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ABSTRACT

The maximum likelihood linear regression (MLLR) approach
for speaker adaptation of continuous density mixture Gaus-
sian HMMs is presented and its application to static and in-
cremental adaptation for both supervised and unsupervised
modes described. The approach involves computing a trans-
formation for the mixture component means using linear re-
gression. To allow adaptation to be performed with limited
amounts of data, a small number of transformations are de-
fined and each one is tied to a number of component mix-
tures. In previous work, the tyings were predetermined based
on the amount of available data. Recently we have used dy-
namic regression class generation which chooses the appropri-
ate number of classes and transform tying during the adap-
tation phase. This allows complete unsupervised operation
with arbitrary adaptation data. Results are given for static
supervised adaptation for non-native speakers and also unsu-
pervised incremental adaptation. Both show the effectiveness

and flexibility of the MLLR approach.

1. INTRODUCTION

Over the last few years much progress has been made
in speaker independent (SI) recognition system perfor-
mance. However, even with good speaker independent
systems some speakers are modelled poorly, and it is still
the case that speaker dependent (SD) systems can give
significantly better performance with sufficient speaker-
specific training data. In many cases it is undesir-
able to train an SD system due to the large amount
of training data needed and hence the required enroll-
ment time. Therefore speaker adaptation (SA) tech-
niques which tune an existing speech recognition system
to a new speaker are of great interest.

Adaptation methods require a sample of speech (adap-
tation data) from the new speaker so that the models
can be updated. The amount of adaptation data needed
depends on the way the SA technique uses the data and
on the type of system to be adapted. For example MAP
estimation [1] requires a relatively large amount of data
since it updates only those models for which examples
are present in the data. This problem becomes partic-
ularly severe when HMM systems that contain a very
large numbers of parameters are used.

This paper considers the maximum likelihood linear
regression approach (MLLR) [3] which is a parame-
ter transformation technique that has proved successful
while using only small amounts of adaptation data. The
method is extended to be more flexible and suitable for
use in unsupervised adaptation in both static and incre-
mental modes.

In MLLR adaptation an initial set of speaker indepen-
dent models are adapted to the new speaker by trans-
forming the mean parameters of the models with a set
of linear transforms. By using the same transformation
across a number of distributions and pooling the trans-
formation training data, maximum use is made of the
adaptation data, and the parameters of all state dis-
tributions can be adapted. The set of Gaussians that
share the same transformation is referred to as a re-
gression class. The transformations are trained so as
to maximise the likelihood of the adaptation data with
the transformed model set.

In previous work [3], the tying of the transformations
was determined before adaptation. Here the adaptation
procedure is enhanced by calculating the number and
membership of the regression classes during the adapta-
tion procedure. Using this dynamic approach allows all
modes of adaptation to be performed in a single frame-
work. This approach is evaluated on data from the 1994
ARPA CSR S3 and S4 “spoke” tests. Experiments on S3
demonstrates the effectiveness on static supervised adap-
tation for non-native speakers, and experiments with S4
show that using the same framework, incremental unsu-
pervised adaptation can be easily implemented.

The structure of the paper is as follows: first the MLLR
approach is reviewed, and the extension to incremental
adaptation discussed; Sec. 3 describes fixed and dynamic
approaches to regression class definition; Sec. 4 compares
static supervised and unsupervised adaptation. The ex-
perimental evaluation on the 1994 CSR data is given in
Sec. 5 and presents adaptation results for the S3 and S4
tests as well as discussing how speaker adaptation was
integrated into the 1994 HTK system for the H1-PO test

[6].



2. MLLR OVERVIEW

This section briefly reviews the MLLR approach, and
gives equations for the estimation of the MLLR trans-
formations. This information is covered in much greater
detail in [2]. Sec. 2.3 then shows how the approach can
be extended for incremental adaptation.

2.1. MLLR Basis

Each state in a continuous density mixture Gaussian
HMM has an output distribution made up of a num-
ber of component densities. A state distribution with m
components can be expanded to m parallel single Gaus-
sian states. Therefore in the mathematical description
in this section, the case of single Gaussian output distri-
bution states is described, and the extension to mixture
Gaussians is straightforward.

Each output distribution is characterised by a mean p;
and a covariance ;. In the adaptation procedure the
SI means are mapped to an estimate of the unknown
SD means (fi;) by a linear regression-based transform
estimated from the adaptation data

;= Wjv;

where W; is the n x (n + 1) transformation matrix and
v; is the extended mean vector
!
v; = [17/1’117" 'wu’jn]
The regression transformation is estimated so as to max-
imise the likelihood of the adptatation data. If a sepa-
rate regression matrix is trained for each distribution

then this becomes equivalent to standard Baum-Welch
retraining using the adaptation data.

To allow the approach to be effective with small amounts
of adaptation data, each regression matrix is associated
with a number of state distributions and estimated from
the combined data. By tying in this fashion, the trans-
forms required for each component mean produce a gen-
eral transformation for all the tied components, and
hence parameters not represented in the training data
can be updated. This use of tying also means that the
transformation matrices can be estimated robustly and
hence the method is effective even for unsupervised adap-
tation.

After transformation, the probability density function
of state 7 generating a speech observation vector o of
dimension n is

bj(0) = %e“é(o—wﬂj)f;l(o—wﬂj)
s, 5

2.2. Estimation of MLLR Matrices

The transformations are computed to maximise the like-
lihood of the adaptation data. Given a set of T frames
of adaptation data O = o5 ...or, the probability of oc-
cupying state j at time ¢ while generating O, +y;(t), using
the current parameter set, is given by

where f(O,8; = j|A) is the likelihood of occupying state
J at time ¢ and generating O, and f(O|\) is the total like-
lihood of the model generating the observation sequence.
The ~;(t) are computed using the forward-backward al-
gorithm.

Assuming that all the Gaussian covariance matrices are
diagonal and that W; is tied between R Gaussians
Ji---JR, then it can be shown that W; can be computed
column by column by

w; = G»_lzl-. (1)
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In (1) z is the 5** column of the matrix Z given by

S5yt

t=1 r=1

)X otu (2)

and G, is given by

G = ch v, v ]T
(r)

where c;; is the i*" diagonal element of the r” tied state
covariance scaled by the total state occupation probabil-

ity:
T
o = 3 0% 3)
t=1

A full derivation of this result is given in [2].

Updating the parameters using the above equations con-
stitutes one iteration of MLLR adaptation. If the change
in parameters results in a different posterior probability
of state occupation then the likelihood of the adaptation
data can be further increased by further MLLR itera-
tions.

It should be noted that the above assumes that the trans-
formations are “full” regression matrices and a simplified
form is obtained if the matrices are assumed to be diago-
nal. However we have previously found that full matrices
give superior performance and hence all experiments re-
ported in this paper assume the use of full regression
matrices.



2.3. Incremental Adaptation

The basic equations for MLLR assume that all adap-
tation data is available before the means are updated
(static adaptation). By simple manipulation of equa-
tions (2) and (3) the time dependent components can be
accumulated separately so that the following is obtained

R T
zZ = > ui! lz Vi (t)Otl Vi, (4)
o = [i %(t)] g (5)

By accumulating the observation vectors associated with
each Gaussian and the associated occupation probabil-
ities, the MLLR equations can be applied at any point
in time with the current values of the mean vectors,
and hence adaptation may be performed incrementally.
For each adaptation update, all the data associated with
each state in the regression class is used to generate the
transformation matrix. It should be noted that for this
incremental form to be equivalent to static adaptation
it is assumed that updating does not change the obser-
vation vector/state alignment of previously seen utter-
ances.

3. REGRESSION CLASSES

The tying of transformation matrices between mixture
components is achieved by defining a set of regression
classes. Each regression class has a single transforma-
tion matrix associated with it, and all the mixture com-
ponents within that class are transformed by the same
matrix. The matrix is estimated using data allocated to
the mixture components within the class.

3.1. Fixed Regression Classes

In previous work on MLLR [3] the class definitions were
predetermined by assessing the amount of adaptation
data available, and then using a mixture component clus-
tering procedure based on a likelihood measure to gen-
erate an appropriate number of classes. Experiments
using mixture Gaussian tied state cross word triphones
using the ARPA Resource Management (RM) database
confirmed that the optimal number of regression classes
was roughly proportional to the amount of adaptation
data available (see Table 1).

3.2. Dynamic Regression Classes

The use of predetermined class definitions assumes that
the amount of adaptation data available is known in ad-
vance, and that a sufficient amount of data will be as-
signed to each regression class. Classes with insufficient

No. Adapt Utts. | Optimal No. Classes
20 4
40 15
100 40
600 200

Table 1: Optimal number of fixed regression classes for
adaptation data, results on static adaptation using RM

data assigned to them will result in poor estimates of the
transformations or the class may be dominated by a spe-
cific mixture component. Hence, computing the number
of classes and the appropriate tying during the adapta-
tion phase after the data has been observed is desirable.

To facilitate dynamic regression class definition, the mix-
ture components in the system are arranged into a tree.
For a small HMM system, the leaves of the tree would
represent individual mixture components and at higher
levels in the tree the mixture components are merged
into groups of similar components based on a distance
measure between components. The tree root node repre-
sents a single group containing all mixture components.
The tree is used so that the most specific set of regres-
sion classes is generated for which there are sufficient
adaptation data.

When HMM systems with very large numbers of mixture
components (the systems described later have 77,000 or
more mixture components) it may not feasible to con-
struct a tree with a single mixture component at each
leaf node. Instead the leaves are based on an initial
clustering into base classes. Each base class contains a
(reasonably small) set of components which are deemed
similar using a distance measure between components.

To accumulate the statistics required for the adapta-
tion process, accumulators are associated with the mix-
ture components. The summed state occupation proba-
bility and the observation vectors associated with each
component during the forward-backward alignment are
recorded. When the adaptation alignment is complete,
the total amount of data allocated to each mixture com-
ponent is known. A search is then made through the tree
starting at the root node to find the set of regression class
definitions. A separate regression class is created at the
lowest level in the tree for which there is sufficient data.
This search allows the data to be used in more than one
regression class to ensure that the mixture component
means are updated using the most specific regression
transforms.



4. UNSUPERVISED STATIC
ADAPTATION

Implementation of static supervised and static unsuper-
vised adaptation schemes using MLLR are very similar.
Supervised adaptation uses a known word sequence for
each sentence whereas unsupervised adaptation uses the
output of a recogniser to label to data. The labelled
data is passed to the forward-backward procedure where
the appropriate statistics are gathered and the MLLR
transforms generated. The model parameters are then
updated. Previously [3] we have reported results using
the RM corpus using fixed regression classes and showed
that supervised and unsupervised adaptation result in
similar performance. This is due in large part to the use
of general regression classes which reduce the effects of
misalignments and poor labelling of data, giving good
performance with unsupervised adaptation.
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Figure 1: Supervised vs Unsupervised Adaptation using
RM

The RM experiments [3] were based on a gender inde-
pendent cross word triphone system with 1778 tied states
and a 6-component mixture distribution per state. This
was trained using the standard RM SI-109 training set.
A speaker dependent version was also trained for each of
the 12 RM SD speakers using the 600 SD training sen-
tences. All testing was on the 100 sentences of SD test
data for each speaker using the standard word-pair gram-
mar. Static supervised and unsupervised recognition ex-
periments with varying amounts of the speaker specific
training data used for adaptation were performed. Fig-
ure 1 shows these results and also the performance of the
SI and SD systems for comparison.

5. EVALUATION ON WSJ DATA

This section describes evaluation of the MLLR adapta-
tion approach with both static supervised adaptation for
non-native speakers (S3 test) and incremental unsuper-
vised adaptation to improve the performance on native

speakers (S4 test). Both types of adaptation used the
same baseline speaker independent system, and the same
regression class tree. In all cases the dynamic tree-based
approach to regression class definition was used. The
recognition results were all computed using the final ad-
judicated reference transcriptions and phone-mediated
alignments.

5.1. Baseline ST System

The baseline speaker independent system used for the
S3 and S4 experiments was a gender independent cross
word triphone mixture Gaussian tied state HMM sys-
tem (HMM-1 system of [6]), and is similar to the sys-
tem described in [5]. In the HMM-1 system speech is
parameterised using 12 MFCCs, normalised log energy
and the first and second differentials of these parame-
ters to give a 39 dimensional acoustic vector. Decision
tree-based state clustering [7] was used to define 6399
speech states, and then a 12 component mixture Gaus-
sian distribution trained for each tied state (a total of
about 6 million parameters). The acoustic training data
consisted of 36493 sentences from the SI-284 WSJ0+1
set, and the 1993 LIMSI WSJ lexicon and phone set was
used. The recognition tests for S3 and S4 used a 5k
(4986) word vocabulary and the standard MIT Lincoln
Labs 5k trigram language model. Decoding used the
single pass dynamic network decoder described in [4].

5.2. Regression Class Tree

The regression class tree was built using the divergence
between mixture components as the distance measure.
750 base classes were generated using a simple cluster-
ing algorithm. Initially, 750 mixture components were
chosen, and the nearest 10 components to each one were
assigned to the same base class. Every other component
was then assigned to the appropriate base class using an
average distance from all the existing members. This
technique was efficient and assigned a reasonable num-
ber (mostly around 100) of mixture components to each
base class. A regression tree was then built using a sim-
ilar distance measure.

The base classes were compared on a pairwise basis using
an average divergence between all members of each class.
To speed up processing, the search space was pruned by
computing the average distributions of each class and
only considering the closest 10 in the detailed match. At
each node the two closest classes were combined, and
any class remaining was given a separate node. After
2 levels of such combination the remainder of the tree
was built using the average distributions of each node
for comparison. This created a tree with 11 levels and
1502 separate nodes.



5.3. Spoke S3 Results

The aim of the S3 spoke was to investigate the use
of static supervised adaptation to improve performance
with non-native speakers. Each speaker supplies utter-
ances of the standard set of 40 adaptation sentences
which were recorded for all speakers in the corpus.

For use with MLLR these 40 sentences were first used
in a Viterbi alignment procedure to select the appro-
priate pronunciation of each word and any inter-word
silences etc. The resulting phone string was then used
and a number of iterations of MLLR were performed to
obtain an adapted model set for the current speaker.
Several iterations of MLLR may be required in the
case of non-native speakers since the original models
are poor and hence the state/frame alignments may
change after adaptation. The word error rate with the
SI HMM-1 models and native speaker recogniser settings
was 27.14% for the S3 1994 development test data and
20.72% for the S3 1994 evaluation test data.

Table 2 gives the results for systems with recogniser set-
tings tuned for non-native speakers. The effect of mul-
tiple iterations of MLLR and adaptation using a single
global regression matrix are shown.

tation. The HMM-1 system was used and incremen-
tal MLLR integrated into the dynamic network decoder.
Each S4 test-set contained about 100 sentences from each
of 4 speakers, and in fact both the 1994 S4 development
data and the evaluation data contained speakers with
high error rates.

When performing incremental adaptation as described
in Sec. 2.3 the parameters can be updated at any time.
In the tests performed here there was no update until
3 sentences had been recognised and then the interval
between successive updates was varied (every sentence,
every 5 sentences, every 10 sentences). Furthermore the
use of a global regression class updating every sentence
was also investigated.

Regression | Update % Word Error
Classes Interval | S4-dev’94 S4 Nov’94
baseline baseline 9.08 7.76

tree 1 6.66 6.43
tree 5 6.69 6.58
tree 10 6.76 6.62
global 1 7.27 7.04

Regression | Iterations % Word Error
Classes MLLR S3-dev’94 S3 Nov’94
baseline baseline 20.82 16.67

tree 1 12.80 11.52
tree 2 12.34 10.99
tree 3 12.20 10.99
global 2 16.10 13.81

Table 2: % word error rates for S3 non-native speakers
with MLLR static supervised adaptation.

For native speakers the average error rate with the
HMM-1 system is about 5%, and without any adaptation
the error rate is a factor of four to five higher for non-
natives. It can be seen from Table 2 that with multiple
iterations of MLLR and the dynamic tree-based regres-
sion class definitions (and revised set-up) the error rate
is reduced by an average of 55% from the SI system. The
use of multiple regression classes gives on average a 22%
reduction in error rate over a single global class and the
use of multiple iterations of MLLR gives a worthwhile
reduction in error.

5.4. Spoke S4 Results

The aim of the S4 test was to improve the performance
of native speakers using unsupervised incremental adap-

Table 3: % word error rates for S4 with MLLR unsuper-
vised incremental adaptation.

It can be seen from Table 3 that a worthwhile decrease
in error rate is obtained with unsupervised adaptation
(average of 22%). Indeed the speaker with the highest
initial error rate improved from 21.5% to 14.8%, and all
speakers yielded a lower rate with all adapted systems
(including the global regression class). The computa-
tional overhead of adaptation is approximately inversely
proportional to the update interval. If the update inter-
val is increased to 10 sentences there is only a small drop
in performance and a large reduction in computation due
to adaptation.

The operation of the tree-based dynamic regression class
definition is illustrated in Fig. 2, and shows that the
number of classes defined is approximately linear in the
number of sentences available for accumulation of adap-
tation statistics. The differing slopes are mainly due to
the different speaking rates of different speakers.

5.5. Adaptation In Nov’94 H1 System

The same approach used in S4 for unsupervised speaker
adaptation was also used for the November 1994 HI-
PO HTK system [6]. In this test there were only about
15 sentences from each speaker, speaking sentences from
unfiltered newspaper articles. The recogniser used for
the test had a 65k word vocabulary and a 4-gram lan-
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Figure 2: Variation of the number of regression classes
used as recognition proceeds for each speaker of the
Nov’94 54 test set

guage model. The acoustic models to be adapted were
a gender dependent set built using a decision tree with
a wider phonetic context than the HMM-1 set described
above. In total there were about 15 million parameters
in this HMM set (HMM-2). Further details of this sys-
tem are given in [6]. A regression class tree with 750
base classes was also built for the HMM-2 set, and the
gender of the speaker was identified automatically by
the system based on the first 2 sentences. The models
for the identified gender were adapted using MLLR and
then adapted again after every second sentence. The re-
sults from the system on both the 1994 H1 development
and evaluation test data, with and without unsupervised
incremental speaker adaptation are shown in Table 4.

Adaptation % Word Error
H1-dev’94 H1 Nov’'94
N 8.30 7.93
Y 7.28 7.18

Table 4: % word error rates for 1994 HTK H1-P0 evalua-
tion system with and without unsupervised incremental
speaker adaptation.

On the development data the error rate reduced by 12%
with adaptation and on the evaluation data by 9%. An
analysis of the error rate change on a speaker by speaker
basis showed that for the development data 17 of the 20
speakers had a reduced error rate with adaptation and
the error rate for only one speaker increased. For the
evaluation data only 11 speakers improved and 7 per-
formed more poorly. However the speakers that did im-

prove tended to be those that initially performed poorly
and in some cases the improvements were quite large. In
cases where the performance deteriorated this was usu-
ally by only a small amount. The HTK H1-P0 system
used for the evaluation was configured with incremen-
tal unsupervised adaptation and returned the lowest re-
ported error rate in the test.

6. CONCLUSION

The MLLR approach for adapting a speaker independent
model system has been extended to allow incremental
adaptation and dynamic allocation of regression classes.
The framework is therefore useful in static and incre-
mental adaptation in both unsupervised and supervised
modes with minimal changes to the system. The ap-
proach has been applied to a number of different prob-
lems with success, including unsupervised incremental
adaptation of a large state-of-the-art HMM system.
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