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Abstract

This report investigates the use of ezpected attainable discrimination (EAD) as a measure to select
discrete valued features in two-class prediction problems. In essence, EAD tells us the performance
we could expect to achieve with a simple histogram probability density model of a given dataset. For
discrete valued features, this kind of density model is bias-free but can have large variance. Given
insufficient training data, such a model’s test set performance will be lower than that of a suitably
biased model. In light of this, we explore the usefulness of EAD for feature selection.

Keywords: Feature selection, area under receiver operating characteristic (ROC) curve, medical risk
prediction, obstetrics.

1 Introduction

Feature selection is the process of choosing a good representation of data to solve a given inference problem.
We are interested in choosing a representation of a mother’s health state that will allow us to accurately
model obstetrical risk. This means we have to decide which features (also referred to as predictors, or
simply variables) should be used to forecast a mother’s risk of experiencing a particular adverse pregnancy
outcome (APO).

When the Quality Assurance in Maternity Care (QAMC) project commenced in 1995, we were faced
with the problem of determining good predictors of APOs from a large set of candidate variables. In
contrast to many medical risk prediction scenarios, we had almost too much data. Within the Scottish
Morbidity Record SMR2, for example, there are over 770 000 records. Each record can contain up to
6 different ICD-9 codes [1] to describe maternal condition. Each ICD-9 code can represent one of 300
possible maternal conditions arising prior to the onset of labour. The methods discussed in this paper
were developed as a practical means to tackle feature selection in this setting.

There are two main kinds of feature selection methods: those based on probabilistic separability mea-
sures applied to the data, and those based on the error rate of a classifier as a design criterion. This report
focuses on the latter approach. As Siedlecki and Sklansky [2, Section 3.4] point out, such an approach
“...must be recognized as a process in which [the] classifier is optimized and, therefore, trained. Hence,
the only error rate that can be computed for this classifier is an apparent error rate, which is known to be
very biased”. The feature selection criterion proposed in this paper is based around a classification model
that is both fast to train and, through the use of hold-out data, able to provide a performance estimate
less biased than apparent error rate.

Regardless of the bias of this performance estimate, it may still under or over-estimate the performance
that could be obtained by using a different model to classify the data. Consequently, our feature selection
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Figure 1: These sections of an ROC curve show true and false positive rates across the thresholds, %, ..., ty,
separating bins, Bi,..., By, in an ordered list. Straightforward methods to calculate the area under this

curve (and its standard error) are presented in [3] and [4].

method may select too few or too many features for other models to accurately classify data. The aim of
this report is to explore this issue and determine the strengths and weaknesses of this approach to selecting
discrete valued features in large databases.

In Section 2, we present the concept of ezpected attainable discrimination (EAD) and show how it can
used in a sub-optimal search for discriminative subsets of features. Section 3 gives performance results
obtained with a variety of risk prediction models that use features selected by EAD. This report concludes
with a discussion of the problems in assessing feature selection methods and a statement of the advantages
and shortcomings of EAD as a feature selection criterion.

2 Feature selection using EAD

Our ultimate goal is to forecast the risk associated with a mother’s health state, not to classify the state
as “at risk” or “not at risk”. While a decision about whether to intervene must be made eventually,
it is not appropriate for us to make that decision for the clinician managing the case. So, unlike many
pattern recognition problems, we do not focus on classification/misclassification rates but speak instead
of discrimination between adverse and benign outcomes. As we shall see in Section 2.2, discrimination is
maximized by a system that predicts the actual risk of adverse outcome! associated with a given health
state.

2.1 Problem setting

We wish to choose features that will allow us to discriminate between patterns belonging to class P and
patterns belonging to class @. Each training pattern is represented by a vector of discrete valued features,
x = (x1,...,2,), and a class label, y € {P, Q}. We implement a histogram probability density model by
grouping patterns with identical features into bins such that bin B; contains p; patterns from class P and
q; patterns from class @. With each bin, we associate an estimate of the probability that data from that
bin belong to class P, that is, ]5(3/ = Ple € B;) for bin ¢. This imposes an ordering on the bins that we

Lor some monotonically increasing function thereof.
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where |P| and |@| denote the number of patterns in classes P and Q, respectively. The receiver operating
characteristic (ROC) curve (Figure 1) plots TP; versus FP; across all thresholds ¢;. Furthermore, the area
under the ROC curve (AUROC) measures how well a prediction system discriminates between two classes
of outcome [5].

The AUROC depends on how bins are ordered, and that is determined by the estimates of P(y =
Ple € B;). In Section 2.2 WeAdiscuss the form of these estimates that maximizes the AUROC. Many
classifiers work by estimating P(y = P|x € B;) (or some monotonically increasing function thereof) and
then applying a threshold to that estimate, above which @ is deemed to belong to class P. The value of
the threshold is determined by the misclassification costs and the class prior probabilities. The AUROC
provides a summary of the classifier’s behaviour across all thresholds and is, thus, an appropriate measure
of performance when misclassification costs are not clearly specified.

Unlike most measures of probabilistic separation, the AUROC has a number of physical interpretations,
depending on the experimental setting in which it was obtained [5, Chapter 2]. In this paper, the following
interpretation is relevant: given two patterns, one randomly chosen from class P, the other randomly
chosen from class Q, the probability that a classifier correctly decides which pattern is class P is equal to
the area under the classifier’s ROC curve. Throughout the remainder of this paper, we shall use the terms
“discrimination” and “area under the ROC curve” synonymously.

2.2 Maximum attainable discrimination

It is possible to calculate the maximum extent to which one can discriminate between two classes within
a given set of data. From Equations 1 and 2 we have that
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Since |P| and |Q| are constant in a given data set, the slope of the i"" segment of the ROC curve (between
adjacent points (FP;, TP;), (FP;—1, TP;_1)) is proportional to p;/¢;, and equal to the estimated likelihood
ratio in the i'" bin. Thus, if we place bins in ascending order of estimated likelihood ratio?, the line
segments that make up the ROC curve appear, from left to right, in decreasing order of slope, and the
AUROC is maximized (see step (1) in Figure 2) [5, 7, §].

This mazimum attainable discrimination — or MAD, as Hanley and McNeil [8] refer to it — is easily
calculated and applies to any system which associates outputs with discrete valued data in a consistent
manner (¢e., labels identical patterns identically). As we shall see in Section 3.3, MAD helps determine

2or, equivalently, pi/(pi+¢i). This maximum likelihood estimate of the probability that data from bin B; belongs to class

P is what we would obtain using a simple histogram model [6] of the probability density function underlying the data set.
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Figure 2: To estimate the discrimination we can expect to obtain with a given representation of a specific
dataset, we randomly partition our dataset into two disjoint subsets, D' and D?. The D' bins, B;—Bg,
are placed in MAD order (1). The D' MAD ordering is applied to the bins in the D? subset (2). The area
under the D* ROC curve is an estimate of the expected discrimination (3).

whether a prediction system’s performance is limited by an inherent lack of separability in the data, or
shortcomings of the prediction model.

Note that MAD increases with the number of features used to represent a given data set. However,
our ability to generalize from the characteristics of a finite amount of data tends to decrease once a certain
representational complexity is exceeded.

2.3 Expected attainable discrimination

One aim of feature selection is to choose from a set of available predictors, those which afford the greatest
degree of discrimination between two classes of data. Implicit in this objective are the ideas that a
prediction system will eventually be built using the selected representation(s) of the data, and that that
system will be used to make predictions about new data.

A natural way to select features is simply to evaluate the performance of a prediction model using
a variety of representations of new data. Ignoring the combinatorial nature of the number of possible
feature subsets for the time being, we propose a practical classification scheme and a way to estimate its
performance on new data.

The scheme uses the histogram probability density model described in Section 2.1 to estimate ezpected
attainable discrimination (EAD). Given two sets of data, D' and D? drawn from the population we wish
to classify (see Figure 2), we

1. obtain the MAD with D' by placing its bins in ascending order of p;/(p; + ¢;) to form the list, L';

2. apply that ordering to the corresponding bins in D? to give L2, and measure the discrimination
obtained with that list.

The area under the ROC curve for L2 estimates EAD, and indicates how well the features representing
the data allow us to predict the outcome of new data.

Any bins that appear in D? but not D' are inserted randomly into the L? ordering. There are other
ways to deal with these “unassigned” bins such as the Bayesian approach described by Peto and MacKay
[9], however this method was used throughout the experiments described in this paper. (The basic principle
of Peto and MacKay’s approach is described in Appendix C.)

Data sets D' and D? should be independent to avoid highly biased estimates of the prediction system’s
performance. Methods such as cross-validation and the bootstrap exist to generate training and test data



sets from a single data set so as to mitigate such bias (see [10] for a summary). Given the large amount
of data available to us, in our experiments, it was convenient to randomly select two-thirds of our data to
create set D' and use the remaining third to form D%. A rotation error estimate [2, p. 216] of EAD was
formed by averaging EAD across ten such random partitions.

2.4 Using EAD to select discriminative features

EAD provides a measure of the degree of discrimination we can expect to achieve when a particular subset
of features is used to represent a given data set. Thus we can use EAD to search for the best subset of
features among a number of feasible subsets. Since this search is NP hard, we must resort to sub-optimal
methods [11].

The experiments described in this paper use sequential forward selection with EAD (which we refer
to as FEAD). (Results of the more computationally intensive sequential backwards selection (BEAD) are
reported elsewhere [12].) FEAD is an iterative search method defined by

Way1 = W, +argmax EAD(W, + {z;}), (3)
T, @Wp

where the working set W, contains the n discrete features used to describe the data at the current
search step. Using the methods described in the previous section, EAD(WW,) returns an estimate of the
discrimination we can expect when the features in W, are used to represent a given data set. Thus,
features will be added from the working set in order of decreasing importance to attainable discrimination.
Since EAD(WW,,) is an estimate based on several random partitions of the data, the order in which features
are selected 1s not deterministic. For this reason, we recommend performing several runs of the algorithm
to observe trends in the order of feature selection.

The fact that different runs of FEAD or BEAD can produce different orderings of features may trouble
some readers at first. It is tempting to expect there to be some combination of factors that consistently
ezplain an outcome, especially a clinical outcome. However there is no guarantee that our data contains
any observations of those factors, nor is there a guarantee that we could determine such factors — had
they been recorded — using a finite amount of data. As we shall see in the next section, experiments
show that strong predictors of outcome are consistently selected using EAD. The selection of features less
strongly associated with the outcome is more influenced by the random partitioning of the data.

Before presenting empirical results obtained with FEAD, we remind the reader that the novel aspect of
this research is in the use of EAD as a measure of the discriminatory power of a given subset of features —
not in the use of any particular search technique. We have elected to use sequential selection as a search
heuristic because it is an uncomplicated and fairly successful strategy. The performance of floating search
methods [13] makes them an appealing alternative.

3 Experimental application of EAD

In Section 2 we described how EAD can be used in selecting features. EAD is an average of the AUROCs
obtained when we run test data through several simple histogram density models. Each model is built
using a random training/test split of the available data. Thus, FEAD chooses subsets of features which
allow simple histogram density models to perform well on the available data. We can then use those
subsets of features in the construction of other models, such as neural networks.

But why use the histogram density model at all? Why not search through the subsets of features using,
say, neural network performance as a selection criterion? Two reasons for using the histogram density
model are that it is fast to train and, for discrete valued data, free from bias, 2.e., it has the necessary
power to represent any mapping from the space of discrete valued inputs to a real valued output.

There is a catch. Bias-free models tend to have large variance [14] and require much more training data
than their biased cousins to learn to generalize effectively. The number of parameters in a histogram density
model can increase exponentially with the number of features used to represent the data. Consequently,
as feature subset size increases, EAD tends to become more pessimistic than the performance achievable
by other, less flexible models.



So can these pessimistic performance estimates be used in the selection of discriminative features? In
particular, do the features selected using EAD give rise to good performance in other models? To explore
this issue, we look at the performance of a variety of models built using different subsets of features. Before
we describe these models, we introduce the practical prediction task used in this investigation.

3.1 Prediction of failure to progress in labour

One outcome considered in the QAMC project is Cesarean section for failure to progress in labour. We
consider the precursor to that outcome: failure to progress in labour — a condition which means that the
natural course of labour has stalled before delivery, placing the wellbeing of both mother and child at risk.

Our experiments were based on data from the Scottish Morbidity Record (known as the SMR2):
771571 singleton births that occurred between 1980-91. Cases in which elective Casarean section or
breech presentation occurred were removed from the dataset®. These records were partitioned into a
learning set of births occurring between 1980-88 (540905), and a testing set of births occurring between
1989-91 (176812). While we only have access to retrospective data, this partition is used to simulate a
prospective trial of the prediction systems.

Implicit in this use of the SMR2 data is the assumption that the characteristics of the population remain
stationary. Investigation of changes in the risk of adverse outcome over time is certainly a worthwhile
objective but it 1s beyond the scope of this report.

3.2 Selection of predictor variables

The SMR2 data contains many features relating to conditions prior to the onset of labour (over 300 distinct
ICD-9 codes appear). From this set of features, a subset of 49 features was pre-selected using Cramer’s V
statistic [15] as a univariate measure of the strength of association between each feature and the outcome.
While not strictly necessary, this pre-selection relieved much of the computational burden on the FEAD
algorithm. We acknowledge that this step could possibly remove variables important to the multivariate
prediction of risk, but our aim here is to illustrate the use of EAD for feature subset selection, not to come
up with a clinically unassailable prediction model.

Using the 49 candidate features, 20 separate runs of FEAD were performed. Figure 3 shows the MAD
and EAD obtained at each forward selection step of the 20 runs. Clearly, once a certain representational
complexity is reached, using additional features to describe the data results in a decrease in EAD. Figure 4
shows the levels of EAD up to point of maximum EAD in each run. Table 1 lists the order in which
features were selected in 10 of the 20 runs performed, and shows in bold the features in the subsets which
attained maximum EAD.

Although the different runs of FEAD give an indication of the discriminative power of each predictor,
we must still choose which variables to build prediction models with. A number of approaches spring to
mind:

1. Select those predictors common to all subsets of features that attained maximum EAD in all runs
of FEAD. If we considered only 10 runs of FEAD, this approach would select the predictors in the
first eight rows of Table 1.

2. Select those predictors that were in any of the subsets of features that attained maximum EAD in
any run of FEAD. If we considered only 10 runs of FEAD, this approach would select predictors
with a bold face entry anywhere in their row of Table 1.

3. Build an ensemble of prediction models, each based on a subset of features that attained maximum
EAD on one run of FEAD.

4. Tgnore the results of FEAD and select predictors according to some other criteria.

5. Ignore the results of FEAD and use all available predictors.

3Tn almost all cases, these factors will be known before labour commences and indicate that delivery will be by Czesarean
section so that failure to progress in labour cannot occur.



We did not pursue the first approach since we knew that a model based on the those eight predictors
would be outperformed by a simple histogram density model?.

The second approach resulted the set of 35 variables listed in Table 3. The third approach meant that
20 different subsets of variables were used to construct the individual members of an ensemble of neural
networks (see the description of the NetMix model in Appendix B). Note that both the second and third
approaches ignore the variance in our estimates of EAD. We do not address the question of how to find
the subset of variables that attains the largest value of EAD that is significantly different from the EAD
of other subsets.

As for the fourth approach, after discussions with clinicians, it became clear that there were concerns
about the reliability and validity of the ICD-9 codes used to describe maternal condition. In response to
these concerns, we decided to explore the performance of prediction systems trained solely on non-ICD
code information. This criterion resulted in data described by the 4 variables Parity, MumAge, CSections
and NeoDxs.

So, at the end of the feature selection process we had decided to investigate 4-, 35-, and 49-variable
feature sets, as well as the mixture of 9—15-variable feature sets to be used in the NetMix model.

Representation of information is an important issue in modelling. While the majority of variables were
already binary valued, some variables, e.g., MumAge, were polytomous (see Table 4). These variables were
encoded using the reference variable method described by Hosmer and Lemeshow [16].

3.3 Prediction performance with selected features

The central purpose of this report is to assess whether features selected using a cheap and cheerful heuristic
produce good performance in sophisticated prediction models that are more time consuming to train. In
this section, we describe the prediction performances achieved with four different prediction models: logistic
regression (LogReg), a smoothed lookup table (LkpTab), an ensemble of neural networks with the same
architecture (NetEns), and an ensemble of neural networks with different architectures (NetMix). (These
models are described in Appendices A; B and C.)

Figure 5 shows the performance of the each prediction system with 4-, 35-, and 49-variable feature
sets, as well as the mixture of 9-15-variable feature sets used in the NetMix model. These results suggest
that the underlying structure of the association between predictors and outcome can be captured with
fewer than 49 features. The AUROC and average negative log-likelihood (ANLL) of the test data for each
prediction model are given in Table 2. ANLL indicates how accurately a model predicts the probability
of adverse outcome observed in the test data:

1
ANLL = —— Z pi log P(adverse|x;) + ¢; log P(benign|x;)
N
T eX
1
= -3 prilogy(wi)+qilog(1—y(wi)), (4)
Trie

where X is the set of distinct feature vectors occurring in the test data, p; and ¢; are the numbers of adverse
and benign outcomes for vector @;, and N is the total number of test set records. ANLL is minimized
when the predicted risk of adverse outcome for profile x; is

yw) = (5)

3.3.1 Performance with 4 features

Although the 4 non-ICD code features MumAge, Parity, CSections and NeoDxs were encoded in a 12
dimensional binary vector, the 1-of-N representation of MumAge and Parity meant that only 126 distinct
feature vectors appeared in the training data. Given that the actual number of patient records outnumbered
that by three orders of magnitude, it is not surprising that the NetEns, LkpTab and LogReg models achieved
close to maximum attainable discrimination in this setting.

By calculating MAD, we know that the performance of the different prediction models is limited by
the 4-variable representation of the data, rather than shortcomings in the models themselves.

4Table 1 and Figure 3 show that maximum FEAD is achieved with at least nine predictor variables.



| Failure to progress |

Feature, ICD code and Range Order of addition
Parity 4] 1 1 1 1 1 1 1 1 1 1
MumAge -6 2 2 2 2 2 2 2 2 2 2
CSections 0073 3 3 3 3 3 3 3 3 3
SUPRV HIGH-RISK PREG NEC v238 0,1 4 4 4 4 4 4 4 4 4 4
THREATENED LABOR NEC 6441 0,1 6 6 5 5 5 5 5 5 6 8
Height 0-2| 5 8 6 6 6 6 7 6 9 5
ANEMIA IN PREGNANCY 6482 0,1 7 5 10 9 7 9 6 10 5 7
POOR FETAL GROWTH 6565 0,1 9 11 8 12 10 12 8 7 8 6
PREM SEPARATION PLACENTA 6412 0,1 | 13 10 18 13 12 10 12 12 12 23
HIGH HEAD AT TERM 6525 (0,1 | 27 16 12 15 13 23 25 9 20 10
OTH PLACENTAL CONDITIONS 6567 0,1 | 22 14 11 28 9 11 22 29 11 18
ABNORMAL VULVA IN PREG 6548 0,1 | 19 15 19 22 11 20 9 32 21 14
NeoDxs 0,112 31 16 26 17 13 13 8 36 17
HEMORR FROM PLACENT PREV 6411 0,1 | 17 9 33 8 22 28 20 38 35 28
TRANSVERSE/OBLIQUE LIE 6523 0,1 | 28 17 30 18 26 24 19 11 14 11
ANTEPARTUM HEMORR NEC 6418 (0,1 | 10 24 24 20 29 16 36 22 39 32
INFECTIV DIS IN PREG NEC 6478 0,1 | 31 27 28 16 15 25 17 25 17 20
FETAL DISPROPORTION NOS 6535 (0,1 | 11 35 20 34 33 33 18 17 26 21
INDICAT CARE LAB/DEL NEC 6598 0,1 | 35 18 26 39 14 19 30 16 15 27
MALPOSITION NEC 6528 0,1 8 12 34 7 24 22 21 37 33 39
ABO ISOIMMUNIZATION 6562 0,1 | 32 22 13 19 34 26 29 18 22 15
MALPOSITION NOS 6529 0,1 | 14 13 17 27 18 38 23 20 37 35
OBESITY 2780 0,1 | 26 26 14 37 25 29 10 13 16 38
EXCESSIVE FETAL GROWTH 6566 0,1 | 24 38 22 21 20 42 11 15 25 13
PREGNANCY COMPL NOS 6469 0,1 | 37 29 25 31 21 27 27 24 23 31
CEPHALIC VERSION NOS 6521 0,1 | 29 34 23 17 35 14 16 27 18 16
CERVIX INCOMPET IN PREG 6545 0,1 | 18 20 9 14 19 21 38 21 27 22
PREG W POOR REPRODUCT HX v23s 0,1 | 30 19 35 24 28 30 15 23 30 26
UTERINE TUMOR IN PREG 6541 0,1 16 37 32 11 16 41 24 19 29 34
VOMITING COMPL PREG NEC 6438 (0,1 | 25 21 31 32 31 15 14 14 19 33
POLYHYDRAMNIOS 6579 0,1 | 23 25 21 41 36 32 26 30 42 19
PREG W HX OF INFERTILITY v230 0,1 20 30 37 23 37 T 34 33 40 29
DIABETES MELLIT IN PREG 6480 0,1 | 34 36 15 29 27 35 39 36 10 24
TRANS HYPERTENSION PREG 6423 (0,1 | 40 32 39 36 8 34 35 42 13 12
RHESUS ISOIMMUNIZATION 6561 0,1 | 41 40 36 25 38 36 37 26 32 40
PREG W POOR OBSTETRIC HX v234 0,1 | 36 23 29 35 39 17 28 34 24 37
MILD HYPEREMESIS GRAVID 6430 0,1 | 21 33 27 38 30 39 33 28 28 36
BONE DISORDER IN PREG 6487 0,1 | 33 39 41 40 23 40 32 31 41 25
THREATENED ABORTION 6400 0,1 | 38 42 40 43 42 37 42 40 31 41
PROLONGED PREGNANCY 6459 0,1 | 47 7 7 46 40 45 46 45 7 9
ABN GLUC TOLERAN IN PREG 6488 0,1 | 39 28 38 30 32 31 40 35 38 30
THREATEN PREMATURE LABOR 6440 0,1 | 15 41 43 42 44 18 41 39 43 42
MILD/NOS PRE-ECLAMPSIA 6424 0,1 | 42 45 42 44 46 43 44 43 45 45
EDEMA IN PREGNANCY 6461 0,1 | 43 43 44 33 41 44 31 41 34 44
HYPERTENS COMPL PREG NOS 6429 0,1 | 45 47 45 10 45 8 45 44 44 46
ThrptAbortions 0,1 | 44 44 46 47 47 46 43 46 46 43
Support 0,1 | 48 48 47 45 43 47 47 47 47 48
SpontAbortions 0,1 | 46 46 48 48 48 48 48 48 48 47
SocClass 0-6 | 49 49 49 49 49 49 49 49 49 49

Table 1: The discrete variables used to predict failure to progress, and the order in which they were added
to the working set across 10 of the 20 separate runs of FEAD. Capitalized entries indicate TCD-9 code
variables describing maternal conditions. Numbers in bold indicate the subset of features that attained
maximum EAD in each run.



| Average negative log-likelihood | | Area under ROC curve |
Model 4 vars 35 vars 49 vars Model 4 vars 35 vars 49 vars
Test set limits | 0.283 0.262 0.211 Test set limits | 0.764 0.808 0.883
NetEns 0.284 0.280 0.280 NetEns 0.763 0.776 0.777
NetMix — 0.281 — NetMix — 0.773 —
LogReg 0.285 0.282 0.281 LogReg 0.762 0.775 0.775
LkpTab 0.284 0.284 0.296 LkpTab 0.763 0.767 0.740
EAD 0.763 0.766 0.697
Null model 0.328 0.328 0.328 Null model 0.500 0.500 0.500

Table 2: The performance of each prediction model as a function of the number of predictor variables used
by that model.

3.3.2 Performance with 35 features

As the representation of the SMR2 data becomes more complex, the ability to resolve individual test
cases increases. This explains the non-decreasing MAD curve in Figure 3. However, our ability to make
good predictions about the risk associated with each vector of patient characteristics does not necessarily
increase. While the amount of training data remains the same as in the 4-feature model, the 35 variable
representation increases the number of distinct feature vectors to 13 500. From this point onwards, the
number of parameters in each prediction model (Figure 6) starts to have a noticeable impact on their
performance.

When the ratio of training data to model parameters decreases beyond a certain point, the curse of
dimensionality takes its toll on generalization performance. Figure 6 shows the exponential increase in
parameters of both the LkpTab model and the histogram probability density model used to estimate EAD.
As a consequence of this, the performance of EAD and the LkpTab model falls below that of the more biased
LogReg and NetEns models when 35 features are used to represent the data. The number of unassigned
bins (Figure 7) increases monotonically with the complexity of representation.

Each of the 20 networks in the NetMix model uses different subsets of 9-15 features to represent the
data. In total, 35 features are used in the NetMix model. The performance of individual networks is shown
in the boxed region of Figure 5. The prediction accuracy obtained by averaging the 20 outputs together
is reported 1in Table 2 and is marginally less than that of the more complex NetEns model.

3.3.3 Performance with 49 features

When the full complement of features is used to represent the SMR2 data, EAD and the performance of
the LkpTab model fall dramatically. The smoothing effect of the Dirichlet prior keeps the LkpTab model
performance above that of the simple histogram density model. The number of parameters in the LogReg
and NetEns models are, respectively, linear and quadratic functions of the number of features. As such,
their generalization performance is not yet diminished by the high dimensional representation of the data.

Note that the performances of NetEns and LogReg are only slightly greater than the largest values of
EAD observed in each run of the FEAD algorithm. The maximum EAD values ranged between 0.773 and
0.775 across the 20 runs, and occurred when the working set contained 9-15 variables.
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Figure 3: MAD (upper curves) and EAD (lower curves) for prediction of failure to progress, obtained over
20 runs of FEAD. Error bars show one standard deviation above and below each point estimate. Features
are added, one at a time, from left to right, starting with a single feature model. The order of addition is
shown in Table 1.
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Figure 4: The EAD obtained over 20 runs of FEAD, up to the point of maximum EAD. The features
corresponding to the points in this graph are shown in bold in Table 1
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Figure 5: The test set performance of different models plotted against the number of features used by
those models.
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Model parameters during FEAD
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Figure 6: The number of parameters in the LkpTab, NetEns and LogReg models plotted against the features
selected in twenty different runs of FEAD. The number of parameters in the LkpTab are equal to the number
of bins in the histogram probability density model used to estimate EAD. The black points on the curves
for the LkpTab model show the number of bins that were in the histogram probability density model when
maximum EAD was obtained.
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Figure 7: The number of bins, and the number of unassigned bins plotted across twenty different runs of
FEAD. Recall that an unassigned bin is one that appears in the D? partition of the data but not in D!
(see Section 2.3).
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4 Discussion

The results presented in the previous section show that we can obtain good prediction performance with
neural networks and logistic regression using features selected with the help of EAD. Furthermore, from a
clinical perspective, the ranking of features shown in Table 1 accords with conventional obstetric wisdom.
This is notable since the algorithm operated on database information alone, without recourse to expert
opinion or prior assumptions.

In Section 4.1 we consider why it is extremely hard to go beyond this kind of empirical evidence for,
or against, a given approach. Although we would like to provide a meaningful quantitative evaluation
of EAD for feature selection, there are good reasons why this cannot be done without reference to a
specific prediction model. Tt must be recognized that accurate prediction is as much a function of the
representation of data as 1t is of the power of our prediction models, and that it would be misleading to
consider the choice of representation in isolation.

Instead of fabricating toy problems where EAD leads to the selection of better features, faster than
other methods, we present a qualitative assessment of the pros and cons of EAD as a feature selection
criterion. By doing this, we hope to provide other researchers with a clear idea of where this approach
could be put to good use.

4.1 Difficulties in assessing feature selection algorithms
Comparing feature selection algorithms is a tricky business. There are three reasons for this:

1. feature selection can be used as a tool to understand the problem at hand, and as a means to improve
prediction performance. The varying importance of these different aims makes it hard to achieve a
general comparison between algorithms;

2. if we perform feature selection to improve prediction performance, its effect is modulated by the
prediction system that uses the selected features. Thus it 1s difficult to determine what degree of
performance is attributable to the feature selection method, and what is attributable to the modelling
technique;

3. in certain problem settings, other factors, such as execution speed or sensitivity to distributional
assumptions, may be significant. This can prohibit a general comparison of algorithms.

There are two possible objectives in feature selection. One is to discover an underlying relationship
between predictors and outcome so as to achieve a better understanding of the problem at hand. The other
is to determine the variables that allow us to build the most accurate prediction model, given a finite amount
of data. To some extent, these objectives are compatible, but it would be naive to think that they are one
and the same at the extremes. The 4-variable LogReg model of failure to progress has a straightforward
interpretation but, in terms of log predictive error, it is clearly not the most accurate model. At the other
extreme, the 49-variable NetEns model achieves marginally better prediction performance than all other
models, but provides very little in the way of explanation. This highlights the difference between selecting
features to explain a particular outcome, and selecting features to predict that outcome.

We cannot speak of feature selection to improve prediction performance without reference to some
kind of prediction system. Since different prediction models may be more or less suited to a given task,
it is hard to disentangle the effects of feature selection and model bias on prediction performance. These
difficulties are compounded by the lack of a well accepted definition of bias and variance for 0/1 loss (i.e.,
classification) problems [17].

Other factors may have a bearing on the utility of a feature selection algorithm. Some methods
rely upon certain assumptions about the within-class distribution of data points, e.g., methods that use
Mahalanobis distance as a selection criterion [18]. In certain circumstances, these algorithms may be less
attractive than more robust techniques. Some search algorithms (e.g., branch-and-bound [19]) require
monotonicity of the feature selection criterion function, z.e., that the “goodness” of a subset of features
can never be decreased by addition of new features. This assumption may also be violated in practice,
which lessens the appeal of such techniques. Finally, a computationally intensive algorithm that selects
excellent subsets of features may be impractical to use with large amounts of data and/or features. Each
of these factors makes it difficult to decide which feature selection strategy is “best” in general.
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So, there are a variety of reasons why head-to-head comparison of FEAD and other algorithms might
not be fruitful. In the next sections, we consider the strengths and weaknesses of feature selection using

EAD so the reader may obtain a better idea of situations where this approach would be applicable.

4.2

The strengths of EAD for feature selection

EAD has five main strengths as a feature selection criterion:

1.

4.3

EAD provides a performance benchmark, rather than an abstract statistical measure of interclass
separation. EAD estimates directly the performance we could expect to achieve with a histogram
density model of the data. With statistical separation measures,; it is necessary to build prediction
models using the selected features before we can obtain an idea of the practical value of that data
representation.

The complexity of all other models will lie between that of the histogram density model and the null
model (z.e., the model that predicts constant risk). Thus, EAD is a sensible measure to evaluate in
exploring the discriminative power of feature subsets.

The idea of providing a simple, fast benchmark to which other, more complicated prediction strategies
could be compared has also been put forward by Holte [20], though not in the context of feature
selection.

. EAD does not make distributional assumptions about the data. The histogram density model has

sufficient flexibility to model any probability distribution on discrete valued input space. So, unlike
logistic regression, for example, EAD has the ability to model any interactions that appear in the
data without having to specify those interactions beforehand.

. Because EAD is estimated on the basis of several random partitions of a dataset, different searches

that use EAD as a criterion will return slightly different results. This is a natural consequence of
the uncertainty about the features that are important in solving a given problem. This uncertainty
arises because we are trying to estimate model parameters with a finite amount of data.

As far as we are aware, most other approaches to feature selection do not perturb data that is used to
estimate the “goodness” of feature subsets. By avoiding the issue of how sensitive a feature selection
criterion is to different samples of the available data, these methods can present an over-confident
statement of the discriminative power of variables. EAD straightforwardly accounts for uncertainty
about the importance of different features.

EAD is well suited as a feature selection criterion for large amounts of sparse discrete valued data.
Data sets with these characteristics are common in medical settings and in other data mining tasks
(e.g., credit card risk scoring).

. EAD is an appropriate feature selection criterion in situations where our goal is risk prediction as

opposed to classification. This is because EAD is based on the AUROC — a non-parametric measure
of the discrimination achieved by a given input-output mapping — rather than classification rate.

Unlike the Bayes error rate, EAD and MAD can be calculated without specifying a loss matrix.
This means that these AUROC based discrimination measures may be especially useful in situations
where the loss matrix is difficult to elicit or prone to variation.

The AUROC has been rightfully criticised by Jiang et al. [21], who state that it “is not a meaningful
summary of clinical diagnostic performance when high sensitivity must be maintained”. We must
stress that we use AUROC primarily to direct our search for discriminative subsets of features. Proper
evaluation of models trained on the selected features requires additional measures of performance,
including estimates of log predictive loss and probability calibration plots.

The weaknesses of EAD for feature selection

EAD was developed with a specific kind of dataset in mind; it is certainly not a suitable approach to
feature selection in general. There are five significant shortcomings of EAD as a feature selection criterion:
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1. EAD can give pessimistic estimates of the performance that could be achieved by biased models,
especially when the ratio of data points to distinct feature vectors is low. However, this is an
unavoidable risk of using one kind of model to predict the performance of another. The sensible way
to deal with this issue is to monitor the performance obtained by alternate models using various
feature subsets selected by EAD.

2. Using EAD as a feature selection criterion in conjunction with a heuristic search technique does not
produce a single “best” subset of features. At the end of the search process, it is still very much up
to the experimenter to decide which features should be carried through to the modelling stage.

This criticism could be levelled at many feature selection methods, particularly those based on
statistical measures of interclass separation. It could be argued that these algorithms are not designed
to actually select features, but rather as a means to explore useful representations of a finite data
set in a sensible manner.

3. Since EAD makes no distributional assumptions about the data, it can require massive amounts
of data to work effectively. It is not a good idea to try to select features using EAD with small

datasets — in those circumstances, prior knowledge (i.e., a biased model) is necessary to achieve
good performance. Unfortunately, choosing a suitably biased model is usually a difficult problem in
itself.

4. EAD does not tell us very much about the underlying structure of a problem. We cannot gauge the
significance of interactions between variables by when they leave, or enter, the subset maintained by
the search heuristic. The problem of discovering an underlying model of high dimensional data (if
one exists) is a fundamental challenge in data mining.

5. EAD has no practical extension to continuous valued features. While it may be feasible to quantize
one or two continuous valued features (e.g., maternal age, height), the curse of dimensionality is
brought on exponentially fast in this way. Tree based methods like CHAID (see [22] for a review)
get around this problem by recursively partitioning continuous data but such azis-aligned splits can
perform poorly in the presence of correlated variables.

5 Summary

In this report, we have described EAD and shown how it can be used as a feature selection criterion. This
approach was developed specifically as a means to find a discriminative representation of large amounts of
sparse, discrete valued data. Unlike statistical measures of interclass separation, EAD provides a mean-
ingful benchmark to which the performance of other prediction models can be compared. Furthermore,
since EAD is estimated on the basis of random partitions of data, it gives us a straightforward way to
characterise uncertainty about the discriminative power of different features.

One purpose of feature selection algorithms is to determine informative variables before embarking upon
more computationally intensive modelling strategies. We have used a real-world problem to demonstrate
the use of EAD in feature subset search: selection of discriminative predictors of failure to progress in
labour. From a clinical point of view, the order in which features were selected agreed with their relevance
to the obstetric condition being investigated.

The levels of EAD obtained in a forward selection search were compared to the performance of neural
network, logistic regression and smoothed lookup table models of risk. As the ratio of distinct feature
vectors to available data grew beyond a certain point, EAD gave increasingly pessimistic estimates of the
performance achievable by more biased models (i.e., logistic regression and neural networks).

We have explored, qualitatively, the advantages and disadvantages of using EAD as a feature selection
criterion. The bias-free histogram density model upon which EAD is based has the power to capture
complex interactions between variables given sufficient data. While it may take substantial amounts of
data for such interactions to be determined, the representational power of the histogram density model
makes EAD a suitable criterion to select features for prediction systems that can model those relationships.

Section 4 highlights the difficulties in quantitative comparison of feature selection algorithms. We
have not attempted to resolve that issue in this report — the matter is substantial enough to warrant
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exploration in another paper. To the best of our knowledge, no systematic treatment of the factors
involved in comparing feature selection algorithms has been published. We hope to address this topic
thoroughly in a subsequent report.
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A The LogReg model

This standard statistical method [16] was trained using all 540 905 cases in the learning set. LogReg has an
important advantage over the other, more complicated models. The regression coefficients show the change
in log odds that arises when a given risk factor is present. Positive coefficients indicate that the presence of
a variable increases risk of adverse outcome, and vice versa for negative coefficients. While LogReg may not
be the most accurate model of a complex nonlinear relationship, it can still be of significant explanatory
value. The coefficients learned by the LogReg model are shown in Table 4.

B The NetEns and NetMix models

These models form predictions by averaging together the outputs of an ensemble of two layer feed-forward
neural networks. Ensembles of predictors were used in an attempt to moderate over-confident risk estimates
from individual predictors [23, 24]. In the absence of any theoretically optimal method to choose the
ensemble size, we decided that 20 networks provided adequate modelling power with tolerable training
time. For similar reasons, we chose the number of hidden units to be |N/2], where N is the number of
inputs to a network.

To train individual networks within an ensemble, the learning set was randomly partitioned into a
training set (containing two thirds of the 540905 cases) and a wvalidation set (containing the remaining
cases). A network was trained to minimize the cross-entropy error on the training set until its performance
on the validation set was maximized, or the available CPU time was used. This early-stopping is described
in [25] and was used instead of more sophisticated (and computationally intensive) second-order methods
because of the large size of the SMR2 dataset.

The difference between the NetEns and NetMix models lies in the input information received by the
networks in each ensemble. The 20 networks in the NetEns model received identical input information:
all 35 variables listed in Table 3. Each network in the NetMix model received a different subset of those
variables: the bullet points in each column of Table 3 show the variables present in each subset.

C The LkpTab model

The hierarchical Bayesian model, LkpTab, uses the entire learning set directly to make predictions. Let
pi, ¢i be the number of adverse/benign cases in the learning set corresponding to patient profile @;. For
these patient characteristics, the risk of adverse outcome predicted by LkpTab is

P(adverse|®z) = _pitom (6)

pit+g¢+a

The two hyperparameters o and m smooth the estimates of P(adverse|z;) appearing in each bin. When
we have seen many cases corresponding to the profile #;, this estimate will be dominated by the likelihood
pi/(pi + ¢i). If, however, few or no such cases have been seen, the estimate will be dominated by the
Dirichlet prior and will be close, or equal to the hyper-parameter m. The hyper-parameter o corresponds
to the number of @; cases that must be present in the learning set before our estimate departs significantly
from m. The approximate Bayesian methods used to determine a and m are described in [9] and yielded
values of a between 7 and 13 and m between 0.083 and 0.094.



Variable Presence in NetMix model

MumAge
Parity
Height
CSections

NeoDxs
OBESITY
THREATENED ABORTION . .
HEMORR FROM PLACENT PREV

PREM SEPARATION PLACENTA . o o o . o o o o . .
ANTEPARTUM HEMORR NEC .

TRANS HYPERTENSION PREG .

MILD/NOS PRE-ECLAMPSIA .
HYPERTENS COMPL PREG NOS

THREATENED LABOR NEC ®© 06 0 0.0 0. 0.0 006 06 0 06 0 0 0 0 0 0 0
PROLONGED PREGNANCY o o o o o

PREGNANCY COMPL NOS .
INFECTIV DIS IN PREG NEC .

DIABETES MELLIT IN PREG

ANEMIA IN PREGNANCY ®© 06 0 0.0 0.0 0 006 06 0 0 0 0 0 0 0 0 0
CEPHALIC VERSION NOS

TRANSVERSE/OBLIQUE LIE . .

HIGH HEAD AT TERM . . . o o . .
MALPOSITION NEC . . .

UTERINE TUMOR IN PREG

CERVIX INCOMPET IN PREG .

ABNORMAL VULVA IN PREG . .

RHESUS ISOIMMUNIZATION

ABO ISOIMMUNIZATION

POOR FETAL GROWTH ®© 06 0 0 0 0.0 0 006 06 0 0 0 0 0 0 0 0 0
EXCESSIVE FETAL GROWTH

OTH PLACENTAL CONDITIONS . o o . . . .
POLYHYDRAMNIOS .

PREG W HX OF INFERTILITY .

PREG W POOR REPRODUCT HX

SUPRV HIGH-RISK PREG NEC o ©¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o

® O o o o
e o o o o

Table 3: Each of the 20 columns of bullet points indicates which variables were present in the input of a
given network in the NetMix model.
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Table 4: The coefficients learned by the LogReg model for 49-; 35- and 4-element feature sets. The model
estimates risk for a given patient profile ® = [x12s...2k], ®;i € {0,1}, as y(x) = 1/(1 4+ e~ %), where
z= 0o+ Zszl Bixz;. Polytomous variables (like MumAge and Parity) use a one-of-N encoding with the
first (baseline) variable encoded by setting all relevent inputs to zero. The bars at the right of the table
represent the values of the regression coefficients about 0.0, the centre line. A ‘%’ beside a regression
coefficient indicates that, under the usual frequentist assumptions, 0.0 lies within the 95% confidence
interval of that coefficient.

| Variable | Coeffs (49 vars) | Coeffs (35 vars) | Coeffs (4 vars) |
Constant —1.714 —1.779 —2.019
MumAge <20 Baseline Baseline Baseline
MumAge 20-24 +0.263 +0.320 +0.321
MumAge 25-29 +0.579 +0.662 +0.654
MumAge 30-34 +0.819 +0.910 +0.888
MumAge 35-39 +1.077 +1.170 +1.131
MumAge >40 +1.370 +1.465 +1.417
MumAge Not Known +0.338% +0.254% +0.266%
Parity 0 Baseline Baseline Baseline
Parity 1 —2.122 —2.116 —2.097
Parity 2 —2.859 —2.861 —2.836
Parity 3 —3.092 —3.100 —3.063
Parity 4+ —2.980 —2.986 —2.929
SocClass I Baseline
SocClass II —0.050
SocClass IIIM —0.045
SocClass ITIN —0.083
SocClass IV —0.059
SocClass V —0.025%
SocClass Not Known —0.206
Height < 155cm Baseline Baseline
Height > 155cm —0.328 —0.322
Height Not Known —0.452 —0.453
Support +0.081
SpontAbortions +0.074
ThrptAbortions —0.073
CSections +1.969 +1.966 +1.939
NeoDxs —0.610 —0.630 —0.652 r
OBESITY +0.640 +0.669
THREATENED ABORTION —0.308 —0.318
HEMORR FROM PLACENT PREV  —0.527 —0.525
PREM SEPARATION PLACENTA —1.249 —1.252
ANTEPARTUM HEMORR NEC +0.605 +0.598
TRANS HYPERTENSION PREG +0.253 +0.252
MILD/NOS PRE-ECLAMPSIA +0.130 +0.136
HYPERTENS COMPL PREG NOS +40.210 +0.219
MILD HYPEREMESIS GRAVID —0.242
VOMITING COMPL PREG NEC +0.796
THREATEN PREMATURE LABOR —0.151
THREATENED LABOR NEC —0.877 | —0.884
PROLONGED PREGNANCY +0.179 +0.185 1
EDEMA IN PREGNANCY +0.104
PREGNANCY COMPL NOS +0.217 +0.211
INFECTIV DIS IN PREG NEC —0.545 —0.560
DIABETES MELLIT IN PREG +0.470 +0.484
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...continued from previous page.

| Variable | Coeffs (49 vars) | Coeffs (35 vars) | Coeffs (4 vars) |
ANEMIA IN PREGNANCY +0.429 +0.424 b
BONE DISORDER IN PREG —0.248
ABN GLUC TOLERAN IN PREG +40.259

CEPHALIC VERSION NOS +0.927 +0.935
TRANSVERSE/OBLIQUE LIE +0.532 +0.532
HIGH HEAD AT TERM +0.925 +0.931
MALPOSITION NEC +0.935 +0.937
MALPOSITION NOS +0.397
FETAL DISPROPORTION NOS +1.581

UTERINE TUMOR IN PREG +0.230% +0.225%
CERVIX INCOMPET IN PREG —0.157% —0.164%
ABNORMAL VULVA IN PREG +0.425 +0.439

RHESUS ISOIMMUNIZATION —0.211 —0.213
ABO ISOIMMUNIZATION —0.375% —0.384%
POOR FETAL GROWTH —0.495 —0.504
EXCESSIVE FETAL GROWTH +0.880 +0.882
OTH PLACENTAL CONDITIONS —1.161 —1.175
POLYHYDRAMNIOS +0.465 +0.473
INDICAT CARE LAB/DEL NEC —0.003%

PREG W HX OF INFERTILITY +40.302 +0.312
PREG W POOR OBSTETRIC HX —0.400

PREG W POOR REPRODUCT HX —0.121% —0.113%
SUPRV HIGH-RISK PREG NEC —4.259 —4.251 4
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