of the complete visual grasping

system.

e The theory of grasping is briefly reviewed, with particular emphasis on

grasp synthesis for a parallel-jawed gripper.

e A scheme is devised for choosing grasping sites on a stereo reconstruction
of the surfaces of the target object, and demonstrated on real images of

‘blocks world’ scenes.

e The algorithms described in the dissertation are integrated to form a

complete system.

Chapter 7 reviews the findings and contributions of the dissertation, and concludes

with an outline of future work.

Appendix A describes the novel type of active contours used in the project. These
are based on a template and are able to deform only affinely. They are suitable
for the real time tracking of planar objects or facets under weak perspective,

as well as for tracking the index finger and thumb of a pointing hand.
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Chapter 2

Perspective and Affine Stereo

In this chapter we review the geometry of monocular and stereo cameras,
and show that an approximate linear model of stereo vision is robust and

well-suited to uncalibrated and weakly calibrated systems.

2.1 Introduction

In order to make geometrical use of stereo vision we must model the relation between
the three-dimensional world and two-dimensional images. Specifically, we will need
to use stereo to reconstruct the shapes of objects in the robot’s workspace in order to
grasp them successfully, and to associate relative image positions with 3-D motions
to drive the robot to its target configuration.

This chapter reviews the geometrical modelling of the perspective camera; its
generalisation, when full calibration data are not available, to the projective camera;
and a useful linear approximation, the affine camera. Essential theory for stereo
vision is summarised in each case, describing the relation between a stereo pair
of views, and the use of calibrated and uncalibrated stereo systems to reconstruct
points and surfaces.

Numerical experiments will be used to demonstrate the superiority of the affine
camera for the estimation of the epipolar constraint and the reconstruction of relative
positions in three dimensions, when calibration data are noisy and few — it is this
weakly calibrated stereo model that is used in chapter 3 to control a robot and in

chapter 5 to facilitate stereo correspondence and the reconstruction of planar facets.

17



CHAPTER 2. PERSPECTIVE AND AFFINE STEREO

2.2 The perspective camera

2.2.1 Pinhole camera

Video cameras are conventionally analysed using the pinhole camera model, in which
an image is projected onto a retinal plane by rays passing through a single point
called the optical centre [32]. This point forms the origin of a camera-centred co-
ordinate frame, (X, Y., Z.) such that the retinal plane has the equation Z, = f,
where f is a constant, the focal length. Image coordinates (x;,y;) on the retina are
ratios of world coordinates (X,, Y., Z.) thus: z; = fX./Z. y; = fY./Z.. This simple
model is a good approximation to the optics of most types of camera, although it
neglects effects such as lens distortion which are significant in some high-accuracy
applications such as aerial photogrammetry [128].

The relation between the camera-centred and some other world frame (such as
that defined by a robot or another camera) is a rigid motion, encoding the camera’s
orientation and position. It can be represented by an orthogonal rotation matrix
R, and a translation vector t. Using homogeneous coordinates [8] with a tilde to

symbolise equivalence up to a scale factor,

Z; ri1 Tz T3l
Yi | ~ | ro1 T2 Tez 1o (2.1)

f r31 T3 T33 13

N

2.2.2 Projective camera

Measurements on the image plane are not made directly, because the image is sam-
pled into pizels. The relation between retinal positions (x;, ;) and pixel addresses
(u, v) is modelled by an affine transformation (to represent offsets, scaling and shear-
ing) [32]. Aligning the pixel and retinal coordinate systems so that the v and y;

directions coincide,

X

u fhu fkuw o i1 Tiz Tiz v
~ 0 fky v To1 To2 To3 it 7 (2.2)

1 0 0 1 sy T32 T33 t3 1
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The 5 coefficients' fk,, fkv, fku, uo and vy are the camera’s intrinsic parameters,
and the R and t components can be expressed in terms of 6 extrinsic parameters.
Combining these relations, we obtain the direct linear transformation (DLT) form

of the camera model [128]:

X
u P11 P12 P13 DPi4
Y
~ | P21 P22 P23 P24 7 (2-3)
1 D31 P32 P33 P34 1

This is the usual camera model for many vision systems where the camera intrinsics
and pose are not initially known [32]. The transformation matrix is defined up to a

scale factor, thus there are 11 degrees of freedom.

2.2.3 Camera calibration

Calibration of the camera is necessary to fix the 11 unknowns in the 12 parameters
pij- This can be done by observing at least 6 points of known position, not all
coplanar. Each observation generates two homogeneous equations in terms of p;;.
The system is homogeneous, so we can constrain p3s = 1 and solve using linear
least squares estimation. If image positions are noisy, the results can be improved
by observing more than 6 points using a recursive linear estimator. Often a special
calibration object with very accurate grids is used [6].

In practice, the linear method is somewhat ill-conditioned, and a large number of
reference points are needed, which must be localised to sub-pixel accuracy [129]. This
is because the error measure, when formulated linearly in p;;, is not geometrically
meaningful; the last row and column have different numerical dimensions and play
different roles in the model. A number of calibration methods have been proposed
based on nonlinear (iterative) optimisation and reparameterisations of P, and these
give somewhat better results [37, 130].

Having obtained the DLT form, the intrinsic and extrinsic parameters can be
extracted if required. For any 3 x4 matrix of rank 3, scaled so that ||ps1 ps2 pss|| =
1, it can be shown [32] that there exist four sets of camera parameters satisfying
equation (2.2), the four solutions being trivially related by changes of sign. The

optical centre can be recovered directly, by solving PC = 0.

LOften, ky, is taken to be zero [32]. This assumes rectangular pixels in the camera and complete
decoupling of horizontal and vertical coordinates in the frame capture hardware. Thus there will

be only 4 intrinsic parameters, and an additional constraint will be imposed on camera calibration.
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Once the intrinsic parameters of the camera are known, pixel coordinates can be
converted back to normalised image coordinates (x;/f,v:/f,1): these would be the
image-plane coordinates for a pinhole camera of unit focal length, and are equivalent
up to a scale factor to the camera-centred world coordinates. Hence directions and
angles may be measured at the optical centre.

Camera calibration must be repeated whenever the camera lens is replaced,
zoomed or refocused (change of f), or the camera position is disturbed (change of
R, t). This project was motivated by a desire to avoid full camera calibration, and
explores the use of formulations that work satisfactorily with few or no calibration

measurements.

2.2.4 Viewing a plane

Consider the case in which several observed points line on a single plane. Thus in
some world coordinate system they will all have Z = 0, and equation 2.2 loses one

column of the camera transformation to become:

u fha fkuw uo ri1 T2 U X
v 0 fk, wo To1 Too o Y |- (2.4)
1 0 0 1 31 T32 t3 1

We see that the relation between plane and camera coordinates is a 2-D projectivity,
preserving projective invariants of features on the plane [88]. If the intrinsic param-
eters are known, R and t (the camera pose relative to the plane) can be computed
up to a two-fold ambiguity from just 3 known points, by exploiting the nonlinear
constraints among elements of the rotation matrix [53]. If camera parameters are
not known, a minimum of 4 reference points are needed to fix the 2-D projective
relation between the world plane and the image coordinate system [109], allowing

points and structures on the plane to be reconstructed from a single view.
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2.3 Full perspective stereo

In general, a single camera gives only two-dimensional information about scene
structure. In the absence of other constraints, two or more views are required for

reconstruction.

2.3.1 The epipolar constraint

The image coordinates of a world feature in two images are not independent, but
are related by an epipolar constraint. This comes about from the fact that 4 image
coordinates are derived from only 3 degrees of freedom in world positions. Consider a
family of planes passing through the optical centres of both cameras. These project
to a family of epipolar lines in each image (figure 2.1). If a feature lies upon a
particular line in the left image, the corresponding feature must lie upon the line
in the right image, which is the projection of the same plane. Most stereo systems
exploit this constraint, which reduces the search for matching features to a single

dimension [98].

Point in the world

Epipolar plane

Epipolar line
through image point

Figure 2.1: The epipolar geometry of stereo vision
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Fundamental matrix

The epipolar constraint is represented algebraically by a 3x3 matrix F called the

fundamental matriz [32] such that corresponding points (u,v) and (u',v’) satisfy:

[w v 1]F| v |=0 (2.5)
1

This is a generalisation of Longuet-Higgins’ essential matriz [72], which encoded
the relation between camera-centred coordinates in two views, to the case where
intrinsic parameters are not known. F has rank 2 and is defined up to a scale factor,
i.e. the constraint has 7 degrees of freedom.? The epipole in each view is the image
of the other camera’s optical centre (i.e. o ~PC’, using homogeneous coordinates
for o and C'). The epipoles can be extracted from the fundamental matrix itself:
Fo = 0 and F7o’ = 0; that is, they are in the right and left nullspaces of F.

In calibrated systems, F can be recovered from the camera matrices [32], other-
wise it may be obtained up to a threefold ambiguity by observing 7 corresponding
points [127], or estimated by linear least squares given 8 corresponding points [72].
Epipolar geometry can be estimated from image coordinates alone without reference
to world coordinates; however, degeneracy occurs when the points all lie on a critical
surface such as a plane, cone or cylinder [73, 36]. As with camera calibration, the
solution is sensitive to errors and may require more than 8 points and/or nonlinear

optimisation [76].

Linear form

In the general case, epipolar lines will meet at a single point in each image plane,
the epipole, which is the image of the other camera’s optical centre [32]. However,
if the cameras’ focal planes (Z, = 0, Z. = 0) coincide, the epipoles will be points
at infinity and the epipolar lines parallel. In this case, the first 2 x 2 elements of F
become zero, and the epipolar constraint is a single linear equation in u, v, u', v’
and a constant term [115].

In practical stereo rigs each camera is usually far outside the other camera’s field
of view, and the linear form of the epipolar constraint is often valid (at least as a

first approximation when only a small number of correspondences have been found).

2The loss of rank can be explained by considering F as a projective correlation between points
in one image and lines in the other. To be an epipolar constraint, all points on an epipolar line

must yield the same line when multiplied by F: the matrix is therefore singular.

22



2.3. FULL PERSPECTIVE STEREO

The linear approximation to the epipolar constraint can be recovered from just
4 corresponding points in uncalibrated stereo. This form of the constraint is incor-

porated into the affine stereo model introduced in section 2.5.

Image rectification

The simplest possible form of the epipolar constraint occurs when the cameras have
the same intrinsic parameters and are separated by a pure translation in the X,
direction (parallel cameras). The constraint becomes: v' = v, i.e. corresponding
points must lie on the same horizontal scan line in each image, and object depth is
encoded by horizontal disparities along the scan lines. This simplifies the problems of
stereo correspondence and reconstruction, and many stereo vision algorithms require
images in this form [103, 6]. The purpose of image rectification is to transform images
(or the image coordinates of features) so that the epipolar constraint takes this form,
even when they were taken through non-parallel cameras.

If the cameras are calibrated, rectification is achieved by projective transforma-
tions of image points into a new coordinate system (x,y) so that y' = y for all
matching points. The rectification transformations simulate the rotation of each
camera until they are parallel, and the scaling and shifting of one image to bring the
scan lines into agreement [32]. If the epipolar geometry is known but not the cam-
era intrinsics, the rectification transformations are defined up to 9 free parameters,?

usually chosen for numerical convenience [6].

2.3.2 Reconstruction
With calibration

Assume that both cameras have been calibrated for the same world coordinate frame.
By rearrangement of (2.3), each measurement of (u, v) yields two simultaneous linear
equations in (X,Y, Z), which represent the line of sight from a camera to a point
in the world. Two views of the same point give us four linear equations which can
be solved, e.g. by a least squares method. Numerical optimization can be used to
improve robustness to noise (at the expense of speed), by minimising the offsets in

image coordinates between observed and backprojected features [32].

3The epipolar constraint has 7 DOF, but a general pair of projective transformations on the
two images would have 8 + 8 = 16 DOF.
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Intrinsically calibrated cameras

For cameras with calibrated optics but unknown pose, the rotation and direction
of translation between the views may be estimated. The essential matriz (which is
the fundamental matrix defined in terms of normalized image coordinates [72]) is
computed from the intrinsic parameters and the image coordinates of at least 7 cor-
respondences. It can then be decomposed [32] into the product of an antisymmetric
matrix T and an orthogonal rotation matrix R. T encodes the translation and is

defined up to a scale factor; thus the scene may be reconstructed up to a similarity.

Uncalibrated cameras

The extraction of non-metric and viewpoint-invariant information from completely
uncalibrated cameras is a rapidly developing field in machine vision [88, 3, 10].

For instance, given two uncalibrated views of 8 corresponding points (from which
the fundamental matrix can be recovered), it is possible to reconstruct the scene up
to a 3-D projective transformation* [35, 33]. 5 of the points are used as a projective
basis in space, i.e. they are assigned the coordinates (1,0, 0,0), (0,1,0,0), (0,0,1,0),
(0,0,0,1) and (1,1,1,1). Likewise, 4 of them form a projective basis in each of the

images. Using these coordinate systems, each camera transformation matrix takes

he form:

the form e — v 0 0 y
0 b — v 0 v
0 0 uc—v v

where (a, b, ¢) are the projective image coordinates of the fifth point. The coordinates
of the optical centre can also be expressed in terms of a b, ¢, u and v. Thus,
each camera model is fixed up to one degree of freedom, the ratio p:v. Faugeras
shows how this may be eliminated using the epipolar constraint between views [35],
exploiting the relation between the epipoles and the optical centres of the cameras.

This result can be extended by noting that we are within 3 degrees of freedom
of an affine reconstruction of the scene. The 3 missing parameters encode a repre-
sentation of the plane at infinity within the above projective basis, and these may

be recovered by observing e.g. 3 vanishing points of parallel lines [105, 33].

4A projective representation of a 3-D scene is 9 DOF from Euclidean structure, allowing quite
serious distortions of the reconstructed scene. It is therefore most useful for applications such as

recognition of objects based on projective invariants [109].
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2.4 Weak perspective and the affine camera

The projective camera model has many parameters and is nonlinear in form, making
it difficult to calibrate. We now consider a simpler first-order approximation, the

affine camera, as an alternative camera model for stereo vision.

2.4.1 Weak perspective

Let us assume that, within some region of the scene, the relative depth |AZ./Z.| is

bounded by a small value (weak perspective [108]). Equation (2.1) becomes:
X

(2.6)
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where h = r3-p+ts, the normal distance between the focal plane (Z, = 0) and a point
p in the region of interest. We assume that h is constant across this region, i.e. that
the relation between world and image coordinates is linear. With a camera whose
intrinsic parameters are known, the X, and Y. components of feature positions can
be recovered up to scale from a single view; and the camera pose can be estimated
from > 3 points in known configuration [53]. This approximation to the camera
model is useful in tracking applications, where a compact object is observed moving
around a three-dimensional space [56]. Under weak perspective, any image of a
planar facet will be an affine transformation of the plane, encoding its depth and
orientation relative to the camera, and images of planes will deform affinely under
motion [67, 21].

2.4.2 Affine camera

Now if the depth of the entire scene is small compared to the camera distance, h
can be assumed constant. Consider the images in terms of pixel coordinates (u,v).
Without a knowledge of the intrinsic parameters, camera pose cannot be determined,

but the camera model is further simplified:

ul | Uo n mip Mig Mas
v Vo Mo1 Moz Mag

N <
S
.
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CHAPTER 2. PERSPECTIVE AND AFFINE STEREO

where (ug,vg) is the image of the world origin. This is equivalent to parallel projec-
tion followed by an arbitrary affine transformation in the image. It is known as the
affine camera model [88].

The affine camera can be calibrated by observing just 4 reference points. All
8 coefficients are independent. Its linear form makes it less sensitive to calibra-
tion noise, since it can be optimised to minimise errors in the image coordinates
themselves. Where the assumption of weak perspective throughout the scene can
be made, it allows a more accurate camera model to be constructed from limited
calibration data [23].

2.5 Affine stereo

With the affine camera model, image coordinates are linear functions (plus a con-
stant offset) of the 3-D coordinates of points in the world. This simplifies the epipolar

constraint, as well as calibrated and uncalibrated stereo reconstruction.

2.5.1 The affine stereo formulation

Combining information from a pair of images, we have four image coordinates (u, v),

(u',v") for each point, all linear functions of the three world coordinates (X,Y, Z):

Ug

u
X
v v
=10 1+Q| v |. (2.8)
u ug
Z
v’ UG

Q is a 4x 3 matrix formed from the m;; coefficients of (2.7) for the two cameras.
It should be noted that the integration of information from more than two cameras
is easily accommodated within this framework: each additional view generates two

extra linear equations which can be represented by extra columns to Q.

2.5.2 The epipolar constraint in affine stereo

When a point is viewed in stereo, there are 4 image coordinates, all linear functions
of 3 world coordinates. These cannot be independent, but are related by a single
linear constraint: the epipolar constraint thus takes the linear form [115], and can

be estimated from a minimum of 4 corresponding points.
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2.5. AFFINE STEREO

To analyse the constraint, consider the 4-vector e satisfying Q7e = 0, i.e. the
direction orthogonal to the three rows of Q. This is the annihilator for vectors

of the form Q[XY Z|T. Thus the epipolar constraint may be written:

U — Ug
UV — Vo

e-| , . |=0. (2.9)
v — vy

Geometrically, the epipolar planes are the family of planes parallel to both view-
ing directions ¢ and ¢’ (the nullspace vectors of M and M’), so that the epipolar
line direction in the first image is parallel to Mc’, and in the second image to M'c.
Furthermore, it follows that [e; es]-Mc' = 0 and [e3 e4]-M'c = 0, since motion along

the epipolar lines does not violate the constraint.

Image rectification

To rectify a pair of images, each point must be represented in terms of linearly inde-
pendent coordinates (x,y) such that y = ¢ for all matching points. This condition

is satisfied when:

y = —Aei(u—uy) — Aey(v — vg) + B,
y' = Aes(u' —ug) + Aes(v' —vy) + B (2.10)

for some scale factor A and offset B. We can then use y and 3’ values to find or
test for matching features in stereo. The rectified x coordinate is most conveniently
defined as the component parallel to the epipolar lines in each image, so that basis
vectors X, y are orthogonal: thus rectification may be achieved using plane similarity

transformations (rotation, translation and scaling) in each image.

2.5.3 Reconstruction
Calibrated cameras

If all the coefficients are known, world coordinates can be obtained by inverting
(2.8). Since the model is linear in both the world and image coordinates, least-
squares minimisation gives an optimal solution from (uncorrelated) noisy image
data. Errors in calibration will manifest themselves as an affine distortion of the

perceived coordinate frame [68].
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In hand-eye applications, it might instead be convenient to calibrate the vision
system in the coordinate space in which the manipulator is controlled (assuming
this maps approximately linearly to Cartesian coordinates). This can be done by
tracking the position of a robot gripper as it visits four predefined reference points
[61].

Uncalibrated cameras

In the absence of camera calibration, any four (non-coplanar) points may be given ar-
bitrary world coordinates (such as the canonical affine basis (0,0, 0), (0,0, 1), (0,1, 0)
and (1,0,0)). The appropriate solution for Q yields an affine reconstruction of the
scene, which preserves affine shape properties such as collinearity, coplanarity and
ratios of parallel lengths. This is in accordance with Koenderink and van Doorn’s
Affine Structure-from-Motion Theorem [68].

2.5.4 Recovery of surface orientation from two views

Any two views of the same planar surface will be affine-equivalent: there will exist
an affine transformation that maps one image to the other. This transformation
can be used to recover surface orientation [21]. Let the linear mapping between the
views be represented by transformation matrix A and a 2-D translation vector.

It is the A component which encodes orientation. Consider the standard basis
vectors i and Vv in one image and suppose they were the projections of some vectors
tangent to the surface. The columns of A itself will be the corresponding vectors in

the second image. By inspection, the epipolar constraint requires that:
e1 +eszarn +eqanr = 0,
€y + €3Q19 + €4099 = 0. (211)

Two degrees of freedom remain. For purposes of visual servoing on surface ori-
entation, such transformations can simply be parameterised by the pair (a1, as).

For reconstruction, we can form a surface normal vector n from the cross product

of two world-space vectors on the plane:

1 0
0 1
n= Q+ A Q*L (2.12)
ai a12
21 22

where Q7 is the pseudo-inverse (QTQ)~1QT [122].
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2.6 Comparison of perspective and affine stereo

A series of experiments and simulations were performed to compare the accuracy
of perspective and affine stereo models in cases where only a small number of cali-
bration measurements were available, or the camera positions were perturbed after

calibration. Two tasks were considered:

e recovery of the epipolar constraint, to facilitate stereo correspondence of two

images of an unknown object;

e estimation of the relative positions of points, to facilitate reconstruction of an

object and visual servoing to align a manipulator with it.

For the numerical simulations, two ideal pinhole cameras were simulated, facing
the origin from a distance of 3-24 units, displaced by a rotation of 20° about a
vertical axis (figure 2.2). They observed reference and test points within a unit
cube centred about the origin. The focal length of the cameras varied with distance,
so as to keep a constant image size (for a vertical unit vector at the origin) of 320
pel. Figure 2.3 shows the appearance of the unit cube for camera distances of 3, 8

and 24 units.

2.6.1 Epipolar constraint recovery

These experiments measure the accuracy with which the epipolar constraint may be
estimated from a small number of reference points, in both the linear and funda-

mental matrix forms.

I. Accuracy of the linear model in noiseless simulations

With noiseless images, the fundamental matrix could be calculated with complete
accuracy from 8 corresponding points. The linear approximate epipolar constraint
was estimated, from 4 correspondences within the cube.’

For any point in the left view, an epipolar line may be predicted in the right. The
normal distance between this line and the corresponding point gives us a measure
of the error in the epipolar geometry model. Figure 2.4 shows the maximum and
RMS error for a grid of points filling the unit cube. It can be seen that the errors

due to the linear model decrease with increasing camera distance.

5Coordinates (-.3,-.3,-.3), (-.3,.3,.3), (.3,-.3,.3), (.3,.3.-.3): a regular tetrahedron.
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d Unit cube

o o

Figure 2.2: The camera geometry used in the numerical simulations. ¢ = 20° and

d varies from 3 to 24 units.

()

Figure 2.3: The appearance of the unit cube and epipolar lines viewed with the

simulated cameras from a distance of (a) 3 (b) 8 (c) 24 units. Image size 512 pel.
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II. Linear and fundamental-matrix models from noisy images

We now consider the case in which the epipolar geometry is estimated from noisy
correspondences. Image coordinates of the reference points had Gaussian noise
(0 = 2.0 pel) added to each axis. Linear epipolar constraints were estimated from
4 and 8 points, and a fundamental matrix from 8 points,® which is the minimum
number for an unambiguous solution. Their accuracy was measured as above, using
a grid of noiseless correspondences. Figure 2.5 shows the RMS error over 512 trials,
for camera distances ranging from 3 to 24. By constraining the epipolar geometry

to the linear form, greater robustness to noise is achieved.

ITI. From noisy image points and known world coordinates

If the world coordinates of the reference points are known, epipolar geometry may be
estimated more accurately by first solving for a pair of camera models (calibration).

Reference point image coordinates had 2.0 pel noise as before, but accurate world
coordinates were also available. This allowed affine and projective camera models
to be estimated from 4 and 6 points respectively. The models were then rearranged
to recover epipolar constraints, which take the fundamental-matrix and linear forms
respectively. Figure 2.6 shows the RMS error over 512 trials, for camera distances
ranging from 3 to 24. The use of world coordinates improves the estimate of the

fundamental matrix, but makes no difference to the linear form in the 4-point case.

IV. Real data

For this experiment we used images of a robot to define 8 corresponding points,
whose world coordinates were also known. Affine and projective camera models were
estimated using linear least squares. A real scene was them observed in stereo, and a
number of points of interest selected by hand in the left image. Figure 2.7 compares
the epipolar line structure predicted by both affine and full perspective stereo models
for matching these points. In this setup, in which the camera distances are about 2
metres, both models gave comparable accuracy — the RMS perpendicular error of
the points in the right image from their predicted epipolar lines was 3.6 pel in each
case. Furthermore, the affine model can predict epipolar lines using just 4 reference
points with sufficient accuracy to allow matching (RMS error 4.4 pel); perspective

stereo requires a minimum of 6 points.

6(-3-.3-.3), (-.3,.3,.3), (:3,--3,.3), (:3,.3,-.3), (:3,--3,-.3), (.3,.3,.3), (-.3,-.3,.5), (.1, -4, -.2).
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Figure
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from noisy correspondences (o = 2.0 pel) by least squares.

Figure 2.6:
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calibration of affine and perspective camera models.
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Figure 2.7: Estimation of epipolar lines: (a,b) two views of 8 reference points defined
by the robot; (c) selected points in the left image; (d) epipolar lines estimated by
the projective camera model after calibration with 8 points; (e,f) epipolar lines

estimated by affine camera model with 8 points and 4 points respectively.
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2.6.2 Accuracy of reconstruction

To compare affine and full perspective stereo reconstruction, simulations were per-
formed measuring their ability to estimate the relative positions of points within the

unit cube.

I. Under ideal conditions

Without noise or other disturbances, perspective stereo estimates absolute and rela-
tive positions with complete accuracy (in our ‘pinhole camera’ simulations, at least).
An affine stereo model was calibrated using 6 reference points. At close range it per-
forms poorly due to strong perspective distortion, but the error decreases in inverse
proportion to camera distance. Figure 2.8 shows the RMS error for estimating the
vector between a random pair of points within the unit cube (the average length of

such a vector is 0.707).

I1. With noisy calibration

Adding 2.0 pel noise to the image coordinates of the reference points causes both
stereo models to lose accuracy (figure 2.9). Perspective stereo is more sensitive to
noise because of its nonlinearity and greater degrees of freedom, and is less accurate
than the affine stereo approximation at larger camera distances (viewing an increased
number of reference points reduces the effects of noise and restores the accuracy of

perspective stereo).

III. With noisy image coordinates after calibration

When Gaussian noise is added to the image coordinates of the points whose relative
position is to be estimated (after accurate calibration), the effect is comparable on
both systems. The two models converge for camera distances above =~ 10 units
(figure 2.10).

IV. Camera disturbances after calibration

In a laboratory or industrial environment it is possible for cameras to be disturbed

from time to time and subject to small rotations and translations. If this happens

after calibration, it will give rise to a corresponding error in stereo reconstruction.
Table 2.1 shows the average change in perceived relative position when one

camera is rotated or translated a small distance around/along each principle axis.
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Figure 2.8: RMS relative positioning error (for random point pairs in the unit cube)

as a function of camera distance, for the affine stereo model.
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Figure 2.9: RMS relative positioning error as a function of camera distance, after

calibration with 6 noisy reference points (o = 2.0 pel).
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Figure 2.10: RMS relative positioning error from noisy images (o = 2.0 pel) of world

points after accurate calibration with 8 points.

Disturbance Change (Affine) | Change (Perspective)
X.:Y, (roll) rotation 1° .0214 .0214
X.:Z. (pan) rotation 1° .0007 .0468
Y.: Z, (tilt) rotation 1° .0006 .0049
X, :Y, (roll) rotation 5° 1069 1068
X.:Z. (pan) rotation 5° .0095 1867
Y.: Z, (tilt) rotation 5° .0056 .0769
X. (epipolar) translation 0.1 .0119 .0207
Y. (vertical) translation 0.1 .0020 .0007
Z,. (distance) translation 0.1 .0119 .0119
X. (epipolar) translation 0.5 .0596 1168
Y. (vertical) translation 0.5 .0102 .0139
Z,. (distance) translation 0.5 .0574 .0572

Table 2.1: RMS change to relative position estimates of world points, caused by

disturbing one of the cameras after calibration. Camera distance 10 units.
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The two models are affected similarly by small movements, the worst of which is
X, :Y. rotation about the optical axis (this is the only motion which, to first order,
changes the Q matrix of world-image coefficients).

Perspective stereo is more sensitive to larger movements, and to rotations and
translations in the epipolar plane (in which a small error can induce large changes

of perceived depth), because it distorts nonlinearly.

2.7 Discussion

For a typical stereo setup with two cameras fixating on a compact scene, perspective
effects are small, and the epipoles will be far outside the image frames. In this
case, a linear model of the epipolar constraint is valid, and the errors due to the
linear approximation become comparable to other sources of error such as ‘noisy’
image measurements from trackers or feature detectors. It should be noted that the
conditions required for linear epipolar geometry are weaker than those for the affine
stereo model itself, which is accurate for camera distances more than = 10 times
the size of the scene.

Calibration is easier with affine stereo because the system has fewer parameters
and is amenable to solution by linear techniques. Even if it could be calibrated accu-
rately, the projective model is still more sensitive to errors and unexpected camera
movements after calibration. The linear form of the affine stereo model makes it
quite robust to calibration errors and changes. Even without calibration, it affords
an approximate affine reconstruction of any scene with more than 4 corresponding
points.

We do not attempt to use affine stereo to reconstruct absolute positions of points
in the scene (as would be used by a look-and-move manipulation system). That
would require accurately calibrated perspective camera models. Instead, we propose
to use the affine model to match and reconstruct small objects in the scene, and to
estimate the relative positions of nearby structures.

In chapter 3 the affine stereo formulation introduced here is used at the heart of
a visual feedback controller for executing a grasp operation specified in terms of a

pair of images of a graspable surface.
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Chapter 3

Uncalibrated Stereo Visual

Feedback

The core task in hand—eye coordination is to align a robot with a visu-
ally specified target. This chapter describes the use of visual feedback of
gripper position and orientation to align it with the target object. The
system does not require calibration, but estimates the affine stereo coef-
ficients by making three deliberate motions. It is even robust to small

camera motions during operation.

3.1 Introduction

If a stereo vision system were calibrated precisely, then the robot’s gripper could be
sent directly to the coordinates of a visually-specified target. However, this open-
loop approach is sensitive to errors in calibration and kinematic modelling. Instead,
we track the robot’s gripper as it approaches the target, using wisual feedback to
correct the errors in its trajectory.

Affine stereo is a simplified stereo vision formulation that is very easily calibrated,
but it is of limited open-loop accuracy. Nevertheless, it gives reliable qualitative
information about the relative positions of points and can, of course, indicate when
they are in precisely the same place. We therefore use it as part of a visual feedback
loop to align the robot gripper with its target, which is a planar facet of the object
to be grasped. Image-based feedback is used to null the error in the images, so as

to align their position and orientation despite camera modelling errors.

39



CHAPTER 3. UNCALIBRATED STEREO VISUAL FEEDBACK

3.2 Theory

3.2.1 Point to point alignment

First, we consider aligning a point attached to the robot (or defined in terms of an

affine coordinate system based on the robot) with a point specified in the images.
Let the point on the robot be P. Its position is determined by a vector of (at

least 3) joint settings, @, which are related to Cartesian coordinates by the kinematic

function K:
Xp =K(0O). (3.1)
Xp = [XpYp Zp|T, its world coordinates in a Euclidean frame. We wish to align

the robot with a visually-specified ‘set point’ S, specified by image coordinates

ug = [ugvg U V- T, Using the affine stereo model, we estimate its position:
s Vs g
XS = Q (ug — ﬁo), (32)

This is the inverse of equation (2.8), where Q" models the left pseudo-inverse of Q.
Suppose that we also have an inverse model K~ of the robot’s kinematic function,
(if there are more than 3 joints, assume that the redundant degrees of @ are con-
strained in an appropriate way). We could attempt to send the robot directly to

the configuration corresponding to ug:

A~ A

Oor = K 1(X5s) (3.3)

This is the ‘look-and-move’ approach. It fails to compensate for inaccuracies in the
inverse kinematic model K ! and in the camera model (Q, 1) as well as for errors
due to strong perspective distortion.

Visual feedback

By tracking the robot’s gripper, we can also obtain from its image position up an

estimate Xp of its world coordinates,
Xp = Q" (up — ). (3.4)

Feeding back the relative position term Xp—X s, a simple proportional control law

[120] may be devised to null the error:

O = —gJ!(Xp — Xg). (3.5)

40



3.2. THEORY

J! models the inverse differential kinematic relation [48] at the current robot con-
figuration, and ¢ is an appropriate gain constant. The use of a term such as Xp—Xs
is known as position-based feedback. We can also express the control law in terms
of the image coordinate error term up — ug (image-based feedback). We use our

estimates of the camera and kinematic models to provide a suitable gain:
O = —gJ'Q* (up — ug). (3.6)

We note that, according to the affine stereo model, position-based and image-based
feedback are equivalent. This is because the world-image relation is modelled as
linear (cf. [49]). The combined kinematic-and-vision relation QJx (inverted in (3.6))

is sometimes called the image Jacobian [48].

Discrete implementation

In practice, due to the limited bandwidth between the computer vision system and
the robot controller, visual feedback is implemented as a discrete series of relative

motions of the gripper:
X*P|t+1 = X;‘t — kQ* (up — ug), (3.7)

where X7 is the vector of world coordinates passed to the inverse kinematic model;

that is, ® = I@’I(X}B). The gain term, k, governs the rate of convergence.

Convergence criteria

When does the visual feedback loop converge to the set point and when is it unstable?
Define X*, = X% — X% where Xg = K(K 1(X%)), and suppose that the error is

err

small, so that a first order model of K may be used. Equation (3.7) becomes:

X:rr‘t—i—l = (I - kQ+QJ’CjE1) X* |t : (38)

err

The error term will vanish and the system converge to the set point! only if all the
eigenvalues of (I — kQ*QJxJx!) have absolute magnitude below unity [122]. For a
perfectly modelled system, Q+QJ ,lezl =1 and the set point is reached in one step
by setting k£ = 1.

Setting 0 < k < 2 also leads to convergence, but values above 1 will cause
overshoots and ringing (which, in a robotic application, could lead to collisions!) To
prevent this whilst allowing for some inaccuracy in kinematic and camera modelling,

k should be set significantly below unity, e.g. £ = 0.75.

'We assume here that the set point is stationary.
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3.2.2 Position and orientation alignment

Suppose now that we wish to align a planar surface on the robot’s end effector with
one specified in the image. Alignment of position and surface orientation is a 5-DOF
constraint; additionally, if a vector on the robot is to be aligned with a distinguished
image direction, there are constraints on all 6 components of robot pose.

Recall from section 2.5, that the orientation of a surface is encoded by its affine
transformation between views, A. This has only two degrees of freedom and may be
represented by two components (a11, a12); the other two components can be obtained
using the epipolar constraint. An image-based representation of surface orientation?
is thus the vector o = [ay; aio]”. The surface normal direction itself may easily be

obtained from o and an estimate of the Q matrix.

Image-based feedback of surface orientation

Let the robot now be controlled in terms of a desired position and orientation, where

the orientation is expressed in image-based terms:
© = K '(Xp, F(op)), (3.9)

where K1 is an inverse kinematic model for both position and orientation control,
and F is a function to convert image-based orientations into some other parameter-
isation used by the robot.?

A suitable control law to align the gripper with a target is:

00 . 00
X5 Q(up—us)+

o= 4 0o*
P

(op — 0g))- (3.10)

Again, in practice it is convenient to use a discrete implementation, in which a

sequence of position and orientation demands are made:

X5 = X}B\t—leJf(uP—uS),

0;|t—|—1 = OP\t - kQ(OP - OS)- (3.11)

141

As before, the gain parameters k;, k3 should be set to values between 0 and 1.

2 A third image-based parameter may be added to this vector to specify all 3 DOF of orientation.

3F depends on an estimate of Q.
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3.3 Simulations

A simple articulated robot was simulated, its origin at coordinates (—2.0, 0, —.5),
with two links of length 1.5 units (figure 3.1). The position of the end-effector was
governed by three angles: waist (1), shoulder (02) and elbow (63); the kinematic

function was:

Xp = 1.5cosb(cosby + cos(fy — b3)) — 2.0,
Yp = 1.5sin6;(cosby + cos(f, — b)), (3.12)
Zp = 1.5(sin6y +sin(fy — 63)) — 0.5.

The same simulated cameras were used here as in section 2.6, facing the origin from
a distance of 4.0 units. The inter-camera angle was 20°. Affine stereo coefficients
were estimated by observing 4 known points in a tetrahedron within the unit cube.

Setpoints were enumerated on a dense grid of points within the unit square and

the robot aligned with those points:
e Open loop, by inverting kinematic and camera models;
e Closed loop, using visual feedback with £ = 1;
e Closed loop, using visual feedback with £ = 0.5.

When using visual feedback, the initial position of the end effector in each trial was

the world origin in the centre of the unit cube.

A
aa

2 units

Figure 3.1: Articulated robot model used in the simulations
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I. Ideal case

An inverse kinematic model [120] was derived analytically from equation (3.12),
and the camera coeflicients estimated using noiseless reference points. In open loop,
the RMS positioning error for a point within the cube was .068 units, and the
maximum error .157 units. These errors are due to perspective distortion. With
visual feedback, however, the errors are reduced practically to zero (results are
summarised in table 3.1). Figure 3.2(a) shows the trajectory of the robot when the
set point is (.5,.5,.5) with £ = 0.5. It is almost a straight line.

IT. With erroneous kinematic model

The simulations were repeated, using a modified inverse kinematic model which
moved 6, through 1.5 times the desired angle and added a 10° offset to #3. This
seriously degraded open-loop positioning accuracy; however visual feedback with
k = 0.5 was able to correct the errors. In this case, better performance was obtained
with £ = 0.5 than with £ = 1, which lead to ‘ringing’ and failure to converge in

some regions of the robot’s configuration space. See figure 3.2(b).

ITI. After camera disturbances

This time the correct kinematic model was used, but the camera pose was changed
between observation of the reference points and alignment with the set points. One
of the cameras was translated 0.25 units upwards, the other rotated 10° about its

optical axis. Again, visual feedback was able to null the errors. See figure 3.2(c).

Open loop k= k=0.5

RMS | Max | RMS | Max | RMS | Max
No disturbance .068 | .157 | .0001 | .0007 | .013 | .034
Kinematic error 263 | .401 | .036 | .162 | .012 | .026
Camera disturbance | .197 | .361 | .003 | .023 | .025 | .071

Table 3.1: Results of simulations in which the end-effector was aligned with points
on a dense grid within the unit cube. RMS and maximum positioning errors after

6 iterations are shown.
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N

()

Figure 3.2: Simulated robot trajectories under visual feedback. The end effector
is converging on one corner of the unit cube: (a) ideal case (kK = 0.5); (b) with
erroneous kinematic model (k = 1) showing ‘ringing’ behaviour; (c) after camera
disturbances (k = 0.5).
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3.4 Experiment

3.4.1 Setup

When the system was started up, it began by opening and closing the jaws of the
robot’s gripper. By observing the image difference, it was able to locate the gripper
and set up a pair of affine trackers as instances of a hand-made 2-D template. The
trackers could then follow the gripper’s movements continuously. Stereo tracking was
implemented on the Sun at over 10 Hz. The robot then made a series of deliberate
motions, moving to four preset points to estimate the coefficients matrix Q.

Since the reference points used to self-calibrate were specified in the controller’s
coordinate space (X*), linear errors in the kinematic model were effectively bypassed.
The system must still cope with any nonlinearities in control, as well as those caused
by strong perspective effects.

A target object was located by similar means — by observing the image changes
when it was placed in the manipulator’s workspace. Alternatively it could be selected
from a monitor screen using the mouse. There was no pre-defined model of the target
shape, so a pair of ‘exploding’ B-spline snakes [21] were used to automatically locate
the contours delimiting the target surface in each of the images. The snakes were
converted into a pair of affine trackers, by re-expressing their sampling points in
terms of an affine basis (see appendix).

The target surface was then tracked along with the gripper, to compensate for

unexpected motions of either the target or the cameras during operation.

3.4.2 Visual feedback loop

The orientation of the gripper of a 5-DOF manipulator is constrained by its lack
of a ‘yaw’ axis, and the constraint changes continuously as it moves. To avoid this
problem, the test implementation kept the gripper vertical, reducing the number
of degrees of freedom to four. Its orientation could then be described by a single
roll angle. It was assumed that the target plane was also vertical. Their image
orientations were therefore described by a single quantity, a;;.*

The gains for position and orientation control are set well below unity at 0.75,
to prevent instability, even when the vision system is miscalibrated. The control

structure of the system is shown in figure 3.4.

41t is assumed that the camera baseline is roughly horizontal, so that a1; varies with roll angle.
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Figure 3.3: A stereo pair showing the robot gripper at one of the four reference

points used for calibration. Active contour models are overlaid in white.
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Figure 3.4: The control structure of the system, showing the use of visual feedback.
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3.4.3 Tracking and grasping behaviours

Without modification, the visual feedback loop would attempt to superimpose the
robot gripper and target object in the images. By offsetting up from the gripper’s
centre, we introduce a constant offset between gripper and target in space; the offset
is defined in terms of a coordinate system attached to the gripper (in fact, the affine
basis of the tracking mechanism), so that it will be invariant to motions of the
cameras. We set the offset so that the robot tracks the target object continuously,
hovering a few centimetres above a point on its top surface (figure 3.5).

Once this pre-grasp position has been achieved, the object may be grasped reli-
ably using a pre-programmed motion, which consists of rotating the gripper through
90° and translating downwards (figure 3.6). Depending on the type and shape of

object to be grasped, some other grasping motion could be substituted here.

3.4.4 Results

Without feedback control, the robot locates its target only approximately (typically
to within 5cm in a 50cm workspace). With a feedback gain of 0.75 the gripper con-
verges on its target in three or four control iterations. If the system is not disturbed
it will take a straight-line path. The system has demonstrated its robustness by

continuing to track and grasp objects despite:

Kinematic errors. Linear offsets or scalings of the controller’s coordinate system
are absorbed by the self-calibration process with complete transparency. Slight
nonlinear distortions to the kinematics are corrected for by the visual feedback
loop, though large errors introduce a risk of ringing and instability unless the

gain is reduced.

Camera disturbances. The system continues to function when its cameras are
subjected to small translations, rotations and zooms, even after it has self-
calibrated. Large disturbances to camera geometry cause the gripper to take
a curved path towards the target, and require more control iterations to get
there.

Strong perspective. The condition of weak perspective throughout the robot’s
workspace does not seem to be essential for image-based control and the system

can function when the cameras are as close as 1.5 metres (the robot’s reach is
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Figure 3.5: The robot is tracking its quarry, guided by the position and orientation
of the target contour (view through left camera). On the target surface is an affine
snake — an affine tracker obtained by ‘exploding’ a B-spline snake from the centre
of the object. Last frame: one of the cameras has been rotated and zoomed, but

the system continues to operate successfully with visual feedback.

Figure 3.6: Robot grasping a planar target, using an active contour to recover its

size and orientation. The gripper is not tracked during the grasping manoeuvre.
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CHAPTER 3. UNCALIBRATED STEREO VISUAL FEEDBACK

a little under 1 metre). However the feedback gain must be reduced to below

0.5, or the system will overshoot on motions towards the cameras.

Figure 3.5 shows four frames from a tracking sequence (all taken through the same
camera). The cameras are about two metres from the workspace. Tracking of
position and orientation is maintained even when one of the cameras is rotated

about its optical axis and zoomed.

3.4.5 Why not track Q?

Since the visual feedback system has been designed to be robust to changes in
the camera parameters (caused by movement of the cameras) during operation, an
obvious question is whether or not efficiency can be improved by tracking these
changes. This was attempted in a version of the above experiment, using a Kalman
filter [42] whose state vector encodes the camera model (Q, 1), which is updated
from subsequent observations of the robot gripper. However, this conferred little
or no detectable benefit to the performance of the system.’ This is because it is
impossible, from a single observation of the gripper, to determine if an error in the

image location of the gripper is due to:
1. Strong perspective (temporary change in Q, uy),
2. Change in uy caused by small camera rotations or translations,

3. Change in Q caused by large camera translations, zooming, or rotation about

the optical axis.

Only the last of these warrants tracking, and this was the least frequent change to
be observed. The errors due to perspective could to some extent be modelled by
‘observation noise,” but there were no obvious values for ‘process noise’ to enable
the other parameter changes to be distinguished. It was concluded that attempting

to track camera motions was not only ill-conditioned but also unnecessary.

5Except for a validation gate on the gripper’s image coordinates, which was very useful for

detecting failures of the trackers and reinitialising them.
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3.5 Discussion

Here the effectiveness of affine stereo has been demonstrated for the task of aligning
a robot with a visually specified target, in both position and orientation. In a
discrete-time implementation, rapid convergence is achieved with a gain of unity;
though if the system is disturbed from its initial configuration, the gain should be
reduced to maintain stability and prevent overshoots which could lead to collisions.

The visual servoing system does not require camera calibration, but makes a
small number of deliberate motions to actively estimate the relation between hand
and eye. Even these are not always necessary, for instance if the cameras have been
rotated and then realigned by hand, the previous estimate of Q will normally still
be valid. It is not necessary, or even practical, to track these coefficients over time.

By defining the working coordinate system in terms of the robot’s abilities, linear
errors in its kinematics are bypassed. The remaining nonlinearities can be handled
using visual feedback. We have shown that this can be achieved cheaply and effec-
tively using a novel form of active contour to track planar features on the gripper
and target.

Such a system has been implemented and found to be highly robust, without

unduly sacrificing performance (in terms of speed to converge on the target).
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Chapter 4

Indicating the Target Object

This chapter describes a human—computer interface which tracks a point-
g hand, in order to specify objects and locations for robotic pick and
place operations. The system is implemented using uncalibrated stereo

VISLON.

4.1 Introduction

In order to make use of visual feedback in uncalibrated stereo, the target object
must be indicated to the system in terms of image measurements. If there is more
than one object visible in the scene, some means must be chosen to select the desired
object for grasping, and to indicate the place to which it is to be moved.

This could be accomplished using a mouse to indicate points in one or both
images. This is reliable if somewhat inelegant, and requires a workstation, or similar
user-interface hardware, in close proximity to the work area. Alternatively, the
operator could interact with the cameras already in place to indicate the target
directly. The latter approach is explored here. An interface based on pointing is
developed, to select objects on a planar table top.

We use a pair of monochrome cameras to observe the robot’s work space and
pointing hand in stereo. Active contours are employed to track the hand in real time.
Using a simple result from projective geometry, the system can calculate where the
hand is pointing to on the plane, without camera calibration, to an accuracy of

about 10mm.
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4.2 Geometrical framework

A single view of a pointing hand is ambiguous: its distance from the camera can-
not be determined, and the ‘slant’ of its orientation cannot be measured with any
accuracy. This means that the ‘piercing point’, where the line defined by the hand
intersects the work surface, is constrained to a line, which is the projection of the
hand’s line in the image. A second view is needed to fix its position in two dimen-
sions [106].

4.2.1 Viewing the plane

Consider a pinhole camera viewing a plane. The viewing transformation is a plane
collineation between some world coordinate system (X,Y), and image plane co-

ordinates (u,v), thus:

U X
v|~T|Y |, (4.1)
1 1

where T is a 3 x 3 transformation matrix. The full perspective form of the trans-
formation is used in this case because the workspace will generally be large and
possibly foreshortened in one or both images.

The system is homogeneous, so we can fix 33 = 1 without loss of generality,
leaving 8 degrees of freedom. To solve for T we must observe at least four points.
By assigning arbitrary world coordinates to these points (e.g. (0,0), (0,1), (1,1),
(1,0)), a new coordinate system on the plane is defined, which we call working plane
coordinates.

Now, given the image coordinates of a point anywhere on the plane, along with
the image coordinates of the four reference points, it is possible to invert the relation
and recover the point’s working plane coordinates, which are invariant to the choice
of camera location [88]. The same set of reference points in the world can be observed
in a stereo pair of views, to compute two transformations T and T, one for each

camera.

4.2.2 Recovering the indicated point in stereo

With natural human pointing behaviour, the hand is used to define a line in space,

passing through the base and tip of the index finger. This line will not generally
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be in the ground plane but intersects the plane at some point. It is this point (the
‘piercing point’ or ‘indicated point’) that we aim to recover. Let the pointing finger
lie along the line [,, in space (see figure 4.1). Viewed by a camera, it appears on
line /; in the image, which is also the projection of a plane, P, passing through the
image line and the optical centre of the camera. This plane intersects the ground
plane G along line /,,. It can be seen that [, lies in P, and the indicated point in
l,», but from one view we cannot see exactly where.

that is, [; = T(l,y), where T is

the projective transformation' from equation (4.1). If the four reference points are

9p>
Note that the line [; is an image of line [

gp>
visible, this transformation can be inverted to find [, in terms of the working plane
coordinates. The indicated point is constrained to lie upon this line on the plane.

Repeating the above procedure with the second camera C' gives us another view
l; of the finger, and another line of constraint /;,. The two constraint lines will
intersect at a point on the ground plane, which is the indicated point. Its position
can now be found in terms of the projective basis formed from the four reference
points. This is similar to a construction used by Quan and Mohr [106], who present
an analysis based on cross-ratios. Figure 4.2 shows the lines of pointing in a pair
of images, and the intersecting constraint lines in a ‘canonical’ view of the working
plane (in which the reference point quadrilateral is transformed to a square).

By transforming this point with matrices T and T’, the indicated point can be
projected back into image coordinates. Although the working plane coordinates of
the indicated point depend on the configuration of the reference points, its back-
projections into the images do not. Because all calculations are restricted to the
image and ground planes, explicit 3-D reconstruction is avoided and no camera
calibration is necessary. By tracking at least four points on the ground plane, the

system can be made insensitive to camera motions.

4.2.3 Projective versus affine transformations

Assuming a weak perspective view of the plane, we could substitute an affine trans-
formation between views for the projective one: this would require only 3 reference
points. However, in this case there is little gain in robustness or simplicity using the

affine model that would offset the loss of accuracy caused by perspective distortion.

1 This is a slight abuse of notation, since for the standard representation of a line the appropriate
transformation matrix is T~!. Here T() refers abstractly to a plane projective transformation

which may be applied to points, lines or other image features.
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Figure 4.1: Relation between lines in the world, image and ground planes

Figure 4.2: Pointing at the plane. By taking the lines of pointing in left and right
views (a, ¢), transforming them into the canonical frame defined by the four corners
of the grey rectangle (b), and finding the intersection of the lines, the indicated

point can be determined; this is then projected back into the images.
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4.2. GEOMETRICAL FRAMEWORK

This is because we are considering points on a plane, using only 2-D projective
transformations: these do not suffer the same sensitivity to noise as would a full
3-D reconstruction.? Errors in localising the 4 reference points result in only local
inaccuracies in the projective transformation (see table 4.1, page 65).

We are interested, in the first instance, in the open-loop accuracy with which
the indicated point may be recovered. With the camera setup used in these exper-
iments, the ground plane is large and significantly foreshortened, and this would

cause significant errors in a formulation based on affine transformations.

4.2.4 Pointing in a multi-faceted environment

The above geometrical framework relies on the target surface being planar in order
to estimate the constraint lines Iy, I}, and their intersection. This can be extended
to environments consisting of more than one plane.

For each planar surface, we need 4 corresponding points, and a description of the
surface’s boundary, e.g. as a polygon, in either view (recall that the 4 points define
a transformation between views, allowing the boundary to be ‘transferred’” into the
other image). Given two views of a pointing hand, we can now ascertain which facet

is being pointed to as follows:

e For each facet, test if the pointing line in each view intersects the facet’s image

boundary in that view.

e If so, solve for the piercing point and test that it too lies within the boundary
of the facet.

e Where the pointing line intersects more than one facet, choose the one nearest
to the fingertip. Distances to the fingertip of points along this line may be

compared in either image.

Note that whilst this requires at least 4 correspondences per facet,® and a priori
models of the surfaces and their boundaries in the images, the entire process is image-

based and does not rely on a 3-D reconstruction of the hand or the environment.

2This is partly due to our choice of working plane coordinates and the use of four reference
points in a rectangle, resulting in a well-conditioned T which is close to an affine transformation.
3For smaller facets which are not strongly foreshortened, 3 correspondences may suffice and an

affine stereo model can be used.
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4.3 Tracking a pointing hand

4.3.1 Background

There has been a lot of interest lately in the use of hand gestures for human-
computer interfacing: they are intuitive for the operator, and provide a rich source
of information to the machine. This type of interface is particularly appropriate in
applications such as virtual reality, multimedia and teleoperation [123, 40, 9]. Most
current commercial implementations rely on sensors that are physically attached to
the hand, such as the ‘DataGlove’ [39]. More recently, systems have been proposed
using wvision to observe the hand. Some require special gloves with attachments or
markings to facilitate the localisation and tracking of hand parts [135, 26], but others
operate without intrusive hardware. This is attractive because it is convenient for
the user and potentially cheaper to implement.

A large number of systems have been proposed for visual tracking and interpre-
tation of hand and finger movements without gloves. These systems can broadly be
divided into:

e those concerned with gesture identification (e.g. for sign language), which com-
pare the image sequence with a set of standard gestures using correlation and

warping of the templates [29], or classify them with neural networks [13];

e those which try to reconstruct the pose and shape of the hand (e.g. for tele-
operation) by fitting a deformable, articulated model of the palm and finger

surfaces to the incoming image sequence [69].

Common to many of these systems is the requirement to calibrate the templates or
hand model to suit each individual user. They also tend to have high computational
requirements, taking several seconds per frame on a conventional workstation, or

expensive multiprocessor hardware for real time implementation.

4.3.2 Approach

Our approach differs from these general systems in an important respect: we wish
only to recover the line along which the hand is pointing, to be able to
specify points on a ground plane. This considerably reduces the number of degrees
of freedom which we need to track. Furthermore, because the hand must be free

to move about as it points to distant objects, it will occupy only a relatively small
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fraction of the pixel area in each image, reducing the number of features that can
be distinguished.

In this case it is not unreasonable to insist that the user adopt a rigid gesture. For
simplicity, the familiar ‘pistol’ pointing gesture was chosen. The pointing direction
can now be recovered from the image of the index finger, although the thumb is
also prominent and can be usefully tracked. The rest of the hand, which has a
complicated and rather variable shape, is ignored. This does away with the need to

calibrate the system to each user’s hand.

4.3.3 Tracking mechanism

A form of edge-seeking active contour model [64, 22, 56] was used to track the image
of a hand in the familiar ‘pointing’ gesture, in real time. The tracker is an active
contour, resembling a B-Spline snake [22], but constrained to deform only affinely
in the images. It is based on a template, representing the shape of the occluding
contours of an extended finger and thumb (see figure 4.3).

The tracker’s motion is restricted to 2-D affine transformations in the image
plane, which ensures that it keeps its shape whilst tracking the fingers in a variety of
poses. This approach is suitable for tracking planar objects under weak perspective
[12]; however it also works well with fingers, which are approximately cylindrical.

A first-order temporal filter is incorporated into the tracker, to predict the future
position of the contour, improving its real-time tracking performance. The filter is
biased to favour rigid motions in the image, and limits the rate at which the tracker
can change scale — these constraints represent prior knowledge of how the hand’s
image is likely to change, and increase the reliability with which it can be tracked.
The dynamics of the tracker are described in more detail in appendix A. It is similar
to the trackers we use to track the robot’s gripper in stereo images, to provide visual
feedback.

To extract the hand’s direction of pointing, we estimate the orientation of the
index finger by fitting a pair of parallel lines to its image edges. The base of the
thumb is also tracked to define the length of the index finger, and to resolve an

aperture problem [131] induced by the finger’s long thin shape.
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4.4 Pointing experiment

The above geometrical framework and tracking mechanism were implemented, to
indicate points on a planar table top with a pointing hand. The two cameras were

about 2m from the scene, angled about 20° apart.

4.4.1 Setup

In this experiment, the corners of a coloured rectangle on the table-top were used
to define the working coordinate system. A pair of finger-trackers (one for each
camera) were initialised, one after the other, by the operator holding his or her
hand up to a template in the image and waiting a few seconds while it ‘moulded’
itself to the contours of the finger and thumb. Once both trackers were running,
the hand could be used as an input device by pointing to places on the table-top.
In this implementation, the position and orientation of the finger trackers, and the

indicated point on the plane, were updated about 10 times per second.

4.4.2 Performance

Figure 4.4 shows the system in operation. The corners of the white rectangle are
the four reference points, and the overlaid square shows the position of the indicated
point. Movements of the operator’s hand caused corresponding movements of this
point in real time.

Visual tracking can follow the hand successfully for several minutes at a time;
however, abrupt or non-rigid hand movements could cause one or both of the trackers
to fail. Because it samples the image only locally, a failed tracker will not correct
itself unless the user makes a special effort to recapture it.

Users reported that the recovered point did not always correspond to their sub-
jective pointing direction, which is related to the line of sight from eye to fingertip
as well as the orientation of the finger itself. Initial subjective estimates of accuracy
were in the order of 20-40mm. If the user received feedback by viewing the system’s
behaviour on a monitor screen, a resolution within 10mm could be achieved. It is a
natural human skill to servo the motion of one’s hand to control a cursor or other
visual indication.

The system was also tested in a multi-planar environment (figure 4.5). The
planes were represented by 9 given correspondences, which also defined bounding
quadrilaterals. The user could then indicate points on 3 surfaces: transition between

planes occurred automatically as the piercing point crossed their boundaries.
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(a) (b)

Figure 4.3: The finger-tracking active contour (a) in its canonical frame (b) after an

affine transformation in the image (to track a rigid motion of the hand in 3-D).

Figure 4.4: Stereo views of a pointing hand. The two views are shown side by
side. In each view an active contour is tracking the hand. The inlaid square is a

representation of the indicated point in working plane coordinates.
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Ground Ground

Figure 4.5: Pointing in a multi-planar environment: (a,b) pointing to the top surface
of the object; (c,d) pointing to the sloping panel; (e,f) if the pointing line intersects

neither of the above surfaces, it defaults to the ground plane.
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4.4.3 Accuracy evaluation

To evaluate our system, we calculated the uncertainty of the image coordinates of the
hand and reference points in our experimental setup. Using Monte Carlo methods,
these were propagated into working plane coordinates, to assess the accuracy of the

indicated point.

I. Finger tracker uncertainty

We can obtain a measure of uncertainty for the finger’s position and orientation in
the image by considering the residual offsets between modelled and observed image
edges. These are the components of the normal offsets that remain after fitting a
pair of parallel lines to model the index finger’s occluding edges, with least-squares
perpendicular error. They take into account the effects of image noise and occlusion,
as well as pixel quantisation effects, and mismatches between the model and the
actual shape of the index finger.

These offsets indicated that the image position of the finger’s mid-line could be
determined to sub-pixel accuracy (standard deviation typically o = 0.3 pixels), and
the orientation to an accuracy of 0.6°. From this uncertainty measure £2¢ bounds
were calculated for the lines [; and [i; and, by projecting these onto the ground
plane, the uncertainty in the indicated point could be estimated.

Figure 4.6 shows the results for three different configurations of the cameras,
with a 95% confidence ellipse drawn around the indicated point. The constraint line
uncertainties were much the same in each trial, but the uncertainty on the indicated
point varied according to the separation between the stereo views: when the cameras
were close together, the constraint lines were nearly parallel and tracker uncertainty
became very significant (figure 4.6a); as the baseline was increased and the stereo
views become more distinct, the constraint lines met at a greater angle and accuracy

was improved (figure 4.6¢).

II. Reference point uncertainty

In the above experiments, reference points were identified in the images by hand, and
we assume an uncertainty of 1 pixel standard deviation (in an application, techniques
exist to allow points or lines to be localised to higher accuracy, and errors may be
reduced by observing more than 4 corresponding points — this is therefore a rather

conservative estimate of accuracy).
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LEFT IMAGE CANONICAL VIEW RIGHT IMAGE

i}

%

W

|

W

\\\XM
J/B\\

Figure 4.6: Indicated point uncertainty for 3 different camera configurations: 2o

bounds for the pointing lines, their projections into working plane coordinates, and
error ellipses for the indicated point, when the angle between stereo views is (a) 7°
(b) 16° (c) 34°. The uncertainty is greatest when the camera angle is small and the

constraint lines nearly parallel.
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We used Monte Carlo simulations (based around real-world configurations of
cameras, hand and table) to assess the impact of this uncertainty on the coordinates
of the indicated point. The results (table 4.1) show that this source of error is less
significant than the tracker uncertainty, and confirm that the system is not especially
sensitive to errors in the reference point image coordinates. Again, the errors were

most significant when the camera separation angle was small.

(i) (ii) (iii)
Angle between Working plane Working plane Working plane

the cameras coordinate error coordinate error coordinate error

(with tracker noise) | (with ref. point noise) (with both)

7° 119 .040 124
16° .044 .019 .047
34° .020 .008 .022

Table 4.1: Simulated RMS error in working plane coordinates, due to (i) tracker
uncertainty derived from ‘residual offsets’ as detailed above; (ii) reference point
image noise, o = 1 pixel in each image; (iii) both. A value of 1.0 would correspond to

a positioning uncertainty of about 40cm (the width of the reference point rectangle).

ITI. Experimental accuracy

Ground truth about the position and orientation of a human finger is, of course, very
difficult to measure without intrusive equipment that could interfere with the stereo
vision system. We therefore tested the accuracy of the pointing system using an
artificial pointing device (figure 4.7). The test pointer was a white cylinder, about
15cm long, bounded by black end stops and wrapped around a rod which could be
positioned by the robot arm to an accuracy of about 3mm. Whilst not identical
to a human hand, it had approximately the same dimensions and was tracked in a
similar manner.

A number of trials were carried out with the vision system tracking the rod as
it was aligned with points on a grid on the target surface. The RMS error was 2.3%
of the working plane coordinates, or 9mm in a 40cm workspace. The maximum

reported error was 3.7% (15mm).
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4.5 Robot control application

The proposed application for this stereo pointing system is to control a robot ma-
nipulator as it grasps and places small objects on a flat table-top. This time the
four reference points were defined automatically by the robot itself in a plane a few

centimetres above the table.

4.5.1 Setup

The reference points were defined by observing the robot gripper itself as it visited
4 known points in a plane. The robot began by opening and closing its gripper,
and using the resulting image motion to initialize a pair of affine active contours
(similar to those used to track the pointing hand, described in Appendix A). It was
then tracked as it made deliberate motions across the plane. This not only defined
the working coordinate system but related it to the robot’s own world coordinate

system. Finger-trackers were then initialised as before.

4.5.2 Performance

The robot was now instructed to move repeatedly to where the hand was pointing,
in the horizontal working plane raised 50mm above the table-top. By watching
the robot’s motion, the operator was provided with a source of direct feedback of
the system’s output, allowing him or her to correct for systematic errors between
subjective and observed pointing direction, and align the gripper over objects in the
robot’s workspace.

When the distance between hand and workspace is large, the system is sensitive
to small changes in index finger orientation (as one would expect). To reduce this
sensitivity, the operator maintains a steep angle to the horizontal, and points from
a distance of less than 50cm from the plane, whilst still keeping his or her hand
clear of the robot. One can then comfortably position the gripper with sufficient

accuracy to pick up small objects (figure 4.8).

4.5.3 Using the interface to grasp objects

In experiments, it was found that two simple classes of object could be grasped

reliably without any further planning:
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Figure 4.7: Mechanical pointing device used to test the accuracy of the system. We
aligned the rod with known points on the workspace, and recorded its coordinates

as recovered by the vision system.

Figure 4.8: Gestural control of robot position for grasping, seen in stereo.
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Small cylinders. For small upright objects on the plane, the grasping operation
is trivial and can take place without any further image processing (the grasp
configuration being a function only of the target’s position in two dimensions).
Using visual feedback or under the direct control of the user’s gestures (figure

4.8), the robot could be aligned with the target and the grasp executed.

Flat targets. The outer contours of the target’s image were localised automati-
cally using a stereo pair of ‘expanding’ B-spline snakes [21] initialised at the
indicated point, enabling both the position and orientation of the graspable
surface to be estimated using affine stereo. They could then be grasped using

visual feedback as described in chapter 3.

For successful grasping of more complex objects, it is necessary to incorporate some
sort of automatic grasp planning based on a stereo reconstruction of the target
object, to analyse the shapes of its visible surfaces. This is dealt with in chapters 5
and 6.

4.6 Discussion

This algorithm for resolving the direction of pointing proves to be usable and stable
in the presence of normal image noise. It does not require camera calibration because
all calculations take place in the image and ground planes. By tracking 4 points on
the plane it can be made invariant to camera motions.

The system presented here can be extended to situations in which more than
one surface can be pointed at; however, this requires an image-based model of those
surfaces and is harder to implement with moving cameras (because a large number
of world features would have to be tracked to maintain invariance).

The main challenge to this system is the real time tracking of a pointing hand
reliably in stereo. At present, this is only possible in an environment where there
is a strong contrast between the hand and the background. Tracking is currently
implemented on a standard workstation, and could be made more responsive using
specialised hardware. Colour vision might also be useful for segmenting the hand in
a cluttered scene.

Although subjective pointing direction depends on eye as well as hand position,
it is not necessary to model this phenomenon. Instead, by providing the operator

with feedback about the objective pointing direction (e.g. having a robot follow the
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4.6. DISCUSSION

pointing hand in real time), objects and locations may be specified for pick-and-place
operations. However, in all but the simplest of robotic applications, this will need to
be combined with visual reconstruction of objects so that they can be appropriately

grasped.
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