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ABSTRACT

A method of speaker adaptation for continuous den-
sity mixture Gaussian HMMs is presented. A trans-
formation for the component mixture means is de-
rived by linear regression using a maximum likeli-
hood optimisation criteria. The best use is made of
the available adaptation data by defining equivalence
classes of regression transforms and tying one re-
ression matrix to a number of component mixtures.

his allows successful adaptation on any amount of
adaptation data. Tests on the RM1 database show
that successful adaptation can be achieved with only
11 seconds of speec%, and performance converges to-
wards that of speaker dependent training as more
adaptation data is used.

1. INTRODUCTION

Recent advances in speech recognition research have
resulted in high performance speaker independent
recognition systems [6]. These systems perform well
because they use large amounts of training data to
provide detailed mofelling of speech patterns. Even
with good speaker independent systems some speak-
ers are modelled poorly, and it is clear that im-
provements could be made by tuning the system pa-
rameters to improve the modelling of an individual
speaker. To train a full speaker dependent (SD) sys-
tem would require a large amount (hours) of training
data from the speaker, and even then some speech
phenomena may not be present. The modelling of
speech phenomena that are not present in specific
speaker data (e.g. unseen triphone contexts) is a ma-
jor problem and is a source of many errors.

In many cases, retraining the whole system for a
new speaker is undesirable, and hence methods of
adapting recognition systems to a specific speaker
are of great interest. An ideal adaptation technique
would use any available data to adapt the system,
with the performance of the adapted system improv-
ing as more data is used. A variety of adaptation
approaches have previously been reported but most
algorithms (e.g. MAP estimation [4]) either require
a reasonably large amount of speaker data for suc-
cessful adaptation or are applicable only to discrete
density HMMs.

Here, a method of adaptation for continuous den-
sity HMMs is presented which is aimed at performing
adaptation using limited data from the new speaker.
Adaptation is performed on small amounts of data b
capturing general characteristics of the speaker wit
respect to the original system. As further data be-
comes available, more specific speaker effects can be
captured. The method can be viewed as a generali-
sation of the spectral mapping approach [2].

The method uses an initial set of good speaker in-
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dependent (ST) models and adapts the model param-
eters to the new speaker by transforming the mean
arameters of the models with a set of linear trans-
orms. The transformations are found using a max-
imum likelihood criteria which is implemented in a
similar fashion to the standard ML training algo-
rithms for HMMs. By using the same transforma-
tion across a number of distributions and pooling the
transformation training data maximum use is made
of the adaptation data. This allows the parameters
of all state distributions to be adapted. Results are
presented on the 1000 word ARPA Resource Man-
agement RM1 database using a continuous density

aussian mixture HMM system with cross-word tri-
phone models.

2. ADAPTATION APPROACH

Each state in a continuous density Gaussian mixture
HMM has an output distribution made up of a num-
ber of mixture component densities. A state with
m mixture components can be expanded to m paral-
lel single mixture component states. Thus the case of
single mixture com;l)onent states is described, and the
extension to multiple mixture components is straight-
forward.
The probability density of state j generating a
speech observation vector o of dimension n is
1 1 RV v
bi(o) = . _em2(Omm) BT (0-mi) ()
(2m) = |35]=

where p; and X; are the mean and covariance re-
spectively of the output distribution of state j. The
adaptation procedure is based on re-estimating the
means of the state distributions using a linear trans-
form of the existing mean. Thus it is assumed that in
adapting from the SI system to the speaker adapted
(SA) system the state transition probabilities and the
covariances of the state distributions do not change.

The SI means are mapped to the unknown éD
means (fi;) by a linear regression transform estimated
from the adaptation data:

fi; = Wjw;

where Wj is the n x (n + 1) transformation matrix
and v; is the extended mean vector:

vy = [L/‘lei""l‘tjn]/

If an individual regression matrix is used for each
state using small amounts of adaptation data will re-
sult in very poor estimates of the matrices. Thus,
each regression matrix is associated with many state
distributions and estimated from the combined data.
Tying transform matrices in this manner is similar in

essence to the tying of states or mixtures [7] [8] which



makes parameter estimates more robust. The pro-
cess of tying many state distributions to one trans-
form averages the transforms required for each com-

onent mean and produce a general transformation
or all the tied components. This captures the gen-
eral speaker characteristics for that class of sounds,
and by tying the matrices in a manner such that dis-
tributions requiring similar transforms are associated
with the same matrix, the regression transform can
be effective even for states which are not seen in the
adaptation data.

With complete tying, a single global regression ma-
trix is used and associated with all distr%butions. At
the opposite extreme, if a separate transform is used
for each distribution in the system it can be shown
that this is equivalent to performing a complete re-
estimation of the model means using the adaptation
data. In this case the problem of adapting the un-
seen distributions is not solved, and the best esti-
mates for such parameters are from the SI system.
Thus a compromise between the two extremes must
be found such that the means of all distributions can
be adapted well given the amount of adaptation data
available.

3. REGRESSION TRANSFORM

The regression transformation is estimated using a

maximum likelihood optimisation criteria which is

consistent with standard HMM training methods.
Using the transform W for state j and again con-

sidering the case of a single Gaussian mixture com-
ponent per state, the density function of state 7 in
the adapted system is:

bi(o) = %e—%(O—Wﬂj)’ET(O—Wﬂj) (2)
(27) = %]

Given a set of adaptation speech data O consisting
of T observation vectors (O = 0; ...0r) a maximum
likelihood estimate of W, can be found by iteratively

maximising an auxiliary function Q(X,A) [3].

Q()‘J)‘) = Z f(O, Hl,\) log(f(0,9|)\)) (3)

0e®

where A represents the current parameter set, A
is the adapted parameter set, and f(O,0|)) is the
likelihood of generating O using the state sequence
6(0 = 6, ...0r) and the parameters A. © is the set
of all possible state sequences of length T.

Defining +;(t) as the probability of occupying state

j at time ¢ while generating O using the current pa-
rameter set

Zee f(O; 0; = .7|)‘)
() = =5 0.0

maximising Q(A,A) leads to the condition:

(4)

T T
> )0 = ()T Wivsv) (5)
t=1 t=1

If the transform W, is shared by R states
{j1,J2.-.jr} the data for these states is combined
and the condition becomes:

T R T R
S % o), =30 (055 W, v,

t=1r=1 t=1r=1 (6)

Assuming that all covariances are diagonal leads to
a column by column estimation of Wj:
W; = Gi_lz,- (7)

where z; is the i” column of the matrix Z produced
by the left hand side of equation (6):

T R
7z = ZZyjr(t)E;rlotu;r (8)

t=1r=1

and (G is the sum over all tied mixture components
of the outer product of the mean vectors scaled by
the variance: R

G; = ZCE;‘)V]'TV;'T 9)
r=1

(r)

with ¢;;’ being the i*" diagonal element of the rt”

tied state mixture component covariance scaled by
the total state occupation probability:

T
c =y (0% (10)
t=1

A full derivation of this result is given in [5].

If exactly one state is occupied at each time frame
and the covariances of all states tied to the same re-
gression matrix are equal the regression matrix can
be shown to be the least squares estimate [2]. If each
state has a separate regression matrix the adaptation
results in a Baum-Welch re-estimation of the means
using the adaptation data as training data [1].

For the extension to mixture densities 7 is the mix-
ture component occupation probability.

Assuming the model sequence is known (i.e. the
adaptation speech is labelled) the probabilities v;, (t)

can be computed using a forward-backward align-
ment of the speech data. Thus all the necessary
ftat(ilstics can be gathered and the transform calcu-
ated.

4. EXPERIMENTAL SETUP
The ARPA Resource Manaﬁement RM1 database

was used to evaluate the speaker adaptation method.
All speech was coded into frames consisting of a 39
component vector containing 12 MFCCs and nor-
malised energy, plus first and second time derivatives.

A set of speaker independent models was trained
on the speaker independent SI-109 portion of the
database, using standard Baum-Welch maximum
likelihood estimation. The model set consisted of
tied state cross-word triphone models using a total
of 1778 states, with 6 mixture components per state,
plus a phrase initial silence model with 12 mixtures
for each of 3 states. This system gives a 2.5% word
error rate on the RM Feb’91 SI test set [8].

The speaker dependent portion of the database,
consisting of data from 12 speakers, was used to eval-
uate the adaptation method. Adaptation data for
each speaker was drawn from the training portion,
and the adapted models tested on the 100 utterances
in the test set using the standard word-pair grammar
(perplexity 60). The average length of an utterance
is 3.4 seconds.

The adaptation statistics were gathered using a
forward-backward algorithm and computed as de-
scribed in section 3. %nl one iteration of the adap-
tation procedure was performed in all cases since the
preliminary experiments showed that the state align-
ment in successive iterations was very similar.



5. EQUIVALENCE CLASSES

The regression equivalence classes for tying trans-
forms were defined by using a between mixture com-
ponent distance measure to place similar compo-
nents into the same regression class. The assumption
is that all components representing similar acoustic
characteristics in the SI models should be adapted in
the same manner for the new speaker.

The number of regression transforms is small in
comparison to the large number of mixture compo-
nents making the class allocations very broad. The
experiments reported here investigate the variation
of performance while changing the number of classes.

In the case of a global class all mixture components
are tied to a single regression matrix. Further classes
are obtained by clustering mixture components using
a distance measure based on the oveml}lj class covari-
ance when all mixture components are combined into
a single distribution.

In the equivalence class definitions all components
relating to states in the silence model were omitted.
This is so that any phrase initial/phrase final silence
does not dominate the transform calculations.

6. BASELINE SI/SD RESULTS

To give an idea of the comparative performance of SI
mo%el performance, and that achievable using a full
speaker dependent (SD) system, a set of pseudo-SD
models was trained for each speaker using all 600 SD
training utterances in a Baum-Welch re-estimation
using the SI models as seed models. The models
are pseudo SD-models since the initial set-up and
the state-clustering were based on the SI models.
The small amount of training data available for each
speaker leads to data insufficiency problems and tai-
loring the clustering to the avaifagle data may im-
prove recognition rates.

The average word error rate over all speakers using
the ST models was 4.3% while the SD models gave an
average of 1.8% word error. Thus the error rate of the
SI system is on average about 2.4 times that of the
SD system. The speakers which perform particularly
poorly using the Slf models show a dramatic improve-
ment using the SD models (e.g. for speaker rkm0_5

the SI error rate of 8.3% is reduced to 2.8% with the
SD models). These results are used as a guide to
judge the effectiveness of the adaptation method.

7. SUPERVISED ADAPTATION

A series of experiments first investigated adaptation
using different amounts of data. The adaptation was
performed in a static supervised mode using correctly
labelled data with adaptation completed %efore any
recognition tests were performed.

Initial tests used a global transform, where all mix-
ture components (except those for silence) were tied
to a single regression matrix.

Figure 1 shows the effect of adaptation on a small
amount of data using the global transform. It can be
seen that using as few as 3 utterances for adaptation
results in an improvement over the SI models. Once
this improvement is obtained, adding more adapta-
tion data has a limited effect. With fewer than 3
utterances only a few mixture components are seen
in the data and the estimation of the transform is
weighted towards these components, resulting in poor
transformation of the large number of unseen mixture
components. As more data is added more varied mix-
ture components are seen and the effect of dominant
mixture components is reduced.

The effect of adaptation on the speakers recognised
poorly by the SI system is the most significant (see

Table 1). Adaptation on only 1 or 2 utterances has
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Figure 1. Adaptation on small amounts of data - global
transform (average word error rate for all 12 speakers)

a detrimental effect, but using 15 adaptation utter-
ances the error rate is significantly reduced over that
of the SI system. On the better speakers the adapta-
tion has a much smaller effect.

Speaker Num. Adapt. Utts
SI T 5 15 SD
bef0_3 3.2 8.3 2.9 2.7 2.3
cmr(_2 7.4 19.7 6.2 438 1.6
dasl 2 1.8 2.5 1.6 1.8 0.9
dms0 4 3.2 4.0 2.7 2.6 1.0
dtb0_3 3.3 7.4 2.8 24 1.2
dtd0_5 4.6 5.8 4.3 4.0 2.3
ers0_7 35 137 3.3 35 2.6
hxs0_6 6.5 12.8 4.3 3.2 1.5
jws0 4 45 7.9 41 3.3 1.8
pgh0_T 2.6 5.7 2.6 2.5 2.1
rkm0.5 8.3 24.8 7.6 5.5 2.6
tab0_7 2.2 3.1 2.6 2.2 1.8
Average | 4.3 9.2 3.8 3.2 1.8

Table 1. Supervised adaptation performance for indi-
vidual speakers - global transform (% word error rate)

Using more data clearly requires more specific
transforms to gain maximum information from the
data. Figure 2 shows the adaptation performance us-
ing different numbers of classes when using 40 utter-
ances for adaptation. The performance using a global
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Figure 2. Effect of Number of Regression Classes using
40 utterances for adaptation(average % word error)

matrix is similar to that obtained using only a small
number of utterances. Using more classes results in
reduced error rates until a performance threshold is
reached when 15 classes are used. After this thresh-
old it appears that the amount of data assigned to



each regression matrix becomes too small and domi-
nant mixture components again become a problem so

erformance degrades. This indicates that the num-
lljjer of classes should be tuned to the amount of data
available.

8. UNSUPERVISED ADAPTATION

Unsupervised adaptation was implemented using a
similar approach to the supervised adaptation, %ut
used the 1nitial SI models to perform recognition on
the adaptation data to generate the speech labels.
The forward-backward algorithm used the recognised
labels to generate the adaptation statistics.

10 -
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Figure 3. Unsupervised adaptation using a global trans-
form (% Word error averaged over all speakers)

The results obtained using a small amount of adap-
tation data (Figure 3) show that unsupervised adap-
tation is almost as effective as the supervised imple-
mentation. This is partly due to the good per?or—
mance of the SI models in labelling the adaptation
data correctly. However, it is noticeable that even
for those speakers which are poorly recognised by the
%I system adaptation results in a significant error re-

uctlon.

Speaker Independent
fffff Speaker Dependent

% Word Error

—— Supervised Adapted
777777 Unsupervised Adapted

) I I I I I )
0 100 200 300 400 500 600

No. Adaptation Utterances

Figure 4. Best supervised/unsupervised adaptation re-
sults for available adaptation data (% word error)

It is clear from Figure 2 that choosing an appropri-
ate number of regression classes for the availall))?e ata
has a significant effect on performance. Figure 4 com-
pares supervised and unsupervised adaptation modes
using different amounts of adaptation data and an
appropriate number of classes (determined by exper-
imentation). Performance improves as more data is
used, and there is only a small difference between su-
pervised and unsupervised adaptation. Table 2 shows
the performance and number of classes used for dif-
ferent amounts of data.

Adaptation using all 600 utterances is comparable
to the SD models indicating that the assumption of

No. Utts 15 40 100 600
No. Classes 1 15 40 200
Supervised 32% 1 2.7% | 2.3% | 1.8%
Unsupervised | 3.3% | 2.9% | 2.4% | 1.9%

Table 2. Best performance for different amounts of
adaptation data (% word error)

using a linear transform for generating mean adjust-
ments is reasonable, and that tying similar mixture
components to one transform is justified.

9. CONCLUSION

A method for adapting a speaker independent model
system has been described and implemented. The
method uses linear regression approach with a maxi-
mum likelihood objective function.

The approach is ideal for adaptation on small
amounts of adaptation data and can be scaled to
larger amounts of data with a corresponding improve-
ment in performance. Once adaptation has been per-
formed there is no extra computational requirement
during recognition.

Results on the ARPA RM database have shown
that a reduction in error over the initial SI system can
be achieved using as few as 3 adaptation utterances
(less than 11 seconds of speech), and with more adap-
tation data performance approaching speaker depen-
dent systems is achieved.

Although only the mixture component means are
adapted the method is still effective. Adaptation of
the covariances or mixture component weights may
give further error reductions.
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