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ABSTRACT

This paper reports our experiences with a phoneme
recognition system for the TIMIT database which uses mul-
tiple mixture continuous density monophone HMMs trained
using MMI. A comprehensive set of results are presented
comparing the ML and MMTI training criteria for both di-
agonal and full covariance models. These results using
simple monophone HMMs show clear performance gains
achieved by MMI training, and are comparable to the
best reported by others including those which use context-
dependent models. In addition, the paper discusses a num-
ber of performance and implementation issues which are
crucial to successful MMI training.

1. INTRODUCTION

Previous work[4] has shown that with infinite training data
and a model space which includes the true source, the global
Maximum Likelihood (ML) estimate is optimal in the sense
that it yields an unbiased estimate with minimum variance.
However, when constructing HMM-based speech recognis-
ers, training data is not unlimited and the model space does
not include the source. In this case, examples can be con-
structed where the Maximum Mutual Information (MMI)
estimator can provide better discrimination than the corre-
sponding ML estimator [5].

All this, of course, is well-known. However, clear
demonstrations of the practical utility of MMI training for
continuous speech recognition remain elusive. This is prin-
cipally because MMI training involves a number of practical
difficulties. The Baum-Welch (BW) algorithm is a robust
and efficient algorithm for ML estimation, however, it can-
not be applied directly to MMI. As a result, early work on
MMI training was forced to use slow and somewhat unre-
liable gradient descent methods. Recent work has shown
that the BW algorithm can be extended to the MMI case
[1, 6]. However, this extended version is not straightfor-
ward to apply since there are parameters to adjust which
have to strike a compromise between stability and the rate
of convergence.

Thus, there are still few conclusive experimental results
in support of MMI for general continuous speech and the
properties of the extended BW algorithm needed for MMI
training have not been reported in any depth.

2. ML ESTIMATION FOR CONTINUOUS
SPEECH

In the ML estimation approach, given an acoustic obser-
vation with associated transcription pairs y(n),t(n) n =
1... N, the parameter set A is estimated by maximising

Ly = Y lupa(y(n)t(n)) (1)

where pa(y(n)[t(n)) is the probability of the acoustic obser-
vations estimated from an HMM with parameters A built
to the transcription ¢(n). The BW algorithm which is most
commonly used for this task applies a transformation on the
parameter set A which is guaranteed to converge on a local
maximum of L. For example, the transition probabilities
a;,; are re-estimated using BW by
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where t is the iteration index.

3. MMI TRAINING FOR CONTINUOUS
SPEECH

To apply the MMI training approach to continuous speech,
the parameter set is estimated by maximising

L = Zlnm(y(n)lt("))

—Inpa((n)lr) 3)

where r represents the recognition-time HMM, that is, the
composite system of sub-word models to be used at run-
time including any language model.

Since this second term includes all models, it is this term
which gives T, it’s discriminative nature. At the same time
however, it implies a significant increase in computational
complexity.

4. MMI OPTIMISATION ALGORITHMS

Since equation 3 is a well-defined function, standard opti-
misation techniques can be used. We examined three such
methods steepest descent, conjugate gradients and a crude
second order method. We also compared these with the
extended BW algorithm.



The second order method uses the following parameter

update rule,
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where g’ is the gradient of the objective function with
respect to the parameter vector A and H is the hessian at
iteration ¢. The full hessian of a system with n parameters
will have n? elements. In order to reduce the computational
load due to the calculation, inversion and storage, most
implementations of this method use some approximation to
the hessian matrix.

In the work presented here, we use a difference approx-
imation to the diagonal elements of the hessian.
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Using equations 6 and 4 gives
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If » in the above equation is chosen to be 1.0, the equa-
tion becomes identical to the update strategy of QuickProp
proposed by Fahlman [11].

The update rule given by equation 4 will converge to
the nearest turning point. In order to handle this special
case, we adopt the method used by Fahlman in QuickProp.
No parameter change is allowed to be greater in magnitude
than g times the previous update for that parameter. If the
change computed by the update formula is too large, or in
the opposite direction to the current gradient, we instead
use u times the previous change as the current change. Af-
ter some brief experimentation the value of 1.75 was chosen
for p in our experiments. Too large a value leads to unstable
behaviour, too small leads to slow learning. One steepest
descent iteration was used to bootstrap the process.

Our implementation of line search had three phases.
First a step was taken out onto the line and the function
and its directional derivative evaluated. This step was the
previous iteration’s final step size. Then the maximum was
bracketed using a cubic extrapolation scheme. Bounds were
placed on the candidate step size multipliers to ensure the
step sizes grew at a satisfactory exponential rate. Lastly
four iterations of cubic interpolation were carried out to re-
fine the bracketing interval. Again bounds were placed on
the step size candidates for all iterations except the last to
ensure the bracketing interval shrunk at a satisfactory rate.

This line search was carried out on a subset of the train-
ing set chosen to contain 3 examples of each phoneme. This
subset was changed for each iteration. The line search al-
ways converged with 3-5 function evaluations each requir-
ing approximately 7% of a full function evaluation. It was
noted that a good step size was mostly found by the second
repetition of cubic interpolation.

This task is a constrained optimisation one. These con-
straints were eliminated with an ¢? substitution which en-
sures that all parameters (except means) are positive (pos-
itive definite for the case of full covariance matrices). The
sum to one constraint on transitions and weights were not
enforced. Viterbi decoding remains well defined without
them.

As noted above, the BW algorithm has recently been
extended to yield a new set of re-estimation equations,
whereby convergence is re-established for the MMI case by
adding a constant to the numerator and denominator terms.

For example, the new equation for a; ; is
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where C' is a constant.
There are two drawbacks to this however,

1. equation 9, has been proved to increase [ only when
C is large, but large C results in slow optimisation.
In practice C' is chosen so that the re-estimated pa-
rameters are admissible (i.e. all transition probabil-
ities and Gaussian weights positive, and covariance
matrices positive definite).

2. The extension is so far only applicable to means,
variances, transitions and Gaussian weights. Hybrid
schemes, where these parameters are re-estimated
with BW, and the remaining with standard optimisa-
tion schemes have been suggested, and in this work,
we re-estimated the stream exponents (in our models
we have only 1 stream, hence the stream exponents
effectively become state exponents), with gradient de-
scent as in [6].

5. COMPARISON OF MMI TRAINING
ALGORITHMS

These experiments were carried out on the 304 sentences of
the dialect region 1 subset of the TIMIT training data.

Thirty-nine three-state, left to right HMMs were built.
Each state had an associated mean, diagonal variance,
weight, covariance multiplier and state exponent. The ini-
tial models were trained using the ML objective function.

The preprocessor used produced an observation vector
every 10ms (from a 16ms window of speech), consisting of
12 mfcc coefficients, 1 log energy coefficient, and the corre-
sponding delta coefficients.

A null-gram grammar was imposed during training.

The results are plotted in figure 1. The ‘standard’
methods of steepest descent and conjugate-gradients can
be seen to be not very effective. Various combinations of
using the full training set during line search, and alternative
conjugate direction update equations (i.e. Beale-Sorenson,
Fletcher-Reeves and Polak-Ribere) were tried without suc-
cess.

The second order method has intermediate efficiency,
but the best algorithm is the extended BW, which provides
fast optimisation during the early iterations, even though
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Figure 1: Comparison of MMI training algorithms

the re-estimation mapping is no-longer guaranteed to in-
crease the objective function.

6. COMPUTATIONAL REQUIREMENTS

The quantities needed in equation 8 and equation 9 are
calculated using the standard forward-backward (FB) algo-
rithm [7, 3]. The FB algorithm has to be applied just once
in the case of ML using the transcription HMM. However,
it has to be applied twice for MMI, firstly using the tran-
scription HMM and secondly using the recognition HMM.

After the forward pass the function value is available,
and after the backward pass the derivatives can be calcu-
lated.

By using beam search pruning the computational com-
plexity for the FB method can be reduced. For the left
to right transcription HMM, this reduction can be signif-
icant since it is rarely necessary to have more than four
models active on the forward pass and two models active
in the backward pass. In our experiments, we typically
achieve a 10-fold reduction in this case. Applying pruning
to the FB method using the recognition model is, however,
rather less effective. In our experiments, the recognition
HMM is a looped phonetic model[3] where any state can
be reached from any other state in a maximum of 3 time
units. We found that all of the sub-word models remain
active on the forward pass, on average 6 models remain
active on the backward pass. In addition there is a large
overhead caused by the higher connectivity of the recog-
nition model. Hence, in practice, using the phoneme loop
recognition model, the computational complexity of MMI
is typically 15 times greater than for (pruned) ML. We ex-

pect this factor to decrease on a word based task such as
the DARPA RM task (because of its lower connectivity).
Equation 1 and equation 3 are therefore unusual in that
the derivatives can be calculated with only a small increase
in computation in addition to that needed for the function
value.

Another method of reducing the computational com-
plexity is to remove all training utterances which are cor-
rectly recognised by the recognition HMM. For example,
in connected digit recognition, high performance can be
achieved allowing a large number of strings to be discarded
from the training set and thereby drastically reducing train-
ing times[6]. However, this method is of little use for pho-
neme recognition where very few (if any) training utterances
will be correctly recognised.

7. PHONEME RECOGNITION EXPERIMENTS

We have performed a number of experiments using the
TIMIT database, in order to investigate the accuracy of
MMI on a difficult task with a realistically large training
set.

The extended BW algorithm was used for all the MMI
experiments.

During training and testing a bigram language model
was imposed. The language model probabilities were
squared before combining with the acoustic probabilities
supplied by the HMMs. This was empirically determined
to improve performance. No optimisation of the language
model which was estimated from the training set transcrip-
tions was attempted.

The experimental conditions are similar to those estab-
lished by Lee and Hon in their benchmark experiments[2]
on the TIMIT database. The training set consists of all si
and sz sentences and the test set consists of 336 si and sz
sentences chosen at random. The results are tabulated in
Tables 1 and 2 below T'welve iterations of BW were used for
the ML experiments. As theory predicts, the likelihood al-
ways increased from iteration to iteration. The recognition
performance on the test set, however, usually peaked after
about 4 iterations and then varied randomly usually well
within 1 percent. Twelve iterations of extended BW were
also used for the MMI experiments. The conditional cross
entropy always increased for the first six iterations but after
that it would occasionally decrease. For MMI, the recogni-
tion performance often peaked after about 8 iterations and
then again varied randomly usually well within 1 percent.

ML MMI
#Mix | % Acc | % Corr | % Acc | % Corr
1 52.72 57.18 60.07 65.43
2 56.70 60.85 62.45 67.77
4 60.09 64.38 65.46 70.04
8 63.69 67.44 67.36 71.94
16 66.07 69.68 67.50 73.53

Table 1: Results for Diagonal Covariance Models



ML MMI
#Mix | % Acc | % Corr | % Acc | % Corr
1 60.24 64.14 66.95 71.63
2 64.42 67.82 68.08 72.41
3 66.24 69.71 69.04 73.50
4 67.38 70.80 69.31 74.38

Table 2: Results for Full Covariance Models

Comparison with other systems is difficult because of
slightly different test conditions. In these tests although the
same final phoneme set as[2] was used, in our test, sequences
of identical phonemes were forbidden, which was not done
by Lee.

With this proviso, Lee achieved 66.1%/73.8% using 1450
right context-dependent phone models[2]; Young reported
59.9%/73.7% using 807 generalised triphone models[9], and
Robinson 75.0%/78.6% using a recurrent error propagation
networks[8].

Tests with a slightly different phoneme set, but with
collapsing of phoneme sequences have been reported in [8,
10]. Robinson obtained 70.7%/74.3%, and Ljolje obtained
69.4%/74.8% who used ‘Quasi-triphonic models’ and a tri-
gram gramimar.

Note, however, that the system produced by Robinson,
has the opportunity to learn the true TIMIT grammar. Its
phonetic modelling ability is therefore difficult to gauge.

8. CONCLUSIONS

This paper has described an implementation of an MMI
HMM-based phoneme recogniser and it has presented com-
parative phoneme recognition results for the TIMIT data-
base.

A selection of different training algorithms were com-
pared, and we found that the extended BW algorithm was
the most efficient. However, we expect that future work in
this area will be fruitful. For instance, by decreasing the
step size we hope to improve our finite difference approxi-
mation to the diagonal hessian.

As can be seen MMI training does substantially improve
recognition performance, but the improvement relative to
the corresponding ML case decreases as the models com-
plexity increases. The best results achieved are comparable
to the best state-of-the-art systems including those which
use large numbers of context-dependent models. An alter-
native view of the benefit of the MMI training method is
that it allows the number of parameters needed to reach
a certain level of performance to be reduced by around a
factor of 4. This may be of considerable value for imple-
menting real-time systems.

Finally, it should be noted that a large difference be-
tween training and test set accuracies for MMI models was
observed. This suggests that if much larger training data-
bases were available then the performance improvements
obtainable from MMI would be even more significant.
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