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Abstract

This report investigates the use of a speaker-dependent HMM word-spotter to retrieve spoken
messages. The baseline word-spotter consists of a parallel network of keyword and background
filler models. A further pass, using the filler models only, can be used to re-score the putative
keyword hits. Word-spotting performance using (i) whole-word and (ii) sub-word keyword models
is investigated. For each keyword model type, effects on performance of re-scoring, Gaussian
component number, and parameter set are evaluated on a set of spoken messages, taken from the
Video Mail Retrieval database. Overall, sub-word models are shown to yield a higher hit rate,
particularly before the first false alarm occurs.
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Contents

1

2

Introduction
Recognition systems
Database

Keyword and filler models

4.1 Whole-word . . . . . . . . . e
4.2 Sub-word . . . ...

Performance measure

Results

6.1 Whole-word tests . . . . . . . . . . . e

6.1.1 Comparison of baseline and normalised whole-word systems . . . ... .. ..

6.1.2 Comparison of whole-word state class models . . . . . ..
6.1.3 Effect of number of components and parameterisation . .
6.2 Sub-word tests . . .. ... Lo
6.2.1 Effect of parameterisation . . . . . ... ... ... ....
6.2.2 Effect of number of components. . . . ... ... ... ..
6.2.3 Performance as a function of keyword syllables . . . . . .
6.2.4 Keywordscores . . . . . . .. ... e

6.3 Comparison of the normalised whole-word and sub-word systems
Future work

Acknowledgements

10
11
14
14
14
14
15
15

16

16



1 Introduction

There is a growing interest in the use of hand-held computing devices for a wide range of appli-
cations. As dimensions decrease, the use of voice as an input media becomes more attractive.
A typical application being studied is “Voice Notes” which allows short spoken documents to be
stored and subsequently retrieved by category or content.

Using audio to enter and retrieve data allows smaller hand-held devices to be designed, for
example Stifelman’s VoiceNotes [8], and the recently launched product Voice Organizer (Voice
Powered Technology International Inc., 1993). In the extreme case, the physical interface may
be negligible, requiring only a speaker and microphone [8]. The audio medium can also have
advantages over handwritten or typed records in capturing information. It can be a faster means of
capture, and more expressive. However, it is correspondingly more difficult to review information
in audio, rather than visual form. Speech is slow to access, and cannot be scanned easily, in the
way that visual cues are used to search pages of text for a specific item. To retrieve documents
based on their audio content, word-spotting can be used. Unlike a continuous speech recogniser
which attempts to match every word, a word-spotter is only interested in determining the presence
and position of specific speech segments (keywords) within each record. The specified segment is
typically a word or phrase, for example “find EUROSPEECH PROCEEDINGS”, but in general
may also be a non-linguistic sound.

Word-spotting systems based on Hidden Markov Models (HMMs) are considered in this re-
port. These have proved more successful at modelling arbitrary speech than template based
systems [5], [9]. For each keyword, an HMM is trained using statistical estimation techniques.
Non-keyword speech is modelled by one or more HMMs. Word-spotting is performed by running a
continuous speech recogniser with the keyword and non-keyword models, and the recogniser outputs
the sequence of HMMs which best models the unknown speech data. Putative keyword hits are
ranked according to their score (defined in section 2). If the keyword is present at that location,
this is called a true hit, otherwise it is a false alarm. Performance is measured in terms of the
number of true hits achieved for a given false alarm rate.

Two classes of recognition systems have been considered, based on (i) whole-word, and (ii) sub-
word keyword models. These are presented in section 2. The work has been based on the assumption
that the class of device it is aimed at is for personal use. Hence, a speaker-dependent word-spotting
approach has been taken, which assumes that the word-spotting HMMs are derived from the same
speaker as the data being searched. This will not always hold as the speaker may record phone
calls, conversation, and other transactions which violate this assumption. The database used for
training the HMMs and testing the word-spotting system is described in section 3. The keyword
and filler models, and the performance measure used, are defined in sections 4 and 5 respectively.
Results of the word-spotting tests performed are given in section 6. Future work areas are proposed
in section 7.

2 Recognition systems

The baseline recognition system was built using the HTK Version 1.5 toolkit [11]. This system is
a speaker dependent, null-grammar, time synchronous Viterbi beam search decoder consisting of a
parallel network of keywords and fillers, with silence enforced at the start and end of each sentence
(figure 1). Whole-word continuous density mixture Gaussian distribution HMMs are used to model
the keywords, trained on keyword speech. Following Rose and Paul [5] a set of 43 monophone



models are used as background filler models, trained on non-keyword speech.

Keyword network

KEYWORD 1

KEYWORD 2

KEYWORD N

Filler network

FILLER1

FILLERM

Figure 1: Baseline null-grammar word-spotting network

Recognition is performed using the token passing paradigm, where the best path to a particular
instance in the network is described by a token held in that state [10]. When a token is propagated
externally from model M; to model M; the log probability of that token is incremented by

s log[P(M;|M;)] + p (1)
where s is a grammar scale factor, p a fixed transition penalty, and

where Ng,.-(7) is the number of successors to model M;. Since all models follow one another in the
baseline system, their propagation weighting is the same.

As the keyword likelihood scores often exhibit variability in time, assigning reliable decision
regions for separating true keyword hits from false alarms is difficult. Rose and Paul [5] showed
that significant improvement can be achieved if Likelihood Ratio scoring is applied. In their work
a second recognition pass is performed using a network consisting of the background filler models
alone. A modified keyword log likelihood score can then be computed

Spr = Skw — SBa (3)
where Skw is the Viterbi maximum likelihood score per frame for the keyword,

KW Model Exit log prob - KW Model Entry log prob
number of frames KW model recognised over

max {log [ P(O, S|KW) ]}
_ _S (4)
N Frgw

Skw




where the keyword start and end frames are given by f;, fe, respectively, O is the sequence of
observations, {of.,...,07}, and NFgw = f; — fe is the number of frames that the keyword is
recognised over. Sp4 is the average maximum likelihood score per frame for the overlapping string

of background fillers (see figure 2),

m

> (S(BA,i)NF(BA,i)>

S — =1 5
BA NFrw (5)

where S(p ) is the Viterbi maximum likelihood score of the ith background model,

max {log [ P(O, S|(BA,1))]}
SBay = — (6)
fVF(BA,i)

and N F(gy ;) is the number of frames of the ith background model that overlap the keyword frames.

Keyword model
KW

Background model
BA,1 | BA,2 | BA,3 BA,m

frames

Figure 2: Keyword and background filler models recognised over the same time frames, using the
keyword plus filler network and the filler only network respectively

Given the decoded keyword start and end times, ¢, t. respectively, Rose [7] suggested an alter-
native re-scoring mechanism, M St R, based on the maximum difference between the log keyword
probability and the log filler probability over the interval {5 <t < ¢,

MSpr = max (log P(OL|KW) — log P(O!, |BA)) (7)

where max; log P(Of |KW) represents the maximum log probability for the keyword model, KW,
over the observations O] = oy,,...,0; and max;log P(O} |BA) represents the maximum filler
network probability decoded over the same observations. Rose showed that the score MSpp is
an approximation to the a posteriori keyword log probability. As the HTK Viterbi recogniser
tool HVite outputs the average maximum likelihood per frame score for each HMM, MSpp is
approximated by finding the maximum difference in log keyword and filler probabilities over the



frame interval, f; < f < fo. The keyword model score at frame f is assumed to be Sgw(f) =
(f = fs)Skw, and the background model score to be

Spalf) = (i = fs)SBajgy + (fa = f1)SBaz)y + -+ (f = fin=1))S(BAR) (8)

Then M S r becomes
MSpgr = m?X(SKW(f) — Spal(/f)) (9)

However, it has been found that better distinction between false alarms and true hits can be
achieved by using a normalisation type re-scoring mechanism, N St g, defined as

SBA

17\7 S -
"R Skw

% 100 (10)

If the keyword score is better than the background model score, i.e. it is closer to zero, then
NSrr > 100, else NSrr < 100. In general, true hits should have higher scores than false alarms,
and will, therefore, be placed at or close to the top of an ordered list of putative hit scores.
Thresholding can then be applied to remove most of the false alarms.

Rescoring No. of False Alarms
method 1 | 2 | 3 | 10
SLr 50.0 | 64.3 | 68.1 | 80.2
MSrr | 43.4 | 55.5 | 58.8 | 73.6
NSLr 50.5 | 65.4 | 69.2 | 78.6

Table 1: % Hits per false alarm using (i) likelihood ratio, Srg, (ii) maximum difference, M Sr.g,
and (iii) normalisation, NSy, rescoring methods

Table 1 shows the percentage of total true hits before the nth false alarm achieved using
Str, MSrr, NSrr. The null-grammar word-spotting network consisted of whole-word keyword
models and a background silence model, each of 2 component mixtures, with static plus delta co-
efficients. From table 1, NSrr can be seen to achieve the best performance overall, although it
is not well-founded theoretically unlike Spr, M Srr. The improvement is more pronounced when
sub-word keyword models are used. A possible reason for this improvement is the fact that the
absolute keyword score is not taken into account in the S;pr and M Srgr, while NSpr does to a
limited extent, e.g.

S]@'W:—60,SBA:—63 — SLRIS,NSLR:105
Skw = —=75,584=—-78 — Spp=3,NSpr =104

Combining the keyword score in some way with either Spr or M Spr may give better word-spotting
performance. This is not considered in this report, NSz is used throughout.

Further improvements in performance were found to be achieved when the filler model com-
ponent of the word-spotting network shown in figure 1 was reduced to just the silence model.
The results for the keyword and silence network are normalised against those for the full filler
model network. This system is known as the normalised whole-word system. For example, table 2
shows the performance of the normalised keyword and filler network against that of the normalised
whole-word system for two component mixture, static plus delta parameter HMMs.



Word-spotting No. of False Alarms
network 1 | 2 | 3 | 10

normalised keyword + filler | 50.5 | 59.3 | 61.5 | 61.5
normalised keyword + silence | 50.5 | 65.4 | 69.2 | 78.6

Table 2: % Hits per false alarm of rescored (a) keyword + filler, (b) keyword + silence networks,
using whole-word keyword models

In a fully open system, the keywords should be user-definable, and not necessarily in the dic-
tionary [6], or the initial training data. Pre-training of the keyword models, as in the whole-word
systems above, will therefore not be possible. To start to address this issue, a sub-word approach,
which does not distinguish between keyword and non-keyword speech in training, was investigated.

In the sub-word approach the set of monophone filler models are trained on both keyword
and non-keyword speech. The keyword models are built by concatenating the monophone models.
When a true hit is scored, the keyword phone sequences have a lower log likelihood score than the
equivalent string of background phones due to the difference in word-internal and word-external
inter-model log transition probabilities. For word-internal nodes, the inter-model log transition
probability is —log[Nsycc(¢)]. As a maximum of 2 models follow any word-internal keyword node,
the word-internal transitions have a higher probability than the corresponding word-external tran-
sitions.

Normalisation was again found to improve performance. In this case, however, using the full
set of monophones as the filler models in parallel with the keyword models (as in figure 1) was seen
to give better performance than using just the silence model. The normalised keyword plus filler
network, known as the normalised sub-word system, was therefore used to generate the sub-word
keyword model results presented in this report. For example, table 3 shows the performance of
the keyword plus filler, normalised keyword plus filler, and the normalised keyword plus silence
networks, for four component mixture, static plus delta parameter HMMs.

Word-spotting No. of False Alarms
network 1 | 2 | 3 | 10
keyword + filler 32.4 1 50.5 | 64.8 | 79.1

normalised keyword + filler | 59.3 | 67.0 | 70.9 | 80.8
normalised keyword + silence | 51.1 | 60.4 | 64.3 | 76.9

Table 3: % Hits per false alarm of (a) keyword + filler, (b) rescored keyword + filler, and

(c) rescored keyword + silence networks, using sub-word keyword models

3 Database

The Video Mail Retrieval (VMR) DaTaBASE 1 [1] was used. This database has been designed
for word-spotting and information retrieval in spontaneous speech. It consists of a set of acoustic
training data and a set of spontaneous messages for testing, collected from 15 speakers (11 male,



4 female). The messages were generated for a series of prompting scenarios built round a set of 35
keywords, which constitute the initial search vocabulary for retrieval experiments. The experiments
reported here use the data recorded by speaker 3 (female).

The acoustic training data consists of: a set of isolated utterances (5 off) of each keyword;
a collection of 64 carrier phrases with at least 5 examples of each keyword; 12 read sentences
containing at least 2 examples of each keyword; and a set of 150 read sentences from the phonetically
rich TIMIT database [3] for training the acoustic filler models.

Each speaker recorded 20 spontaneous messages, relating to 4 categories. These were selected,
from a set of 10, to cover topics that the speaker was familiar with. Speaker 3 recorded messages
from the the spotting, output, windows and equipment categories. The use of a sub-set of scenarios
results in a skewed distribution of keywords for each speaker, as shown in table 4 for speaker 3.
This, however, is a realistic scenario since the user may have either erased, or not yet recorded,
messages containing certain keywords.

Keyword | No. | Keyword | No. Keyword No.

active 1 location 0 retrieve 5
assess 3 mail 17 score 5
badge 0 manage 3 search 9
camera 0 meeting 0 Sensor 0
date 2 message 21 spotting 6
display 3 | microphone | 6 staff 2

document | 1 network 2 time 12

find 7 output 5 video 12
indigo 5 pandora 0 windows 11

interface 4 plan 0 word 14

keyword 15 project 0 | workstation | 6
locate 0 rank 5

Table 4: Distribution of keywords in test messages for speaker 3 in VMR DATABASE 1

4 Keyword and filler models

Each system contained 35 keyword and 43 monophone models. The keyword models consisted of a
varying number of emitting states, defined below, and the monophones had 3 emitting states, each
with a continuous density mixture Gaussian output distribution. Each model had a left-to-right
topology with no skips. The training data was preprocessed using a 25 msec Hamming window and
a 10 msec frame period. Additionally the data was pre-emphasised with a factor of 0.97 and liftered
with a factor of 22. Each frame was coded into a parameter vector of 12 mel-frequency cepstral
coefficients and the normalised log energy. The first (delta coefficients) and second (acceleration
coefficients) time differentials were added to make 26 and 39 element vectors respectively.

For each parameterisation, the tool HCompV was run on all the training data to generate a
single overall variance vector to provide a variance floor macro for the diagonal elements of the state
pdf covariance matrices. The variance floor macro was used in all the model estimation routines,
after dividing each vector element by 100. Initially, single component mixture models were created.

-~



HInit was used to establish the initial HMM parameter values. The tool HRest was then used to
individually re-estimate the parameters of each HMM. The set of models were further re-estimated
by using HERest to perform 4 cycles of embedded re-estimation. Multiple component mixture
models were built in two stages. The number of component mixtures in the set of models was
incremented by one using the MixUp command in the tool HHEd. Then, 4 cycles of embedded
re-estimation were performed using HERest.

4.1 Whole-word

The whole-word keyword models were trained on the isolated and carrier speech in VMR DATABASE
1 (between 9 and 18 examples of each keyword). Three model classes were compared,

1. fized - each model consists of 15 emitting states

2. dict - each model consists of 3 emitting states per phoneme, where the number of phonemes
is given by a dictionary being developed at CUED based on the Advanced Oxford Learner’s
Dictionary!. The models were made up of between 9 and 27 emitting states, with an average
of 17 states per model.

3. frame - assuming a dictionary is not available, the number of states in each model is deter-
mined from the data. The number of frames per keyword in isolated speech is approximately
double that of read and spontaneous speech so the (read) carrier phrases were used to de-
termine the average frame length of each keyword. The TIMIT data was used to determine
the average frame length of a 3 emitting state monophone. Then, the number of states per
keyword model is defined as

average no. of frames per keyword
number of states =

11
average no. of frames per state per phone (1)
As for the dict class, the models were made up of between 9 and 27 emitting states, with an
average of 17 states per model.

The background monophone models were trained on all non-keyword speech in the isolated
word and read (carrier and TIMIT) sentences.

4.2 Sub-word

The background monophone models were trained on both keyword and non-keyword speech. All
isolated and read speech in VMR DATABASE 1 was used. The keyword models were then built
by linking the monophone models according to the keyword’s pronunciation rules in the CUED
dictionary.

59 Performance measure

The evaluation is done as follows. The putative keyword hits are first ordered by score from best
to worst across all messages for each individual keyword. Then a tally is made of the number of
true hits found as the 1st, 2nd, etc false alarm for each keyword is encountered. This corresponds
to the number of keywords which would be found if the detection threshold were set at the score

'The original dictionary was obtained from ftp: black.ox.ac.uk



of each false alarm in turn. At each false alarm level, the tallies are added across keywords and
expressed as a percentage of the total number of keyword examples (i.e. possible true hits) in the
test data. For the ¢th false alarm,

m

M NH;;
) . =1
% Hits / ith FA = —~E X 100 (12)
where m is the number of individual keywords, NH;; is the number of hits scored for the jth
keyword before the ith false alarm, and N H is the total number of true hits.

In an application such as VoiceNotes a maximum of three false alarms is expected to be tolerable.
The number of hits at the 1st, 2nd and 3rd false alarm is therefore recorded. Since these statistics
tend to have a large variance over test data, the number of hits at the 10th false alarm level is also
noted.

The NIST figure of merit calculation [4] was not used as it measures the average performance
over the 1st to 10th false alarms. It is also very dependent on the duration of the test data available,
and having a more even distribution of the keywords than was found in these tests.

6 Results

The full set of 20 spontaneous messages for speaker 3 were used in each test. The word-external
inter-model log transition probability (equation 1) had a grammar scale factor of 5, and a fixed
transition penalty of zero.

6.1 Whole-word tests
6.1.1 Comparison of baseline and normalised whole-word systems

Table 5 shows that the normalised whole-word system yields significant performance improve-
ments over the baseline system. Performance is only degraded with the static coefficients, in the
1 component mixture case up to the 10th false alarm, and the 3 component mixture case at the
1st false alarm level. In general, the improvement in performance becomes more significant as the
number of false alarms increases.

Co-articulation effects proved to be the main reason for ‘missing’ keywords in the data. In
addition, *‘WORD’ was detected as ‘KEYWORD’ several times as a result of co-articulation effects
and the similarity between the two keywords. 50% of the misses occurred in the first set of spon-
taneous messages. This was largely due to the speaker having a cold at this session which affected
the speech quality.



System Param | No. of No. of False Alarms
mix | 1 | 2 [ 3 [10
1 42.3 | 56.6 | 58.8 | 60.4
static 2 44.0 | 52.7 | 56.0 | 57.1
3 44.5 | 53.8 | 55.5 | 56.6
1 40.7 | 55.5 | 62.6 | 67.6
baseline delta 2 38.5 | 59.3 | 61.0 | 61.5
3 43.4 | 57.7 | 57.7 | 58.2
1 33.5 | 54.9 | 58.8 | 64.8
accel 2 41.2 | 57.1 | 58.2 | 59.9
3 45.6 | 54.9 | 56.6 | 56.6
1 41.8 | 53.8 | 57.7 | 68.7
static 2 44.0 | 56.6 | 59.9 | 68.7
3 41.8 | 54.4 | 55.5 | 68.7
1 45.6 | 65.9 | 70.3 | 78.0
normalised | delta 2 50.5 | 65.4 | 69.2 | 78.6
3 50.0 | 67.0 | 72.5 | 80.2
1 42.3 | 61.5 | 68.1 | 78.6
accel 2 51.1 | 68.1 | 72.5 | 79.1
3 58.8 | 67.0 | 71.4 | 79.1

Table 5: % Hits per false alarm of (i) baseline, and (ii) normalised whole-word systems for various
parameterisations, using dict state class whole-word models

6.1.2 Comparison of whole-word state class models

From table 6 it can be seen that the dict state class models, in general, achieve the best
performance. This implies that varying the length of the keyword models is beneficial. The fized
state class of models tended to out-perform the frame state class models. However, the results
show that estimating the whole-word model length from the data is feasible. Reducing the number
of states of some of the keyword models in the frame and dict classes would probably improve
performance, since some of the model lengths were possibly too long (up to 27 states) to enable a
good keyword model to be built.
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No of | model No. of False Alarms
cpts | class | 1 FA | 2 FA | 3 FA | 10 FA

dict 45.6 | 65.9 | 70.3 78.0
1 fixed | 49.5 | 61.5 | 66.5 78.0
frame | 47.3 | 59.3 | 65.9 76.9

dict 50.5 | 65.4 | 69.2 78.6
2 fixed | 50.5 | 64.3 | 70.3 78.0
frame | 47.3 | 63.7 | 69.2 78.6

dict 50.0 | 67.0 | 72.5 | 80.2
3 fixed | 57.1 | 66.5 | 70.9 | 77.5
frame | 57.7 | 68.7 | 71.4 | 75.8

Table 6: % Hits per false alarm of (i) dict, (ii) fized, and (iii) frame state class whole-word models
in the normalised whole-word system, for 1, 2, and 3 component, delta parameter, models

6.1.3 Effect of number of components and parameterisation

Table 7 details the full set of results for the normalised whole-word system. The performance is
very inconsistent, with different systems achieving the highest percentage of hits at each false alarm
level. To give a clearer indication of the effect on performance of varying the number of component
mixtures and changing the parameterisation, the results for the dict, fized and frame state classes
were averaged. Tables 8, 9 and 10 show the averaged results for the 1, 2 and 3 component mixture
model cases with static, delta and acceleration coeflicient parameterisation.

In all the mixture component cases, adding delta coeflicients yields a significant improvement
in performance over the static parameter models. No advantage is gained by adding acceleration
coefficients in the 1 component mixture case, and only improves performance at the 1st false alarm
level for the 3 component mixture case. Adding acceleration coefficients does help in the 2 mixture
component case, particularly at the 1st (+4.8% ) and 2nd (43.6% ) false alarm level.

For each parameterisation, performance is improved at every false alarm level by increasing the
number of component mixtures from 1 to 2. No benefit is obtained by increasing the number of
component mixtures to 3 with both improvements and degradation in performance being observed,
depending on the parameterisation and false alarm level.

The large variabilty in results is due to the limited amount of training data available for the
keyword models (9 to 18 examples) leading to poorly trained models. The monophone models are,
in contrast, well trained with between 70 and 300 examples of each phone in the training data.
This is also the reason why increasing the number of component mixtures from 2 to 3, and adding
acceleration coefficients in general degrades performance. The results for the sub-word case, where
larger amounts of training data were available, are far more consistent (see next section).

11



Param | Model | No. of No. of False Alarms
class mix 1 | 2 | 3 | 10

41.8 | 53.8 | 57.7 | 68.7
44.0 | 56.6 | 59.9 | 68.7
41.8 | 54.4 | 55.5 | 68.7
46.2 | 57.1 | 59.9 | 69.8
46.7 | 58.8 | 62.6 | 70.9
45.6 | 59.9 | 64.8 | 72.0
45.1 | 58.2 | 59.9 | 66.5
45.1 | 57.1 | 61.5 | 68.7
46.7 | 58.2 | 59.3 | 69.2

45.6 | 65.9 | 70.3 | 78.0
50.5 | 65.4 | 69.2 | 78.6
50.0 | 67.0 | 72.5 | 80.2
49.5 | 61.5 | 66.5 | 78.0
50.5 | 64.3 | 70.3 | 78.0
57.1166.5 | 70.9 | 77.5
47.3 1 59.3 | 65.9 | 76.9
47.3 | 63.7 | 69.2 | 78.6
57.7 1 68.7 | 7T1.4 | 75.8

42.3 | 61.5 | 68.1 | 78.6
51.1 | 68.1 | 72.5 | 79.1
58.8 | 67.0 | 71.4 | 79.1
49.5 | 64.3 | 68.1 | 78.6
56.0 | 67.6 | 70.9 | 78.0
56.0 | 64.3 | 69.8 | 76.4
50.5 | 62.6 | 66.5 | 76.4
55.5 | 68.7 | 69.8 | 78.0
58.8 1 67.0 | 69.8 | 80.2

dict

static fixed

frame

dict

delta fixed

frame

dict

accel fixed

frame

W N R WK R WN P[WN WK WK F|[WN F|WN =W —

Table 7: % Hits per false alarm for the normalised whole-word system with various parameterisa-
tions, number of component mixtures, and whole-word model state classes
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Param No. of False Alarms
1 | 2] 3 ] 10
static | 44.3 | 56.4 | 59.2 | 68.3

delta | 47.5 | 62.2 | 67.6 | 77.6
accel | 474 62.8|67.6 | 77.9

Table 8: % Hits per false alarm for 1 component mixture models, in the normalised whole-word
system, averaged over the dict, fizred and frame state classes

Param No. of False Alarms
1 [ 2] 3 ] 10
static | 45.3 | 57.5 | 61.3 | 69.4
delta | 49.4 | 64.5 | 69.6 | 78.4
accel | 54.2 | 68.1 | 71.1 | 78.4

Table 9: % Hits per false alarm for 2 component mixture models, in the normalised whole-word
system, averaged over the dict, fizred and frame state classes

Param No. of False Alarms
1 | 2 [ 3 ]10
static | 44.7 | 57.5 | 59.8 | 70.0
delta | 54.9 | 67.4 | 71.6 | 77.8
accel | 57.9 | 66.1 | 70.3 | 78.6

Table 10: % Hits per false alarm for 3 component mixture models, in the normalised whole-word

system, averaged over the dict, fired and frame state classes

13



6.2 Sub-word tests

6.2.1 Effect of parameterisation

Param No. of False Alarms

1FA [2FA |3FA |10 FA
static | 45.1 | 52.2 | 60.4 | 69.8
delta | 52.2 | 63.2 | 67.6 | 80.2
accel | 59.3 | 67.0 | 70.9 | 80.8

Table 11: % Hits per false alarm for (i) static, (ii) plus delta, and (iii) plus acceleration coefficients,
4 component mixture models

Table 11 shows that significant improvements in performance are achieved by adding extra
parameters. In particular, a much higher hit rate is achieved at the 1st and 2nd false alarm levels.

6.2.2 Effect of number of components

Param | No. of No. of False Alarms
cpts |1FA[2FA[3FA[10FA
1 45.1 | 56.0 | 57.7 | 67.6
2 47.8 | 59.3 | 59.9 | 714
delta 3 50.5 | 61.5 | 66.5 | 75.8
4 52.2 | 63.2 | 67.6 | 80.2
6 54.4 | 64.3 | 72.0 | 80.2
1 51.6 | 56.6 | 59.9 | 66.5
2 57.1 | 65.9 | 69.2 | 72.5
accel 3 58.8 | 63.7 | 71.4 79.1
4 59.3 | 67.0 | 70.9 | 80.8
6 59.9 | 69.8 | 72.0 | 824

Table 12: % Hits per false alarm for 1, 2, 3, 4 and 6 component mixture sub-word keyword models
with delta and acceleration parameterisations

Table 12 shows that the hit rate improves as the number of component mixtures is increased.

6.2.3 Performance as a function of keyword syllables

Table 13 shows the average performance for 1, 2 and 3 syllable keywords. In general, perfor-
mance improves as the number of syllables in a keyword is increased. The improvement is most
noticeable at the 1st false alarm level. Wilcox and Bush also noted that increasing the number
of syllables in a keyword improved the performance of their sub-word keyword system [9]. They
suggested that users could optimise voice editing and indexing systems by using phrases rather
than single words.
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No. of No. of False Alarms
syallables | 1 FA | 2 FA | 3 FA | 10 FA

1 479 | 67.3 | 69.1 | 86.2
2 63.1 | 65.2 | 72.1 | 75.1
3 76.4 | 80.6 | 80.6 | 80.6

Table 13: % Hits per false alarm for 1, 2, and 3 syllable keywords, using 6 component mixture,
acceleration parameter HMMs

6.2.4 Keyword scores

MATIL ASSESS WORKSTATION
Score ‘ T/F | Score ‘ T/F Score ‘ T/F
103.0 T 103.3 T 102.2 T
103.0 T 102.5 F 102.1 T
102.2 T 102.0 F 102.0 T
101.5 F 101.8 T 102.0 T
101.2 F 101.1 T 100.6 T
101.2 F 100.3 F 100.4 T

Table 14: Putative hit scores and classification, T(RUE HIT) and F(ALSE ALARM), up to the
3rd false alarm and above for the keywords ‘find’, ‘assess’, and ‘workstation’, using 6 component
mixture, acceleration parameter HMMs

Table 14 shows examples of the putative hit scores given by the normalised sub-word system.
Overall, 10 true hits out of a possible 17 were achieved for the keyword ‘mail’, 3 true hits out of 3 for
‘assess’, and 6 true hits out of 6 for ‘workstation’. The number of false alarms can be controlled by
applying a threshold to the keyword scores. It is not clear what is the most appropriate threshold,
for example a simple fixed constant or a keyword dependent variable might be used.

6.3 Comparison of the normalised whole-word and sub-word systems

The best whole-word and sub-word systems achieve a similar hit rate using static and static
plus delta coefficients, as shown in table 15. The sub-word system, however, out-performs the
whole-word system when acceleration coefficients are added. In particular a large improvement
(+8.8% ) is seen at the Ist false alarm level. Overall, far more consistent results are observed
for the normalised sub-word system than the normalised whole-word system. This is due to the
large amount of training data available in the sub-word case, allowing good keyword models to be
formed.

Another advantage of the sub-word approach is that it is directly applicable to an open key-
word system. This has allowed the same set of monophone HMMs to be used in the VoiceNotes
demonstration tool, with a different set of keywords, without requiring any further training of the
models.
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Keyword Param No. of False Alarms
model 1FA[2FA [3FA[10FA

static | 44.0 | 56.6 | 59.9 68.7
Whole-word | delta 50.5 | 65.4 | 69.2 78.6
accel 51.1 | 68.1 | 72.5 79.1

static | 43.4 | 55.5 | 59.9 4.7
Sub-word delta 54.4 | 64.3 | 72.0 80.2
accel 59.9 | 69.8 | 72.0 82.4

Table 15: % Hits per false alarm for (i) 2 component mixture, dict state class model, normalised
whole-word, and (ii) 6 component mixture normalised sub-word systems

7 Future work

The immediate goal of the current research is to develop a VoiceNotes type system to search on
arbitrary keywords. In the ideal case, the keyword model is formed based on a single utterance of
the keyword [9], i.e. from the user’s search request. The baseline approach will be to generate the
keyword model by running a Viterbi recogniser using the set of monophone models. The recognised
phone string will form the sub-word model of the keyword. This will be placed in parallel with the
set of monophone models in the keyword network in the normalised sub-word system. The use of
N-best Viterbi recognition to generate the keyword model will also be investigated, and different
acoustic units compared (e.g. monophones, triphones, clustered general units [9]).

To date, the availability of a large amount of training data for the speaker has been assumed.
Because the target is the general, multi-tasking business professional, it is unrealistic to expect
an extensive initial training phase for any device. A product may be expected to have reasonable
“walk-up” accuracy on recognition tasks. The word-spotting performance of speaker-independent
models, with and without adaptation, will therefore also be investigated. This will include the
affect on performance when the user is not the same speaker as the data being searched.

The normalisation rescoring method used in this work to improve the word-spotting performance
is not well-founded theoretically. An alternative may be to combine the keyword score with the
likelihood ratio methods proposed by Rose [5], [7].
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