Optimization Schemes for Neural
Networks

T.T. Jervis and W.J. Fitzgerald
CUED/F-INFENG/TR 144

August 24, 1993

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

Email: ttj10@eng.cam.ac.uk

Optimization Schemes for Neural Networks

Technical Report CUED/F-INFENG/TR 144

T.T. Jervis W.J. Fitzgerald

August 24, 1993

Abstract

Training neural networks need not be a slow, computationally expensive process. The
reason it is seen as such might be the traditional emphasis on gradient descent for optimization.

Conjugate gradient descent is an efficient optimization scheme for the weights of neural
networks. This work includes an improvement to conjugate gradient descent that avoids line
searches along the conjugate search directions. It makes use of a variant of backprop (Rumel-
hart et al., 1986), called rbackprop (Pearlmutter, 1993), which can calculate the product of the
Hessian of the weights and an arbitrary vector. The calculation is exact and computationally
cheap.

The report is in the nature of a tutorial. Gradient descent is reviewed and the back-
propagation algorithm, used to find the gradients, is derived. Then a number of alternative
optimization strategies are described:

o Conjugate gradient descent

e Scaled conjugate gradient descent

o Delta-bar-delta

e RProp

o Quickprop

All six optimization schemes are tested on various tasks and various types of networks. The

results show that scaled conjugate gradient descent and quickprop are expedient optimization
schemes for a variety of problems.

Contents

1 Introduction

1.1 The optimization problem oL

1.2 Generalization

1.3 On-line and off-line optimization

1.4 Backprop: the chainrule oL
2 Steepest gradient descent

2.1 Setting the step size L L

2.2 Linesearches

2.3 Adding momentum
3 Second order methods

3.1 Conjugate gradient descent L L

3.1.1 Avoiding the linesearch o 0oL

3.2 Scaled conjugate gradient Lo

3.3 A place for RBackprop
4 Local optimization methods

4.1 Delta-bar-delta

4.2 RProp e e

4.3 Quickpropo e e e
5 Comparisons

5.1 Thetasks e

5.2 The networks

5.3 The training schemes
6 Results

6.1 Gradient descent with momentum

6.2 The effect of RBackprop on scaled conjugate gradient

7 Summary

A RBackprop

D O o W

00 =1 =1 =Y

14
14
15
15

16
18
29

29

29

1 Introduction

Neural networks map input vectors to output vectors. They are interesting because they have the
following properties:

e They perform non-linear mappings

e Input and output can be vector-valued

They can be trained from examples

They can generalize (interpolate and extrapolate) from examples

They operate on real-valued data

e Their structure is amenable to fast parallel processing

Neural networks are parametrized by a set of weights!. The task of an optimization scheme for
a neural network is to find a set of weights that makes the network perform the desired mapping.
This mapping might classify some input data, predict the next state of a discretized system based
on the current state and the control action, produce a control action based on the current state of
a system, and so on.

For completeness, a brief description of the kind of neural networks covered here will be given
below. We do not consider radial basis function (RBF) networks, Hopfield networks, recurrent net-
works or Boltzmann machines. For a fuller tutorial of neural networks, see, for example, Rumelhart
et. al. (Rumelhart and McClelland, 1986). For a good exposition of other neural network training
schemes, see Schiffmann et. al. (Schiffmann et al., 1992).

A neural network comprises a set of weighted links and a set of nodes (see figure 1). A node
forms a weighted sum z of its input, and has an activation y, a function of 2. The function may be
linear or non-linear. For nodes in the hidden layer, two candidate functions are the tanh function
and the log-sigmoid function:

1
~ 1+4exp(—z)° ®

Nodes in the output layer often have a linear function (y = z) so that the outputs are not

y

limited in size.

1.1 The optimization problem

A neural network optimization scheme must maximize the utility of the parameters of a neural
network model, the weights. Weights are found that minimize an error, to be defined below.

A training set comprises a set of patterns p, each pattern being a pair of input and target
vectors. When the target vectors for each input are available, the training is supervised. For each
pattern p, the difference between the output produced by the network o, and the target t, is an
error vector e,:

e, =0, — t,. (2)
A scalar measure of the difference between the output and the target is the sum-squared error:

1 , U
e = 5 2 (0p(0) — 5(1)* = el (3)

g

I Network nodes often have a bias to give non-zero values when there is zero input. A bias term for each node in
the network is just like a weighted link from a hypothetical node with unit activation, and can be adapted like any
other weight. Using this interpretation means we need only talk of the weights of a network, rather than having to
say ‘the weights and biases’.

hidden layer

AN
S
DA o
SRR (%
XX W ' £7 %
s]

input layer output layer

Figure 1: A feedforward neural network for a task mapping a 5-dimensional input space to a 3-
dimensional output space. The connections for this network are layered (there are no connections
directly between the input and output layer)

where 0, (i) is element i of the output vector for pattern p and t,(7) is the target for that value,
the sum being taken over all the elements in the output vector. The error over the whole training
set is the sum of the errors e, over the patterns p:

=Y, (4
P
or equivalently

1 .
e= §Trace{ETE} (5)

where F is a matrix made up of columns of error vectors for each pattern in the training set.

The error over the training set is a function of the weights of the network. The error surface
in weight space is a surface whose height at a point is the error e over the training set when the
network weights are set to the coordinates of the point in weight space. The concept of the error
surface is crucial to understanding optimization strategies. To aid visualization a simple error
surface is given in figure 2.

Figure 2 can help to visualize the motivation behind optimization schemes, but should not be
taken as being representative of all error surfaces in weight space. Tt is easy to make very different
surfaces for even this simple system.

1.2 Generalization

Part of the utility of neural networks comes from their ability to extrapolate from and interpolate
between the training data used to set the weights. Setting the weights of a network so that this
generalization is sensible may be done in two ways.

One way is to use cross-validation. These methods use part of the data as a training set,
and part as a validation set. One cross-validation method is called early stopping. The network
is trained for a while on the training set, and then tested on the validation set. As training
progresses, the error on the validation set should fall. However, if there are unmodelled dynamics
in the data, such as noise, the validation error will eventually start to rise, and the network is
being over-trained. Training is stopped when a minimum validation error is reached, even though
proceeding might give lower training errors. Unmodelled dynamics mean that it is not desirable
for a network to be trained to the point where it can faithfully reproduce the training set, because
it would generalize poorly.

Another way to ensure good generalization is to take a Bayesian procedure when training the
weights (MacKay, 1991; Thodberg, 1993). This uses a prior probability distribution for the weights
and a noise model for the network mapping to find a posterior distribution for the weights in the

4

Error surface in parameter space

-10 10

bias weight

Figure 2: An error surface for the simplest ‘network’ possible. The network has one node, with
one weight and a bias. This is the only system for which an error surface can be plotted. The
node has a hyperbolic tangent non-linearity. Three training inputs were used: 0.3, 0.8 and 1.2.
The three targets were —0.23, —0.4 and —0.3 respectively.

light of the data. The method uses a modified error surface made up from the data error e defined
above and a ‘weight error’, related to the prior distribution of the weights. This is known in the
statistics community as ridge regression.

Generalization ability is not a feature of an optimization strategy, however. Both these methods
of generalization can benefit from fast optimization strategies, but gradient descent, for example,
does not by itself necessarily lead to good generalization.

1.3 On-line and off-line optimization

Off-line optimization methods update the weights after a complete pass of the training data, using
the error e over the whole training set. An epoch refers to a complete pass through the training
data. Thus, off-line methods update the weights after each epoch. This is also known as batch
learning.

On-line optimization updates the weights after a single training pattern (a pair of input and
target vectors). The error e, for the single training pattern p is used. On-line methods therefore
update the weights several times during an epoch.

An off-line optimization procedure can often be transformed into an on-line procedure by using
the error for the current pattern, e,, instead of the error over the whole training set, e. Weights
may also be updated after any number of input/target presentations, so on-line and off-line learning
are extremes. Introducing these changes, however, means using different error surfaces and thus
complicates the learning dynamics.

Schiffmann et. al. (Schiffmann et al., 1992) report that on-line gradient descent is superior to
the advanced techniques running in batch mode when training with large data sets. The problem
of training networks on large data sets (compared with the size of the network) is an issue not
covered by this report, and is linked with the problem of generalization. The results of this report
are valid for a training set of similar size to the number of parameters in the network. For large
data sets with redundancy, one could prune the data set or consider an on-line learning scheme.

1.4 Backprop: the chain rule

A resurgence of interest in neural networks occurred when the back-propagation algorithm (com-
monly referred to as backprop) was introduced (Rumelhart et al., 1986). This algorithm is an
application of the chain rule to neural networks. The algorithm is able to compute the partial
derivative, g—j}, of the error e with respect to each weight w in the network. g—j} is a column vector
of n elements, where n is the number of weights in the network:

Oe de Oe de 17
Oe g, [0 b 0T (6
ow Jwy’ Ows Owy,

It is important to see back-propagation as an algorithm for computing 33—5}. It is not an optimiza-
tion procedure in itself, although it is a simple step to implement a gradient descent optimization
procedure from the derivatives furnished by backprop. However, other optimization procedures
can use the gradients computed by backprop. These optimization procedures can work faster than
steepest gradient descent.

The backprop algorithm is derived as follows. Let node ¢ in the network have an input from
the other nodes given by z; and an input from the external world given by I;. The output, or
activation, of the node, y;, is denoted by:

yi = oi(zi) + I; (7)
where o; is the node function (e.g. linear, log-sigmoid or hyperbolic tangent). Thus, for nodes in

the input layer of the network, z; = 0, and I; is an element of the input pattern to the network.
For nodes not in the input layer, I; = 0 and z; is given by:

x; = ijiyj (8)
J

where wj; is the weight2 of the link between node j and node i.

Equations 7 and 8 define the forward pass of the backprop algorithm for a feedforward network.
A feedforward network is one where the connections are such that the values of z; and y; may be
computed in an order that does not lead to recursion.

We are looking for an expression for g—; for each weight w. We proceed by tracing the effect
that changing each weight has on the following chain of dependence: the effect of the weights on
the inputs to the nodes; the effect of the inputs to the nodes to the output of the nodes; the effect
of the output of the nodes to the error. Firstly, the effect that changing the weight w;; has on the

input to node j gives, using equation 8:

de de dx; Oe

= — = —y;. 9
8'wz~j (‘3:::j &wij al‘j vi ()
An expression for (,?Te in terms of the node activations y; comes from equation 7:
J
Je de Oy; Oe
5 = g =) (10)
Ozi Oyi 0wy Oyi
and finally ;Te is given by:
de de de
= + Wi —— 11
dyi dyi XJ: NCLT (1
where :Te is the direct derivative of the error with respect to the activation y;. :Te is zero for any
non-output node. For an output node and the sum-squared error criterion, the right-hand term is
zero, and jTe is y; — t;, where t; is the target value for the output node i.

2Sometimes it will be convenient to index the network weights twice, to indicate the source and destination nodes
of the weighted link. At other times it will be convenient to number the weights with a single integer, treating the
weights as a vector. The convention will be clear from the context.

Equations 9, 10 and 11 define the backward pass of the backprop algorithm. It is so-called
because the direct derivatives of the errors at the output nodes (equation 11) are evaluated first,
and the results propagated backwards through the network towards the inputs.

2 Steepest gradient descent

The simplest approach to finding suitable weights is to follow the gradient of the error surface in

weight space. Let the set of weights at iteration ¢ be denoted by w(i). Then the update rule for
gradient descent is given by:

w(i+1) =w(i) —ng—;i (12)

where g—; ; 1s the vector of gradients of the error e with respect to each weight w evaluated at
iteration ¢, and 5 is a learning rate parameter. The value of the learning rate parameter, or step

size, is crucial for the success of the algorithm.

2.1 Setting the step size

A small step size leads to slow learning and the possibility of getting trapped in local minima of
the error surface. A large step size can overshoot the minimum. The weights may then be set to
a point in weight space on a high plateau of the error surface. A plateau in the error surface will
exist where the nodes have saturated activations. Here, the gradient is small. The small gradient
then means the large step size is irrelevant and the network learns slowly again, but this time from
a high error. Thus both small and large step sizes are undesirable.

The best step size depends on the error surface, itself a function of the architecture of the
network (the number of nodes and the connections between them) and the training data. The
following heuristic to set n includes a dependence on the network architecture and the training
data:

_0.01
=7
o

|55

where || g—;“ is the Euclidean norm of the error gradient at the first iteration, so
2

2 Je

= — 1 . 14
=2 (aw) (14)

w

Equation 13 has been used in the optimization schemes below to set a step size when one is

not specified by the optimization strategy. In practice it appears useful for a variety of different
architectures and training tasks.

n (13)

|51

dw

2.2 Line searches

A line search is a search for a minimum of error along a line. It avoids the problem of setting a
fixed step size. The search may be exact, or inexact, depending on the method and the stopping
criterion.

An inexact line search samples the error at a number of points along the search direction.
The search returns the point with the lowest error from among the samples. Samples at points
nearer and further than the length of the default step size given in equation 13 might be chosen.
The dynamic range of the steps can be modified after each iteration, based on the position of
the minimum sample. Such a procedure avoids sticking to a fixed step size, but is inefficient in
its sampling strategy. The same number of error evaluations might be done at more appropriate
places, based on the results of previous evaluations.

A more efficient line search first finds an interval, along the search direction, in which a minimum
exists, and then finds a minimum within the interval. The interval is characterized by three points.

The central point has a lower error than the outer two. The interval therefore brackets a minimum.
The interval comprises two sections. A point within the larger section is then sampled, giving four
samples. From the four samples, three can be found which form another, narrower, interval that
brackets a minimum. The procedure may be continued until the interval is small.

A line search inevitably requires several calculations of error to find a minimum. Gradient
information can also be used to improve the search, at further computational cost. The value of a
good line search has to be judged against its computational cost. There is a playoff between the
effort that should be made to minimize the error in the line search, and the effort that should be
made searching in other directions.

2.3 Adding momentum

Adding a momentum term to gradient descent alters the search direction by adding some of the
previous search directions to the current gradient. In practice, adding momentum speeds conver-
gence.
Firstly, define the weight change dw (i) for iteration i:
w(i+ 1) =w(i) + dw(q). (15)

Momentum is used as follows:

dw(i) = —nge| +adw(i—1) (16)

where a = 0.9 is the momentum term and dw (i — 1) is the previous weight change. The value of
« is usually set to 0.9 independent of the problem and the architecture of the network.

3 Second order methods

Second order optimization methods make use of second derivatives of the error in weight space.
The key to second order methods is the Hessian matrix H.
The Hessian matrix is a matrix of second derivatives of e with respect to the weights w:

dae dae dae
dw? dw1dwa Qw10wn
5 6266 6262 s 6266
wadwy dw wWalWy, \
o= 2 (17)
__Oze 83 | D¢
Sw, 0wy Ow, 0wy dw?

The Hessian contains information about how the gradient changes in different directions in
weight space. It answers the question “How does the gradient change if I move off from this point
in that direction?”. Let the Hessian H be evaluated at a point w in weight space. Let us then
consider a direction v from this point in weight space. The product Hv is the rate of change of
the gradient along the direction v from the point w.

The Hessian is useful for calculating both search directions and step sizes for optimization
schemes. It is also large and difficult to compute. Fortunately there are a number of techniques
that can implicitly calculate the Hessian, avoiding the need to calculate it or store it explicitly.

3.1 Conjugate gradient descent

The idea behind conjugate® gradients is to choose search directions that complement each other.
This is meant to avoid the possibility of ‘undoing’ the minimisation of previous iterations, by
choosing appropriate search directions.

Assume the error surface is a quadratic in weight space:

30ne definition for ‘conjugate’ from Webster: ‘having features in common but opposite or inverse in some
particular’

1
e(w) = Tw+ §WTHW (18)

where ¢ is a constant and H is a Hessian matrix, constant throughout the weight space. The
search direction at iteration ¢ is denoted by v(i). The searches directions are then conjugate in
the following sense: for all ¢ # j,

v(i)l Hv(j) = 0. (19)
It is not necessary to compute the Hessian to find a set of conjugate directions. Conjugate
directions may be generated as follows. Set the first direction, v(1), to minus the gradient — g—i .
Set subsequent directions using:
. E) . .
v(i) =— ﬁh + B()v(i—1) (20)

where 3(i) is a scalar value like an adaptive momentum term. 2 may be defined in a number of
ways, each of which produces conjugate directions. The differences between the definitions show
themselves when the error surface is not quadratic. Two definitions for 8 are given below. The
Polak-Ribiere rule (Hertz et al., 1991) for 8 is given by:

de de \1' de
L (gl gl)T gl
B(l) - de T de
dwli—1 dwli-1

The Hestenes-Stiefel rule (Mgller, 1993) for 3 is given by:

(21)

N (g—ih_l_ aa—ih)Taa—ﬂi
pli) =

v(i)t g—ib_l

(22)

and is reported to be more robust to non-quadratic error surfaces (Mgller, 1993). In both equations,
g—g ; 1s the column vector of partial derivatives of the error e by each weight w in the network at
iteration i.

Conjugate gradient descent will reach the minimum of a quadratic error surface in, at most,
as many steps as there are dimensions of the weight space. For non-quadratic error surfaces, the
minimum may not have been reached after this number of steps. Instead, the algorithm is restarted
by setting S to zero for a step, and the procedure continued as before.

Conjugate gradients give only a search direction, not a step size. Furthermore, the power of
conjugate gradients is only apparent if the error is minimized along the current search direction.

This is usually done with a line search, the difficulties of which have been outlined above.

3.1.1 Avoiding the line search

If the error function is quadratic, or has a slowly varying Hessian, a good approximation to the
optimal step size for a search direction can be found.

If the error function is minimized along a search direction, the gradient of the error function at
the minimum is perpendicular to the search direction. Hence:

T 9
v o5 Wirv = 0. (23)
where g—z} ——— is a column vector of partial derivatives of e with respect to each weight evaluated

at w4 rv, v is the search direction and r is the step size along the search direction to the minimum.
Assuming a quadratic surface, equation 18 can be used to find an expression for the gradient:

2|y =c+Hw (24)

so the gradient at w + rv is given by:

g_;wwv = c+ Hw+rv) (25)
= ¢+ Hw+rHv (26)
= L w T rHV. (27)
Substituting equation 27 into equation 23:
vT(g—;W—i—rHv) = 0 (28)
ng—fU W—i—rvTHv = 0. (29)

Rearranging equation 29 gives an expression for r, the distance to the minimum along the
current search direction v:

v’ 3—5 w

r= Ty (30)

Equation 30 has been avoided in the past due to the effort of finding the Hessian H. The

Hessian H may be approximated by a method of finite differences, or the product Hv may be

approximated by taking a difference of gradients. However, the equation becomes useful again in

the light of the RBackprop algorithm, given in the appendix. RBackprop gives the product Hv

computationally cheaply, and exactly, although this is not necessarily worthwhile for non-quadratic
error surfaces.

3.2 Scaled conjugate gradient

Mgller (Mgller, 1993) has introduced a variation on conjugate gradient descent that takes some
account of the non-quadratic nature of the error surface in weight space. This method also benefits
from RBackprop.

The quadratic optimal step size given in equation 30 gives the distance to the turning point
of the error along the search direction under the quadratic assumption. This turning point may
be a maximum or a minimum. The Hessian can be used to find whether the turning point is a
maximum or a minimum.

The product Hv of the Hessian H and a direction v is the rate of change of gradient in the
direction v. The expression v Hv is negative if the gradient is increasing along the direction v,
and positive if the gradient is decreasing along the direction v. Within the quadratic assumption,
the Hessian is constant, and the sign of the change of gradient along the direction is constant.
If the gradient is increasing, the graph of the error along v is a cup, and there is a minimum,
otherwise there is a maximum.

To monitor the sign of the product v7 Hv, and therefore the type of the turning point, define
é by

§=vIHv. (31)

If § < 0 for non-zero v, there is a minimum along the direction v. But for non-quadratic error
surfaces, it may be that § < 0 and yet there is still a minimum to find, since H changes along v.
Mgller’s scaled conjugate gradient method takes account of this.

Mgller introduces two new variables, A and A, to define an altered value of §, . These variables
are charged with ensuring that & > 0. Although this does not affect the error surface, and the
Hessian with the quadratic approximation will still suggest there is a maximum along the search

direction, his method produces a step size that shows good results in practice.
d is defined as follows:

§=0+ (A —)\)vTv. (32)

The requirement for § > 0 gives a condition for A:

- g .
A>A— (33)

Mgller then sets A\ = 2 ()\ — VQ‘Z—V) to satisfy equation 33 and so ensures § > 0. This allows for

a substitution in equation 32 to give:

d=—-0+ v, (34)

Subsequently, § is substituted for expressions that would otherwise involve §. Thus the step

size r is found by substituting d for § in equation 30:

T de T de
r=—L uw_ T bu_ (35)
) d—Ivly

It is now necessary to specify how to update the scale A. This is based on a measure of fit
between the quadratic approximation and the real surface. The fit is measured by the variable A,
and is a ratio between the actual change in error e produced by stepping along the search direction
v by an amount r, and the predicted change in that error based on the quadratic approximation:

€ —e€ .
A= lwirv lw (36)
6q|w+rv —elw
where 6q|w+rv is the quadratic approximation of the error at w + rv, given by the first three
terms of the Taylor expansion:

1
Iy + =72 (37)

_ 8
6<1|w+7~v =elw + 750 |w 9

where a term that would naturally be v7 H |, v has been replaced by the ‘new’ value for d, J.
Substituting equation 37 into equation 36 gives:

A = 6|W+r; — elw (38)
(e| +rle v+lr25)—e|
W ow |'wW 2 W
A = 6|W+"T" ~ clw _ (39)
rg—; w VT %735

and substituting for r (equation 35) gives:

A — 6|W+1'V — elw (40)
VT2eN 5oy T vT2e\? s
(77%) gl v 3 (55) 0
_ 6|W+7"V — elw :
A - (VT&)2 (VTﬁ)Q (4].)
— ow) 4 1 Sow
~ d 2 d
20 (el — €
A — (|W |W+1"V)) (42)
(vT 22)”

A 1s then updated as follows:

1) if Ai) > 0.75
A+ 1) =4 M) + YERROE=20) if 0 < A(>i) < 0.25 (43)
A(7) otherwise

where A(7) is the value of A at iteration i.

11

Finally, a step is only taken if A > 0. If A < 0, the next iteration is started at the current
point in weight space, in a new conjugate direction. The algorithm is started by setting the first
value of A, A(1), to be small. For the comparisons below, A\(1) = 107°.

3.3 A place for RBackprop

Mgller uses a difference of gradients to approximate § above. His approximation for §, 5, is given

by:

VT (22 _ e
S dw IW+4nV ow

;) (44)

where 7 is a scaled step along the direction v, given by:
n= e (45)

where 0 < ¢ < 1074,
RBackprop (given in the appendix) calculates H|, v exactly. This avoids the need to substitute

§ for § above, and eliminates the variables ¢ and n.

4 Local optimization methods

The methods covered so far have grouped the weights together to find a search direction and step
size. The weights were updated in proportion to their contribution to the global search direction
and step size.

Local optimization methods consider local changes for each weight. The methods are not
gradient descent methods. The step in weight space is not necessarily along an error gradient.
Each weight is treated as though the others did not exist. Because the methods below make use
of the previous step’s local gradients, they are still second order methods.

4.1 Delta-bar-delta

This technique uses gradient descent for the search direction, and then applies individual step sizes
for each weight, which means the actual direction taken in weight space is not necessarily along
the line of the steepest gradient. It was introduced by Jacobs (Jacobs, 1988).

The basic idea is as follows: if the weight updates between consecutive iterations are in opposite
directions, the step size is decreased, otherwise it is increased. This is prompted by the idea that
if the weight changes are oscillating, the minimum is between the oscillations, and a smaller step
size might find that minimum. The step size may be increased again once the error has stopped
oscillating.

Let n(i) be a vector of step sizes, one for each weight wy, at iteration i. Then 7 is updated as:

n(i+ 1) = n(i) + én(i) (46)

where (i) is a vector of changes for each learning rate, given by:

K if §5(i—1) | >0
(D) =4 —gmy (i) if Fe(i—1)2=| <0 (47)

0 otherwise

where dn, (i) is the learning rate for weight wy at iteration ¢, and

or(i) = (1 —0) 2= | 400k (i —1). (48)

6wk

12

This procedure introduces three extra parameters that need to be set: x, ¢ and 8. Jacobs finds
values of the parameters that work well for particular tasks, but for the simulations below ¢ = 0.1,
= 0.7, and k was set to the same value as the initial learning rate for each weight, a vector of
multiple copies of the default step size given in equation 13.

4.2 RProp

Schiffmann et. al. (Schiffmann et al., 1992) found RProp to be the fastest training algorithm they
tested in their review of training methods.
RProp uses different step sizes for each weight, like delta-bar-delta. However, it only uses the
sign of the local gradient a?;i when updating the weight wg, not its magnitude.
The vector of step sizes n is defined as follows:

min(1.2m (i = 1), max) i 55| 37| >0
N (1) = max(0.57; (¢ — 1), Jmin) if ;Tek Z.aaTi - <0 (49)
(i —1) otherwise

where fmax and Nmin limit the size of the step above and below. The values used in the tests below
were Nmax = 1 and Nmin = 10~7. The maximum value was chosen to be about a tenth of the
expected range of the weights. The minimum value was chosen to be about the expected necessary
resolution of the weights. Reducing nmin to 10=4% produced a lower final error for some tasks, but
did not lead to faster or slower training otherwise. The step sizes were initialised using the default
step size given in equation 13.

The weights were updated as follows:

de
i 6wk

o de : : de
Swy (i) :{ sign () (@) 0 50,

0 otherwise

>0
i-1 (50)

such that w(i + 1) = w(i) + dw(é). A further detail concerns the stored value of the previous

de de de
Owg ! Qwik Z.a’wk

gradient

. If, for a particular weight < 0, the value of the stored gradient
1 1

i— i—

for that weight would be set to 0 for the next time step.

4.3 Quickprop

Quickprop (Fahlman, 1988) assumes each weight has a quadratic error curve. It implicitly assumes
the Hessian is diagonal. The technique works well in practice, but requires adjustment to avoid
instability.

Consider any single weight in the network. This weight is assumed to affect the error inde-
pendently of the others. Furthermore, the graph of the error against the value of the weight is
assumed to be a quadratic. A quickprop step sets the weight to the minimum of the quadratic
approximation.

This step may not be possible. Firstly, the quadratic may have a maximum and not a minimum.
Secondly, there may not be enough information to approximate the quadratic. This can happen
when the procedure is first started, but also if there has been no weight change between consecutive
epochs. This is because the quadratic is approximated using a difference of gradients between the
current and the previous epoch.

When the quickprop step breaks down, a gradient descent step is used to keep the procedure
moving.

The details of the algorithm are as follows. A quickprop step for iteration i, dwg, (%), is defined
by:

. Do) fw(i—1) _
dwqp (1) = _ge|z—6e (51)

Bw |4 (’)w|i—1

13

where dw(i—1) is the weight update at the previous epoch, not necessarily the same as dwgp, (1—1),
since adjustments are necessary to improve convergence. When the denominator of equation 51 is
zero for a weight, the quickprop step for that weight is set to zero.

The next steps mend the quickprop approximation. Firstly, the weight changes are limited by
setting them to be the minimum of the quickprop weight change and 1.75 times the previous weight
change. Secondly, steps are not taken that find a maximum of the quadratic approximation. These
steps are set to 1.75 time the previous weight change. Finally, a gradient descent step is found to
add to the weight changes found above. This starts the algorithm when all the quickprop steps
are zero, and helps to change weights whose previous changes were zero.

The adjustments amount to a hybrid weight change dw(7), given by:

5Wk(i) — { gwqpk(l.) - naézuek (Z) if a(‘iuek (Z) aéi:k (l - 1) <0 (52)
Wap (7) otherwise
where 7 is a fixed step size, that may be set using the default size of equation 13.
A number of alternatives around the basic idea of the quickprop step can be used. For example,
the gradient may be adjusted by adding 0.1 to the values of o}, (2) used in the backprop algorithm
used to calculate g—; (see equation 10). The motivation for this step is to avoid the flat areas of

the derivative of the node activation functions slowing convergence. One can also use a modified
error function. Fahlman details both these modifications (Fahlman, 1988).

5 Comparisons

The power of an optimization scheme rests on the appropriateness of the approximations made
about the error surface. For example, if the error surface is well approximated by a quadratic,
conjugate gradient methods may be expected to perform well. If the error surface is not quadratic,
conjugate gradient will perform poorly. This is not to say that conjugate gradient descent is a
poor optimization scheme. It says that the performance of an optimization scheme will depend on
the match between the assumptions inherent in the scheme and the error surface of the task.

In practice it is desirable to know how robust an optimization scheme is, that is, how well
an optimization scheme works on different training tasks. An indication of the robustness of the
various schemes discussed above is given in a comparison of their performance for different tasks.

Among the factors that will affect the convergence of a neural network optimization scheme
are:

1. The function to be mapped,
2. The network’s node functions,
3. The architecture of the network,

4. The initial weight settings and the starting point in weight space.

The comparisons below vary the first three factors. The forth was not studied in detail. Five
training sets are used to show variation over the function to be approximated. Networks with tanh
hidden units and log-sigmoid (equation 1) hidden units are compared. Finally, networks with and
without direct connections from input layer to output layer are compared.

5.1 The tasks

To measure the performance of the training schemes described here, five different training tasks
have been set. They are:

sin Sine function

abs Absolute value function

14

xor Exclusive-or
10encoder 10-5-10 encoder

simpole 5 input, 4 output real-valued control plant data

The sine and absolute value tasks have been included because good performance on the sine
task was not necessarily followed by good performance on the absolute value task.

The sine task used input values x = [-3,—2.8,—2.6,---,2.8,3]. The targets were sin(x). The
absolute value task used the same input values. The targets for this task were the absolute values
of the inputs, |z|.

Exclusive-or is a standard task for neural networks, of little practical importance but often
quoted in benchmark tests. The four input patterns were (0,0), (0,1), (1,0) and (1,1). The
targets were respectively 0.1, 0.9, 0.9 and 0.1.

The 10-5-10 encoder task required the network to produce a description of the 10 input nodes
in the hidden layer, so that the input could be reproduced at the output. Ten input patterns were
used, the ten rows of a 10 by 10 identity matrix, so the inputs alternately turned on a single node
of the input. The targets were identical to the inputs for this task. This task is trivial for a fully
connected network, but it is still a valid training task to compare different optimization schemes.

The control plant data was generated from a simulation of an inverted pendulum system (Barto
et al., 1983). The state was set to random positions in the four-dimensional state space. A force
was applied, and the state 0.02 seconds after the force was applied was found by Euler integration
of the accelerations. The initial state and control action are the inputs to the network, the change
in the state is the target. 270 input/target pairs were used.

5.2 The networks

Different networks were tried for all the tasks. Some networks were not naturally suited to the
tasks, for example the encoder problem is trivial with a fully-connected feedforward network.
However, each task forms an error surface for a network, and so the optimization schemes may still
be assessed on their relative performance.

The networks were varied around a default network. The default network had a single hidden
layer of five tanh nodes, and an output layer of linear nodes. The number of input and output
nodes was defined by each task. The connections linked the input layer to the hidden layer, and
the hidden layer to the output layer. This is a layered connectivity.

Comparisons were then made by modifying the default network by using 2 and then 8 hidden
nodes. Then the performance was compared by modifying the default network to use log-sigmoid
instead of tanh hidden nodes. Finally, results for a default network modified for full connectivity
were obtained. Full connectivity means layered connectivity with an extra set of weights linking
input and output nodes. Full connectivity makes the encoder problem trivial, but it is also the
sensible connectivity for a network designed to predict the next state of continuous control plant
given the current state and control action, since in this case the target is only a perturbed version
of the state component of the input vector.

The initial weights for all the networks were sampled from a zero-mean Gaussian distribution
with a variance of 0.04.

5.3 The training schemes

The training schemes compared in the results are:

gdmom Gradient descent with momentum

hscgrbp Hestenes-Stiefel conjugate gradient descent with RBackprop
scgrbp Scaled conjugate gradient descent with RBackprop

rprop RProp

15

deltabardelta Delta-bar-delta
qp Quickprop

gdmom used a momentum parameter a = 0.9. Section 6.1 discusses tuning the parameters of
this scheme.

The Hestenes-Stiefel conjugate gradient scheme used the Hestenes-Stiefel rule (equation 22 to
find conjugate search directions. The step size was set by the quadratic-optimal step size given in
equation 30. RBackprop was used to calculate the product of the Hessian and the search direction.

The scaled conjugate gradient method also used RBackprop to calculate the product of the
Hessian and the search direction. The details are given by Mgller (Mgller, 1993), save for the
substitution of RBackprop in place of Mgller’s approximation to compute the product of the
Hessian and the current search direction. Although the accuracy of RBackprop is not strictly
required (since the product is used in an approximation), it eliminates an extra parameter from
the algorithm.

6 Results

The results plot the training error for each optimization scheme over a series of iterations for the
different tasks and networks. Each scheme was run for 10° floating-point operations. This is why
plots of the error against the number of epochs have different lengths.

The majority of the results are given as plots of training error against the number of floating-
point operations used by each optimization algorithm. Using flop-counts rather than execution
time allows the data to be independent of variations in the computing load not directly related to
the optimization, and gives an indication of the performance that might be expected using careful
programming.

Figure 3 shows the difference between plotting against computational effort, and plotting
against the number of epochs. Gradient descent is computationally cheap per epoch. For the
same number of floating-point operations, more epochs of gradient descent may be completed.
The graphs show, however, that the extra epochs do not make up the difference. Quickprop is
also able to do many iterations for the same computational effort. However, quickprop’s extra
epochs allow it to compete with the conjugate gradient techniques, often winning, given the same
computational constraints. The graphs are not identical in length, because the granularity of
the floating-point requirements of the various procedures in the training loop interfere with the
stopping criterion of 10° flops.

The link between floating-point operations and cpu time is shown in figure 4. As should be
expected, the curves are similar. Plotting the training error against flop-count rather than cpu
time allows the results to be independent of the available computational power, and to a certain
extent the efficiency of the schemes’ implementations.

Figure 5 gives the relative performances of the optimization schemes for the single-input, single-
output sine and absolute value tasks on the default network of 5 tanh nodes in the hidden layer,
and a layered connectivity. These tasks were chosen for comparison because schemes that worked
well on sine were found to work less well on the absolute value task. Figure 6 gives the relative
performances of the optimization schemes for the xor, encoder and plant data tasks.

Figures 7 and 8 plot the results of the training schemes on the training tasks for a default
network modified by using only 2 nodes in the hidden layer. Figures 9 and 10 plot the results using
8 hidden layer nodes.

The effect of changing the non-linearity in the hidden layer is shown in Figures 11 and 12.
These figures plot the training error for the tasks and the optimization schemes using the default
network with 5 log-sigmoid hidden layer nodes.

Finally, the effect of changing the connectivity is shown in figures 13 and 14. These figures plot
the results when a set of weighted links is added between the input and the output nodes.

16

sin

s gdmom ——
Y hscgrbp —+—
A scgrbp -
B deltabardelta -
. rprop -=--
01 f P > 1
5 ¢
T R
g LR
= Tﬂm % A o
® EEEEB R \\A\ x
%Q b : TAL o O
m*# * \A\\A o Ko
G\ . \\A\\A<A
Rk T
001 | " T e i
k! e N :*A
0 20 40 60 80 100 120 140 160 180
epochs
sin
~a gdmom ——
\ hscgrbp —+—
AT scgrbp o
\ _ deltabardelta -
U rprop -a--
01 ap *x
S
()
e
[
s
x
0.01 T T R 1
K- _— A\A\#
Il Il Il Il - o Il
0 200000 400000 600000 800000 1letO6 1.2e+06

flops

Figure 3: The upper graph plots the training error against epoch for the sine task on the default
network. The lower graph plots the training error against the number of floating-point operations.
The advantage of the advanced schemes over gradient descent appears diminished in the lower
graph, but it is still clear that they are more efficient.

17

sin

12 T T
gdmom ©
hscgrbp +
10 + @g%bp o 1
deltabsardelta =
2 °p rprop e
8 I X8 w * A
%] * g i
E T
8 6 L x & # i
g . & P
a L& E
(&) Og< =
4l SLw .
Ze
He
2]
£
L]
0 Il Il Il Il Il
0 200000 400000 600000 800000 let06 1.2et06
flops

Figure 4: The linear relationship between flops and cpu seconds verifies that the floating-point
count is linearly related to the computation time.

6.1 Gradient descent with momentum

Gradient descent with momentum is a commonly-used training algorithm, and so we devote a small
section to it here. Figure 15 shows the results of training the default network on the simulated
pole data using the following schemes:

gd Steepest gradient descent;

gdmom Gradient descent with momentum, e = 0.9;

gdmomO0.1 Gradient descent with momentum, a = 0.1;

gdmomB Gradient descent with momentum, equation 53, @ = 0.9;

gdmomBO0.1 Gradient descent with momentum, equation 53, @ = 0.1;
qp Quickprop.

All the gradient descent schemes used the default step size given by equation 13. Updating
with equation 53 sets the weight change dw by:

dw(i) = —(l—a)ng—mi—}—ozﬁw(i— 1), (53)

differing from the conventional update given in equation 16 by an added (1 — «) term.

The details of the quickprop scheme have been given above. It is included in the graph to
emphasize its improvement over standard gradient descent.

The graph shows that gradient descent with momentum, setting o = 0.9 and using equation 16,
is the best first-order gradient descent method tried. It was also the best first-order method when
tested with the other tasks.

The results show that the second-order methods do better. It is possible that a first-order
method could be found with more appropriate step size and momentum parameters, which might
approach the performance of the second-order methods. However, the effort required to tune the
parameters seems pointless, since the second-order methods already work.

18

sin

S gdmom ——
\ hscgrbp —+—
AT scgrbp o
\] deltabardelta
(R rprop -&--
01t ap *-- 1
<)
o
jo))
£
c
T
x
001 | e e R :
Ko s e *\A\Jr
0 200000 400000 600000 800000 let06 1.2et06
flops
abs
W:AF [y % T T T
AR gdmom ——
‘\“ \ \ hscgrbp -
1E 8 R N scgrbp B
NN s deftabardelta -
\ ST X A
D e A rprop -2
. R RNCY % ap —*--
S X L
T \ N X
X A “ : |
8 0l *) T,
= Al)
g * * K Kx;A -
) O \ x
>s< \\\+\
0.01 } How e T .
' R N e T,
%—;%*;*7%— .
0 200000 400000 600000 800000 let06 1.2et06
flops

Figure 5: The default network trained to perform (upper) the sine mapping and (lower) the absolute
value mapping.

19

xor

T T
gdmom ——
hscgrbp -+

CEe--

scgrbp
deltabardelta -

1e-10

training error

1e-20

X

1e-30

e N Ep e K e e X
! ¥ i [RETSRER) *E i ; h

0 10000C20000B0O000ERI0000G0000@B0000X0000BO000®000001e+06
flops

10encoder
gdmom ——
hscgrbp -+

scgrbp -

deltabardelta
DN rprop -a--
qp —*--

training error
-
‘

0 200000 400000 600000 800000 let06 1.2e+06
flops

simpole
1 [T T T]
= gdmem ——
: . hscgrbp ——
N e deltabardeita -~
AN . rprop -e--
N gp ~*--

training error
/

01} .]

0 200000 400000 600000 800000 let06 1.2e+06
flops

Figure 6: The default network trained on xor, an encoder problem and a simulated control system.

20

sin

1 T T
e gdmom ——
:. \\'\ * * * * * * * * * * * * * * :lwl bp e
AN scgrbp -
AL deltabardelta -
i\ rprop —+--
01 F', ap > A
§ v
()
jo))
£
[
T
0.01 | \\&\\K;Zé\%l:%';gk'"ﬂ og o
e
‘8
0.%1 Il Il Il Il Il
0 200000 400000 600000 800000 1let06 1.2e+06
flops
S
()
o 01F e E
=
<
- . \
D""B»rg,,:*“*wu;_#»
0.01 B e R T T e g |

0 1000020000(B0000EI0000G0000EBO000T¥0000B0000®O00001e+06
flops

Figure 7: The default network with 2 hidden nodes trained on sine and absolute value functions

21

xor

1 T T
*
) X
le10 | :
s %]
o ! i
j= . B
£ i
i i . i
Ju 1e20 Lo
1630 | .4 |
| KRk ke —%:%na‘}a»%—r—‘%r—f——%—r%—m%ﬁ»%cxﬂr%}—%ﬂ
0 10000C20000CB0000EI0000G0000E00000000BO000®0O00001e+06
flops
10encoder
gdmom ——
hscgrbp -+
scgrbp -
L deltabardelta
i Y rprop -&--
ap -*--
s
o 1}
£
=
g
0 200000 400000 600000 800000 1let06 1.2e+06
flops
simpole
L T . T
N - giimor ——
\ hscgrbp -+---
N\ scgrbp =
deltabardelta
\ rprop -=--
= \ \% ap
e \ |
S 01t \
j= N\
= \
s \ .
\\E\ Y
S X
\\\\5&31\ -
TR :;;:Z\’;*E:’i’)?:’:Ti >>>>>> -

0 200000 400000 600000 800000 let06 1.2e+06
flops

Figure 8: The default network with 2 hidden nodes trained on xor, an encoder problem and a
simulated control system.

22

sin

1 T T
TS gdmom ——
T hscgrop ——
| " scgrbp -
X § deltabardelta -
B el T e rprop -+--
01F = S e ap * o
§ * \m\ AN X -,
as ¥ . _ A v X
2 T,
= B A
£ B =
oot f B ;
0.%1 Il Il Il Il Il
0 200000 400000 600000 800000 1let06 1.2e+06
flops
abs
gdmom ——
hscgrbp -+~
1 scgrbp 8-
A o =
* rprop -&--
= % ap -*
=
o
o 01F * E
=
B *
= *-
-
0.01 E

0 1000020000(B0000EI0000G0000EBO000T¥0000B0000®O00001e+06
flops

Figure 9: The default network with 8 hidden nodes trained on sine and absolute value functions.

23

1 T T T T T T
x., hscgrbp -+
“x scgrbp -
y deltabardelta >
rprop -+-- |
1e-10 e ‘ qp -*--
§ R Gy S VRPN S SN
o .,
2 x
k= ",
g 1e-20 . 1
X,
o
N §
\X
1e-30 ‘ : b
‘ ‘ ‘ |‘3,,,,D,,‘,,B,,,,E,,‘?éﬂi,*,ﬁi?ﬁG,*,fg"?ﬁ,@’ﬁf,p‘_ﬁé:Eﬁéf,ﬁé:‘j(
0 10000(20000(B0000ERI0000G0000EBO000d0000BO000®O00001e+06
flops
10encoder
gdmom ——
hscgrbp -+
scgrbp -
1 deftabardelta
o rprop -a--
§ *E\\« \&\ e X ®
o] D= S Ko x
2 K eRa
y ‘\\ e BBy
\ "
01 %"*’-*5\%7—%&‘»%%-* 4
0 200000 400000 600000 800000 1et06 1.2e+06
flops
simpole
T, x rprop -&--
_ \\ T qp -*-
IS ™ *
] N
2 S
£ “
T o
— ‘\\\
.
AN
01t} |

0 200000 400000 600000 800000 le+06 1.2e+061.4e+061.6e+06
flops

Figure 10: The default network with 8 hidden nodes trained on xor, an encoder problem and a
simulated control system.

24

sin

1 T T T
gdmom ——
hscgrbp —+—
scgrbp -

deltabardelta -
0-1 | *\ \\ TN . qp Tx -]
§ ~ 5;::1;‘ XKoo . .
HS N “x ‘A*ijig;‘:fﬁ\ Keowo . .
: s~ o
8 o JAJ%:%"#‘%A
- 001 | TEg
0.%1 Il Il Il Il Il Il Il Il Il
0 1000020000(B0000EI0000GO000EBO000F0000B0000®O00001e+06
flops
abs
== ‘J4 T T T
\ Y gdmom ——
AR hscgrbp -+
1 scgrbp e
R St Y Yeltaberdefta >~
3 rprop —=--
- Y ap =%
() L ' x
o 0.1 x
£
[
ju
0.01 F Eif—,gif:é.é,:gﬁiff
* * - x 4
.
—
0.001 ! ! ! ! ! ! ! ! \\+>>T+-7>+
0 1000020000(B0000EI0000GO000EBO000T¥0000B0000®O00001e+06

flops

Figure 11: The default network with log-sigmoid non-linearities trained on sine and absolute value
functions.

25

xor

1 - | S T U = | 3
N gdmom ——
o hscgrbp -+
NN scgrbp e
SN deltabardelta -
1e-10 Yoo rprop —&-- 4
LN qp -
5 . N
&
D
£ B
'§ 1e-20 + X —
1e-30 . 4
B e T T T R s Rt
0 10000C20000¢B0O000EI0000GO000EGBO000X0000BO000®O00001e+06
flops
10encoder
gdmom ——
hscgrbp -+
scgrbp -
deltabardelta -
rprop -&--
qp -
S
> 1]
g e
!
R o W G
0 200000 400000 600000 800000 let06 1.2e+06
flops
simpole
1 L . T T T T]
N N gdmom ——
\ hscgrbp -+---
\ scgrbp =
\ . d ardelta
X rprop -&--
N\ qp -
<] \ |
& N\
D N
£ \ *
(= \\
! \
= \ .
0.1 \ 1
\ |
B . PR
\\\\"“\«ﬂa»‘w,\;“\; S
T—8

0 200000 400000 600000 800000 1let06 1.2e+06 1.4e+06
flops

Figure 12: The default network with log-sigmoid non-linearities trained on xor, an encoder problem
and a simulated control system.

26

sin

1 T T T
gdmom ——
hscgrbp -+

. scgrbp e
o1 deltabardelta < |
. rprop -&--
_ y qp —*--
9 A . T
o s %\‘5’; .
2 001 F Bl e ST e 3
= . Brg HOTH
3 . - TRk x
- + e
ll’:ﬂ;z’:_ 2. e
0.001 | R
0.0001 L L — e
0 10000@00006B0000EH000®mO000EBO000dr0000EBO000®000001e+06
flops
abs
gdmom ——
hscgrbp -+
1 scgrbp B
x deftafardelta -~
. rprop -a--
_ .. qp —*--
S .
o ‘ W '
? 0.1 \\\ ‘A\\A x E
c % RN ..
@ . ’ T ";‘ —a %
= TN ;
.. . TR :%‘t‘%f’%t-;zﬂf’;%:*:;g-F
Begl
0.01 | e g E
oy
-
L 1 L L o L
0 200000 400000 600000 800000 1e+06 1.2e+06
flops

Figure 13: The default network with full connectivity trained on sine and an absolute value func-
tions.

27

xor

1 T T
gdmom ——
hscgrbp -+
scgrbp -

deltabardelta -
| rprop -&--
1e-10 ap -
& |
D 1
=] [N Y
= FR T)
g 1e-20 P RN x,
o ! \X\ X,
| \\ X
" .
1e30 IL_? RN = B R N M=
0 10000C20000¢B0O000EI0000GO000EGBO000X0000BO000®O00001e+06
flops
10encoder
1 ﬁ\.mx\f - o T ~ T T T
TBew g AL e e gdMOM. ——
x \E\—‘EL_E\Q\\‘\\A\ hsogl’ﬁp R
* E‘“«Eﬁégqﬁ scgrbp -
* “8.g _deltabardelta -
S erprop 4
e
5 x
5 .
=4 1e-10 .. .
£ X
= \
g .
= .
1e-20 " 4
0 200000 400000 600000 800000 let06 1.2e+06
flops
10 A\\ T T]
\ gdmom ——
hscgrbp -+
scgrbp -
deltabardelta -
\ 3 rprop -&--
_ N\ "\ qp -*-
S N
5 N\
e N
£ N
5
= \ %
1r \\&; . b
— % B
e

0 200000 400000 600000 800000 let06 1.2e+061.4e+061.6e+06

flops

Figure 14: The default network with full connectivity trained on xor, an encoder problem and a
simulated control system.

28

6.2 The effect of RBackprop on scaled conjugate gradient

Figure 16 plots the training error for the same tasks comparing scaled conjugate gradient (scg)
using Mgller’s Hessian approximation, and scaled conjugate gradient using RBackprop (scgrbp).
The results show similar performance for all the problems.

7 Summary

We have described the principles of some neural network training techniques. Sources of more
detail for the schemes have been given so that the interested reader might implement the schemes.
The schemes have been compared for a variety of small tasks and a variety of networks, with
varying sizes, connectivity and non-linear elements. The RBackprop algorithm, re-introduced by
Pearlmutter (Pearlmutter, 1993), has been described and used within the scaled conjugate gradient
algorithm (Mgller, 1993).

A neural network optimization scheme makes assumptions about the error surface in weight
space. The success of a scheme will depend on the validity of the assumptions. For different prob-
lems, the assumptions will be appropriate to varying degrees. This means there is no optimization
scheme that will perform better than all other schemes on all possible tasks.

We do not recommend any particular optimization scheme. For a particular kind of task, a
number of optimization schemes should be compared to find which ones are efficient. Candidate
schemes should include scaled conjugate gradient and quickprop.

The benefits of using an appropriate optimization scheme are substantial. For some tasks, the
best schemes produce errors that are orders of magnitude lower than gradient descent for the same
computational effort. This kind of improvement is the kind necessary to make neural networks
more useful, for example, in the field of on-line adaptive control where data and time are precious.

Scaled conjugate gradient descent and quickprop are expedient optimization schemes. Using
RBackprop for scaled conjugate gradient avoids an extra parameter and is computationally cheap.

A RBackprop

RBackprop is an algorithm for calculating the product of the hessian H = 525 (equation 17) and
an arbitrary vector v. The name of the algorithm comes from the notation used by Pearlmutter
in his exposition of the technique (Pearlmutter, 1993). The algorithm is significant because not
only does it give an exact result, but it is also computationally cheap, especially if the gradient
has already been computed (as is the case, for example, in conjugate gradient descent). Tt can be
used to find the exact Hessian for a network by taking multiple products of vectors that extract
consecutive columns of the Hessian.

Let w be a point in weight space, r a small scalar and v an arbitrary vector in weight space.
Then

De — Qe dge
dw IW+4rv = dw W+r6w2|W

v+ 0 (r?) (54)

where O (rz) represents terms of order 72 and higher.
Substituting H = 333,62

|w’ rearranging and dividing by r gives:

de de

Hy = 22y Je W 4o (r). (55)

The exactness comes from taking the limit as r — 0:

de

de
T dw W+4rv " dwlw _ 9 de
Hv = 71.1_1;% r T Or \ w IW4rv

r=0 '
The term on the right hand side is the key to the algorithm. Defining the following differential
operator R, {.}, from which RBackprop gets its name:

29

Ro{f(w)} = S f(w+1v)| _, (57)

gives us Hv =R, { } Thus applying the operator to the gradient produced by backprop gives
the result we are lookmg for. Since the operator is a normal differential operator, it can be applied
to all the steps in the backprop algorithm.

The algorithm is therefore as follows. In the equations below, the vector v to be multiplied by
H has been indexed in the same way as the weight vector. The forward pass:

Ry {zi} = Z(wjﬂ% {yi} + vjiy)) (58)
Ry {yz} = Ry {Ii}aé(xi) (59)

and the backward pass:

{aw” = yzR{ }+R {yz} 92, (60)

= 0i(2i)Ro | 35§ + Ro {ai}oy (x:) ae- (61)
Ay

{ } _ d267e {yz}—ka”R{ }—I—v”a) (62)

where g% is the second direct derivative of the error with respect to the activation y;. This is 1
for output nodes, and 0 other nodes.

The algorlthm has a number of variables in common with the backprop calculation, a feature
that can be used to speed up the calculation at a point in weight space for which the error gradient

has already been found using backprop.

References

Barto, A., Sutton, R., and Anderson, C. (1983). Neuronlike adaptive elements that can solve
difficult learning control problems. IEEFE Transactions on Systems, Man and Cybernetics,
SMC-13:834-846.

Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation networks. Tech-
nical Report CMU-CS-88-162, CMU.

Hertz, J. A., Palmer, R. G., and Krogh, A. S. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley, 350 Bridge Parkway, Redwood City, CA 94065, U.S.A.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural

Networks, 1:295-307.

MacKay, D. (1991). Bayesian Methods for Adaptive Models. PhD thesis, California Institute of
Technology, Pasadena, California.

Mgller, M. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6:525-533.

Pearlmutter, B. A. (1993). Fast exact multiplication by the hessian. to appear in Neural Compu-
tation.

Rumelhart, D. E., Hinton, G., and Williams, R. (1986). Learning internal representations by error
propagation. In Rumelhart, D. E.; McClelland, J. L., and the PDP Research Group, editors,
Parallel Distributed Processing, volume 1, pages 318-364. The MIT Press, Cambridge, Mass.,
U.S.A.

30

Rumelhart, D. E. and McClelland, J. L. (1986). Parallel Distributed Processing, volume 1. The
MIT Press, Cambridge, Mass., U.S.A.

Schiffmann, W., Joost, M., and Werner, R. (1992). Optimization of the backpropagation algorithm
for training multilayer perceptrons.

Thodberg, H. H. (1993). Ace of bayes: Application of neural networks with pruning. Technical
report, The Danish Meat Research Institute, Maglegaardsvej 2, DK-4000 Roskilde, Denmark.

31

0.1 ¢t

training error

001 1 1 1 1 1
0 2e+06 4e+06 6e+06 8e+06 le+t07 1.2e+07
flops

Figure 15: Gradient descent schemes training the default network on the simulated pole data. The
runs are for 107 flops.

32

1 T T T T T T T T T T T T T T
g —~— SCg —~—
scgrbp -+ scgrbp -+
1L]
& &
5 5] |
g g 01t \ 1
k= k=
g g
001 b e, E
0.001
0 1000020000GB0000G0000G0000EB0000F0000BO000®O00001e+06 0 200000 400000 600000 800000 1le+06 1.2e+06
flops flops
xor 10encoder
N scgrbp -+ scgrbp -+
1e10 B 4
5 5 ! 1
] 1]
2 i 2
£ } £
s 1e20 - L E s
1e-30 - g
1 1 1 I I I 1 I L 1 1 1 1 1
0 1000020000GB0000G0000G0000EB0000F0000BO000®O00001e+06 0 200000 400000 600000 800000 1le+06 1.2e+06
flops flops
simpole
SCg —~—
1k scgrbp -+ |

training error

0 200000 400000 600000 800000 1et06 1.2e+06 1.4e+06
flops

Figure 16: A comparison of scaled conjugate gradient (scg) with the original approximation used
by Mgller, and scg with RBackprop. The results of training the default network on each of the
five tasks are shown.

33

