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ABSTRACT

In this paper, we have developed a model of dynamic com-
plexity, a growing Gaussian radial basis function (GRBF)
network, by analysing sequential learning in the function
space. The criteria to add a new basis function to the model
are based on the angle formed between a new basis function
and the existing basis functions and also on the prediction
error. When a new basis function is not added the model pa-
rameters are adapted by the extended Kalman filter (EKF)
algorithm. This model is similar to the resource allocating
network (RAN) and hence this work provides an alternative
interpretation to the RAN. An enhancement to the RAN is
suggested where RAN is combined with EKF. The RAN
and its variants are applied to the task of predicting the
logistic map and the Mackey-Glass chaotic time-series and
the advantages of the enhanced model is demonstrated.

1. INTRODUCTION

Artificial neural networks (ANNs) have emerged as a pow-
erful class of nonlinear models for predicting time-series.
In using ANNSs, the problem of time-series prediction is re-
duced to an approximation problem, where, it is assumed
that the series value in the future is only a function of the
past few values. The potential of ANNs lie in their abil-
ity to construct a good approximation to the underlying
functional relationship, provided it exists.

The goodness of approximation depends on the
complexity! of the ANN and the amount of data that is
available to estimate the network parameters. A difficulty
with using nonlinear models such as ANNs to approximate
the underlying function is that the complexity (hence the
size) of the network must be determined @ priori. A network
that is too large for the problem is known to suffer from
poor prediction performance, since the estimated parame-
ters tend to have a large variance — the problem known
in neural network literature as generalisation. A smaller
network does not have the capacity to approximate the un-
derlying model well enough to give good prediction perfor-
mance. This observation has lead to recent development of
networks that increase their complexity, dynamically, with
increasing complexity of the task during learning. The im-
portance of optimal complexity models can also be appre-
ciated from computational considerations.

Time-series prediction with ANNs have largely involved
the use of block estimation algorithms, as in [5, 7] and the
references therein. The assumption used in such approaches

1The measure of complexity here is the number of adaptable
parameters in the network.
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is that the time-series data are available en-bloc. We con-
sider here, prediction problems where the time-series data
is received on-line with prediction performance continually
evaluated. This demands the use of sequential (or recursive)
algorithms where adaptation is based on the prediction per-
formance.

In this paper, we provide a function space approach to
sequential learning in nonlinear models and develop a model
of dynamic complexity, similar to the resource allocating
network (RAN) of Platt [8]. This model and its variants
are applied to the task of predicting the logistic map and
the Mackey-Glass chaotic time-series.

2. A FUNCTION SPACE APPROACH TO
SEQUENTIAL LEARNING

Learning in nonlinear models with fixed complexity can be
viewed as a problem of determining the optimal set of pa-
rameter values. This is often posed as an optimisation prob-
lem in the parameter space. An alternative approach is to
view sequential learning in the function space, observing
that neural networks and other nonlinear models provide an
input — output mapping. In the function space approach,
we are no longer limited to using a network of fixed size
which defines the parameter space; models with increasing
complexity can be readily analysed.

The principle of F-Projection is developed as a sequen-
tial learning method from a function space approach [2].
The principle, subject to an added constraint that the un-
derlying function is smooth and continuous, provides an
approximate solution [1], given by,

F™(@) = (@) + endnlz) (1)

where f(™ is the posterior estimate of the underlying func-
tion, f(*~1) is the prior estimate, ¢n(z) is a spatially lo-
calised basis function such as the Gaussian radial basis func-
tion (GRBF) and e, is the prediction error for the present
observation (z,,,yn), given by,

en=1yn— "V (z,) (2)

Suppose f("_l) is constructed by a linear combination of
a set of GRBFs, essentially the mapping constructed by a
Gaussian RBF network,

K
@) =) arer(z) (3)
k=1
where ¢x(z) is the k" GRBF, given by,

o1(2) = exp {—jzug— gk||2} (@)
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« 1s the coefficient of the basis function, u is the centre of the
GRBF in the input space and o is the width of the GRBF.
The posterior estimate given in equation (1) is a mapping
described by the RBF network with an added hidden unit

with values given by,

AK41 = €pn (5)
Prpr = Zn (6)
OK+1 = 00 (M)

The width parameter ox41 determines the smoothness of
the GRBF and therefore the value o¢ represents the re-
quired smoothness.

We thus have a network that learns by growing with each
new observation. Since the observations (z,,, y») are stored
implicitly, z, as the centres of the GRBFs and y, as the
coefficients of the basis functions, the solution obtained is
similar in spirit to the Parzen window method. A problem
with this solution is that the network grows indefinitely
when applied to an on-line learning problem.

3. A DYNAMIC COMPLEXITY MODEL

The function space approach can be extended to provide a
criteria to limit the growth of the network. In doing so, we
arrive at a dynamic complexity model is are complex enough
to give good prediction performance but not too complex to
suffer from generalisation or large computational overhead.

f (n)

Figure 1: 3-D illustration of the error in approximation due
to not adding a new basis function

The K basis functions which are linearly combined, form
a K dimensional subspace, H, in the infinite dimensional
Hilbert space of square integrable real functions. A sim-
plified 3-D illustration is given in Figure 1. The error in
approximation due to not adding the basis function ¢, is

£ — f£")||, where ||.|| is the L, norm in the Hilbert space

and f,En) is the posterior estimate that can be described by
the K basis functions and has the least distance to f(") in
the Hilbert space. This error, F, is given by,

E = len]||¢n|sin($2) (8)

where €2 is the angle formed by the new basis function ¢,
to the subspace Hx defined by the K basis functions in
f("_l). The norm of the basis function ¢, depends only on
the width 9. Hence, the error F depends on the parameters
en and Q. The angle lies between 0 and g and therefore
0 <sin(2) < 1.

The criterion to add a new basis function is based on
whether the added complexity of introducing a new basis
function is greater than the approximation error that would
incur otherwise. The criterion that £ is above a threshold

can be simplified into the parameters e, and €2 both ex-
ceeding threshold values, viz.,

€n > Emin (9)
Q > Quin (10)

The angle € is difficult to evaluate in general. An approxi-
mation is to find the smallest angle between the new basis
function and all other existing basis functions. The angle
between two GRBFs of the same width o is given by (in

[1]),
Q) = cos™! (exp{—%”ﬁn—ukW}) (11)

The angle criterion for growth is then reduced to a crite-
rion on the values of the basis functions to the input z,,,
expressed as,

SUp. Pk(z,) < c0s” (Qmin) (12)

or equivalently as the criterion based on the distance be-
tween the input z,, and the GRBF centres s i.€.,

inf ||z, — p, |l > €0 (13)

Given a new observation (,,,y»), if the criteria for growth
given in equations (9) and (13) are satisfied, a new basis
function is added. If a new basis function is not added, the
function space approach suggests the use of the principle
of F-Projection, which gives a posterior function estimate
of the network to be least distant from the prior and also
satisfy the constraint that y, = (") (z,).

For a network of fixed complexity, this principle has a
close relationship to the extended Kalman filter (EKF) al-
gorithm [3]. Hence, we shall use the EKF algorithm to
adapt the coefficients of the basis when a new hidden unit
is not added. When the new basis function is added the
parameter values are chosen according to equations (5), (6)
and (7).

The EKF algorithm adapts a set of parameters ¢ accord-
ing to:

Q(n) — Q(n—l) + enk, (14)
k, = (a"Puia+R)Puia (15)
P, = [I- Ena_T]Pn—l (16)

where a = Vg f and Vg f is the gradient of the network map-
ping f (in equation (3)) with respect to the parameters 6
estimated with the values at time (n—1). R is the measure-
ment noise variance and k,, is known as the Kalman gain.
If only the coeflicients of the basis functions are adapted,
then a = [¢1(z,,), ..., ¢x(z,)] -

The symmetric matrix P, is an estimated error co-
variance matrix for the parameters with dimensionality
equalling that of §. In the event of adding a new basis
function, the size of P, must also be increased appropri-
ately. We assign P,, according to:

[ Pui 0
P"_< 0 P01> an

where I is the identity matrix with dimensionality equal
to the number of adaptable parameters introduced to the
network by the allocation of a new basis function. The value
po reflects the uncertainty in the corresponding parameter
values of the new basis function and is set equal to the value

of R.



4. THE RESOURCE ALLOCATING
NETWORK

The dynamic complexity model developed from the func-
tion space approach is similar in form to the resource allo-
cating network (RAN) of Platt [8]. RAN differs from the
above model in three aspects. Firstly, the width of the basis
function o is assigned according to,

orxy1 = kllz, —p |l (18)
where « is an overlap parameter that determines the spatial
overlap in the input space between the two basis functions
and B is the nearest GRBF centre to z, in the input
space.

Secondly, the growth criterion based on the distances in
the input space has the same form as in (13), but the pa-
rameter €g is decreased exponentially until it reaches a lower
bound, wiz.,

€o = min <rmin, ro exp{— E}) (19)
T

where 7 is a decay constant. The lower bound effectively
provides an upper bound for the width of the GRBF, o,
ensuring the smoothness of the basis functions. The expo-
nential decaying of the distance criterion allows fewer basis
functions with small widths (smoother basis functions) ini-
tially and as time goes, more basis functions with larger
widths are allocated to fine tune the approximation.

The third difference is that RAN uses LMS algorithm
to adapt the parameters ajy and Hy s instead of the EKF,

when a new basis function is not added. The parameters
0=1..,ak, By .] are adapted according to,

90 = 9"y enVof (20)

where 7 is the adaptation step size. The distance crite-
rion given in equation (13) is also arrived at from the angle
criterion for GRBF's with differing widths [1].

The development of RAN as a function interpolating net-
work can be seen to be the extension of the restricted
Coulomb energy model of pattern classification [9] and is
based on the localisation property of the basis functions in
the input space. In contrast, we have shown that RAN has
its foundations in the analysis of sequential learning in the
function space.

An algorithm developed from the principle of F-
Projection has been shown to converge faster than LMS
for the GRBF network [4]. It is computationally intense.
The relationship it has to the EKF [3] suggests an enhance-
ment to the RAN where the EKF is used in place of LMS,
the network being referred to as RAN-EKF.

5. RESULTS ON PREDICTING CHAOTIC
SERIES

Chaotic time-series have been used to illustrate the advan-
tages of using ANNs for predicting time-series [5, 6]. They
are generated by a deterministic low order nonlinear map
and pass the statistical tests for randomness. Here, we con-
sider the logistic map and the Mackey-Glass chaotic time-
series.

The particular logistic map chosen is generated by a dif-
ference equation, given by,

Sn=48n-1(1 — 5p_1) (21)

The task for the models is to predict one-step ahead, that
is to predict the value of s, based on s,_1. Since there
exists an exact relationship via equation (21) good predic-
tion performance can be expected from models that learn
to approximate this underlying mapping based on the ob-
servations received. Since the prediction error will also in-
dicative of the approximation error, the root mean squared
error (RMSE) based on a test series is used as a performance
index.

Three different forms of RAN have been used. RAN:
as proposed by Platt using the LMS algorithm, RAN-EKF:
the RAN with EKF to adapt the coefficients and the centres
of GRBF and RAN-EKF1: the RAN with EKF to adapt
only the coefficients. The parameters used in the growth of
the network are, r2 = 0.125, r2; = 0.00125, emin = 0.05.
The parameters used for adaptation are 5 = 0.02, Py, = I,
@ =0.021, R = 0.01 and po = 1.0. The growth pattern and
prediction error for upto 100 samples and RMSE upto 500
samples are shown in Figure 2.
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Figure 2: Prediction results for the logistic map

The prediction error and the RMSE clearly demonstrate
the advantage of using EKF with RAN instead of the LMS
algorithm. The growth pattern of the networks were very
similar, indicating that the prediction error criterion did not
contribute to the saturation of the network. The RAN-EKF
models exhibited very low prediction errors in comparison



to RAN and the RMSE of RAN-EKF was an order lower
than that of RAN.

The Mackey-Glass time-series is generated a delay differ-
ential equation, given by,

ds(t) _ a.s(t—r)
dt 1+ s(t—r)t0

— b.s(t) (22)

with values ¢ = 0.2, b = 0.1 and 7 = 17. Here, the task
of prediction is to predict $n4s5 from $n, sp_s, Sn—12 and
S$n—18. As such, an exact mapping between the input and
output may not exist. The models however attempt to find
an approximation to this underlying mapping.

The growth parameters of RAN are chosen with ro = 0.7,
Tmin = 0.07 and emin = 0.02. The adaptation parameters
are n = 0.05, Pp = 1, Q@ = 0.01] and R = po = 1.0. The
growth pattern, prediction error and RMSE are shown in
Figure 3.
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Figure 3: Prediction results for the Mackey-Glass series

The growth pattern of all three models are similar, with
RAN-EKF1 being the most compact with 44 basis functions
and RAN the largest with 55. The RMSE is also compara-
ble for all three models, except in the initial stages where
RAN-EKF and RAN-EKF1 show faster adaptation. The
plot of prediction error is complicated and does not empha-
sise the low errors achieved by RAN-EKFs. An alternative
measure is plotted where, the prediction error is squared,

summed and averaged for 20 samples. The prediction per-
formance for RAN-EKF was better than RAN at all times.
Significant improvement is achieved only in the initial and
final stages of prediction.

6. CONCLUSIONS

We have adopted a function space approach to sequential
learning as an alternative to the parameter space approach.
This has led to the development of a model that dynami-
cally increases its complexity. For each new observation, a
new localised basis function is added to the existing func-
tion mapped by the model. For a Gaussian radial basis
function (GRBF) network, this amounts to adding a new
hidden unit.

The function space approach is extended to derive crite-
ria upon which the decision to add a new basis function is
based. The criteria are based on the prediction error and
the output of the basis functions for the new observation
or equivalently, the distance between the new observation
and the existing centres of the GRBFs in the input space.
These criteria are similar to those of RAN.

An enhancement to RAN is suggested where RAN uses
the EKF algorithm to adapt the parameters when a new
basis function is not added, instead of the LMS algorithm.
Here, we have showed that RAN with EKF performs better
than RAN in predicting the logistic map and Mackey-Glass
chaotic time-series. Our current interest is in applying the
above work to nonstationary signals and developing criteria
for complexity reduction by eliminating basis functions that
contribute little to the mapping.
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