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Abstract

In this paper we present a complete system for seg-
menting, matching and tracking planar contours for
use in visual servoing. Qur system can be used with
arbitrary contours of any shape and without any prior
knowledge of their models. The system is first shown
the target view. A selected contour is automatically
extracted and its image shape is stored. The robot and
object are them moved and the system automatically
identifies the target. The matching step is done to-
gether with the estimation of the homography matriz
between the two views of the contour. Then, a 2 1/2
D wvisual servoing technique is used to reposition the
end-effector of a robot at the target position relative to
the planar contour. The system has been successfully
tested on several contours with very complex shapes
such as leaves, keys and the coastal outlines of islands.

1 Introduction

Matching two views of an object under full perspec-
tive projection and for large camera displacements is
a difficult problem. Many visual servoing systems are
contrived to make the vision problem simple (usually
using points and lines as visual features) [5][9]. Even
using “a priori” knowledge of the 3D model of the ob-
jects as in [6], finding the correspondences between
the projection of the model and a real image remains
a difficult problem. Recently, image-based visual ser-
voing with respect to more complex objects has been
studied assuming that the matching has been done [4].
In this paper, a visual servoing system using complex
features such as contours is proposed dealing with the
problem of finding correspondences. In order to sim-
plify the matching problem, the only hypotheses made
here are that the contour is planar and that occlusions
can occur only during the tracking stage.

The main approaches for curve matching are based
on finding invariants to the transformation linking two
images of the curve. Geometric invariants have been
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studied extensively [15] [11] [12]. However, existing in-
variants suffer from occlusion and sensitivity to image
noise. To cope with these problems, semi-local integral
invariants were proposed in [13]. They showed that it
is possible to define invariants semi-locally which re-
quire a lower order of derivatives and hence are less
sensitive to noise. Although semi-local integral in-
variants reduce the order of derivatives required, it is
still high in the general affine case. A quasi-invariant
parametrisation was introduced in [14] which makes
it possible to use second order derivatives instead of
fourth and fifth but is only approximately invariant.
Not only are derivatives of high order difficult
to calculate since sensitive to noise, but for some
curves the derivatives do not give any information
(e.g. polygonal curves) or contain many discontinu-
ities. Hence, for these contours, it is not possible to
use differential or semi local-integral invariants, while
it would be possible to use invariants based on features
like corners that, however, are not present in smooth
curves. In this paper, the model of the objects is sup-
posed to be unknown and the contours are neither
smooth nor polygonal. Our method allows us to deal
with both previous cases and the contour matching is
completely automatic. If different objects are present
in the scene, the right one is automatically selected.
Together with computing the correspondences be-
tween the points of the two contours, the homography
matrix between the two views is estimated in order to
use the visual servoing method proposed in [10]. This
approach is called 2 1/2 D visual servoing since the
input is expressed in part in the 3D Cartesian space
and in part in the 2D image space. More precisely, it
is based on the camera displacement estimation from
the homography matrix (the rotation and the scaled
translation of the camera) between the current and
reference views of an object. The visual servoing sys-
tem proposed in [10] was tested on simple images. In
that case the objects were specially marked with white
points on black backgrounds and the matching prob-
lem was assumed solved. In this paper, the system is



considerably improved by using complex shapes with
the 2 1/2 D visual servoing. This method was spe-
cially designed to work without any knowledge about
the 3D structure of the target and to exploit the in-
formation provided by the homography matrix alone.
However, it must be noticed that after the matching
step the 2D visual servoing [2] [4] can also be applied
without using the estimated homography.

The paper is organised as follows. In the first sec-
tion, the contours segmentation is briefly described.
In the second section, the algorithm for matching two
views of a contour and, at the same time, for find-
ing the collineation between them is presented. In
the third section, the collineation is used to servo the
robot with the 2 1/2 D visual servoing technique. In
the fourth section, the experimental results demon-
strate the validity of our method.

2 Contour segmentation

The segmentation of closed contours is made in two
steps: edge detection and edge linking. The first step
is done by using the Canny edge detection algorithm

[1]:

1. Image smoothing: a Gaussian filter is convolved
with the image to reduce the noise.

2. Discontinuities detection: the image gradient is
computed to find edges.

3. Non-maxima suppression: gradient magnitude
ridges are thinned to obtain edges.

4. Thresholding: an hysteresis method is used to
identify and connect edges.

The second part takes as input all the edges found in
the first part (the hysteresis algorithm provides a list
of edges that, in general, represent discontinuous con-
tours) and links them in order to form closed curves.
The linking is done by connecting the closest edges,
only if the distance is below a predefined threshold.

Figure 1 shows an example for the detection of the
closed contour of the island of Sicily. In the image
shown in Figure 1(a) there are seven closed contours
given by the island and the letters of “SICILY”, as
shown in Figure 1(c). Figure 1(b) shows the output of
the Canny edge detector for our image. Once all the
contours in the image have been found, one of them
can be selected as a reference contour for the visual
servoing (for example in Figure 1(d) only Sicily’s con-
tour was selected). This selection is here done by hand
but it could be done automatically.
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Figure 1: Closed contours detection

3 Matching and homography estima-
tion

After the segmentation of a reference image and
the selection of the reference contour C*, the camera
is displaced to another position and the segmentation
is repeated for the current image. A point P of the
contour C' corresponding to the point of C* in the
reference image can be obtained from P* since (see
figure 2):

p x Gp* (1)
where G is the collineation matrix of dimension 3 x 3,
T T
p=[uv v 1] andp*=[u* v* 1] arevec
tors containing the projective coordinates (in pixels)
of the points P and P* respectively.
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Figure 2: point to point correspondence

The problem is thus to find jointly the collineation
G and which point of C* is transformed in which point
of C.. Once the collineation matrix has been found, the
homography matrix H can be easily computed:

H=AGA™! (2)



where A is the triangular matrix of the camera inter-
nal parameters of dimension 3 x 3. Let us notice that,
in the vision community, the words “collineation” and
“homography” are both used to indicate a projective
transformation between two hyper-planes (in our case
two dimensional). However, it is important to dis-
tinguish between the uncalibrated transformation G
and the calibrated one H from which it is possible to
extract the Euclidean information.

In the next subsection, an algorithm for the estima-
tion of the collineation matrix is described. In the sec-
ond subsection, this algorithm is used to recognise the
selected object when there are more than one closed
contours in the current image. Finally, some results
obtained with our method are presented in the third
subsection.

3.1 Collineation estimation algorithm

The algorithm proposed in [3] is initially used to
match the contours and find the collineation matrix. It
consists of two main parts: the correspondence finder
and the collineation finder. The first part determines
the best point on C corresponding to the starting point
on the contour C*. In this part of the algorithm the
last row of the matrix G is supposed to be constant.
This means that we are considering a weak perspective
transformation between the two contours that allow us
to use a very fast least-square technique to compute
the solution. The second part of the algorithm de-
termines an estimation of G based on the correspon-
dence found in the first part. Now the transformation
is supposed to be full perspective. The two steps are
repeated until the matching error does not decrease
any more.

This algorithm works well even for large perspective
transformations. However, if perspective is strong, the
starting point found by the algorithm is not precise
enough to obtain good correspondences. The match-
ing precision can be improved by using the properties
of the Discrete Fourier Transform (DFT). Let (u*,v*)
be the image coordinates of a point belonging to the
contour C*. If we have a guess G of the collineation
matrix, a new contour C' can be obtained from C*
since:

i = guiu* + g120* + Gis
g31u* + g320* + 33
S 3)
7 = g21u” + g220" + ga3

931u* + J320* + 33

where g;; is an element of the guessed collineation
matrix G. The curve obtained applying the guessed

collineation matrix is re-parametrised in such a way
that the points on the respective contours be uni-
formly spaced (ie. (@,9) — (@,7)). Now, let’s con-
sider the DFT of the vectors (4, ¥) and (u, v) con-
taining respectively the coordinates of the estimated
contour C' and of the contour C.

U = r@ vV = F@)
U = Flu) VvV = FW) (4)

Then a more accurate estimation of G can be found
as the one minimising the difference between the mag-
nitude of U,V and the magnitude of U, V:

n%;; (@@ - ) + (9o -va) ©)

This cost function does not depend on the choice of
the starting point (provided that the parametrisation
is the same for the two curves). Indeed, the vectors
4,V computed with G (and after the reparametrisa-
tion) differ from u, v by only a shift and, hence, the
magnitude of their DFT is the same. The optimisa-
tion problem defined in (5) takes a longer time than
the algorithm proposed in [3] and is used only if the
initial matching error is too high.

Once the best collineation matrix is found, the ref-
erence contour C* is reprojected in the current image
and the nearest points to the points of the current
contour are matched.

3.2 Object identification

Unlike the method proposed in [3] where the refer-
ence object was supposed to have already been iden-
tified, here we consider the problem of recognising the
contour in the current view in the presence of other ob-
jects and finding the collineation matrix between the
reference view. Let C; be a contours in the current
view. For all 1 an estimation G; of G is calculated
with the collineation estimation algorithm (supposing
C; the corresponding contour of C*) and C; is pro-
jected on the contour 6;" in the reference view by the
inverse collineation G;*. Then the selected object is
represented by the contour @* minimising the distance
d(C*,C?) from C*, where:

d(C*,Cy) = max{s(C*,C;),8(Ct,C*)}  (6)

and

A 1 S : * =%
5(C*,C*) = — > _min||pj — Bi| (7)
j=1



3.3 Examples
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Figure 3: Matching of a leaf.
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Figure 4: Matching of a key.

The segmentation and matching algorithms were
tested on several planar objects with polygonal,
smooth or fractal-like shapes. Figure 3 shows an ex-
ample using four leaves with similar shapes. The se-
lected leaf in the reference view is the one on the bot-
tom. Figure 3(c) shows the closed contours found in
the current view. For all them the collineation matrix
is estimated and the results are shown in Figure 3(d).
The calculated distances (from the left-bottom leaf in
the anti-clockwise sense) are 5.92, 1.07 (the selected
leaf), 58 and 51.2 pixels which means that the refer-
ence leaf was identified with a great margin. If the
contours are very similar, as in Figure 4 where three
keys are used, the errors could be very close. In this
example, the relative position of the objects in the
initial view and in the reference view is not the same.
The selected key is the one on the right in the refer-
ence view. The distances obtained with the estimated
collineation matrices (from the bottom key in the anti-
clockwise sense) are 2.95, 0.99 (the selected key) and
2.68 pixels. Even if the distances are closer than in
the previous case the reference key is recognised with
a good margin.

It must be noticed that the matching precision de-
pends also on the number of points used to describe
the contours. In our experiments, 256 points are used
to describe very complex shapes. The distance be-
tween two points is, in our examples, greater than two
pixels. A good result is thus to obtain a matching
error smaller than the sampling step. It could be pos-
sible to increase the precision using more points but
only during the matching step. Indeed, the system
does not allow us to update the homography matrix
at video-rate with more than 256 points during the
servoing stage. Moreover, the precision depends also
on the planarity of the objects. In the presented ex-
amples, the leaves are not exactly planar (the shadow
can also modify the contours) which explain why the
matching error is smaller in the case of the keys.

4 Visual Servoing

The homography matrix computed during the
matching step can be decomposed as follows [8]:

H=R+ %n*T (8)
where R and t are respectively the rotation and the
translation of the frame F' attached to the contour C
with respect to the frame F™* attached to the contour
C*, n* is the unit vector normal to the plane of the
contour 7 expressed in F* and d* is the distance be-
tween the origin of F* and m. Then, the positioning



task controlling the 6 camera d.o.f. is described as the
regulation to zero of the following task function [10]:

e’ = [ mI —mI* u”0 ] 9)

where u is the rotation axis and 6 the rotation an-
gle computed from R and m, are the extended image
coordinates of a point on the plane:

ml=[z y z]=[% %

log(2) ] (10)
where z = log(Z) is a supplementary coordinate con-
trolling the relative depth of the camera from the plane
(even if Z is unknown, from the homography matrix
it is possible to compute log(Z) — log(Z*) [10]). Any
point on the contour can be used as a reference point.
However, the centre of the contour is used in the ex-
periments even if it produces a supplementary error
in the estimation of the coordinates of the point (it is
well known that the projection of the centre of gravity
of a planar contour is not the centre of gravity of the
projection of the contour). Indeed, the performances
of the system are not really affected since the 21/2 D
visual servoing has proved to be robust to big calibra-
tion errors [10] using the following simple proportional
control law:

v=-)\L"le (11)

where v is the camera velocity sent to the robot
controller, L is an approximation of the interaction
matrix related to the time variation of the task
function e, € is the estimated task function and \
a positive gain witch tunes the velocity of convergence.

During the visual servoing the homography matrix
is updated using the points of the contour tracked with
the real time active contours tracking system proposed
in [7]. Indeed, the reference object is tracked with
an active contour constrained to undergo only defor-
mations due to 2D projective transformations. This
is achieved by searching for the contour in the im-
age along the normal to the contour tangent at each
point. The measurement so found is then projected
down onto the space defined by the projective trans-
formations group using the Lie Algebra and, succes-
sively, the active contour updated. At each iteration,
only the homography matrix is updated supposing the
initial match to be good. If there is a big matching
error, the system still converge near the final position
but it will oscillate around it. The precision of the
system can be improved by repeating the matching
procedure during the servoing especially near the con-
vergence when the two contours are very close.

5 Experimental results

In our experiments we have used a Mitsubishi robot
RV-E2 Movemaster with 6 degrees of freedom. A
coarsely calibrated camera (the parameters given by
the manufacturer are used) is mounted on the end-
effector. The transformation between the end-effector
frame and the camera frame is only roughly known.

(a) reference position

(b) initial position
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\t

(c) reference view (d) initial view
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iterations number iterations number

(e) ext. image coord. (f) rotation uf (deg)
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100 100
iterations number iterations number

(g) transl. vel. (cm/s) (h) rot. vel. (deg/s)

Figure 5: experimental results with a leaf



Visual servoing experiments have been realised us-
ing the contours presented in the paper. Figure 5
shows an experiment using leaves. The selected leaf
in the reference view (Figure 5(c)) is ivy (several ex-
periments have been done, using different leaves as
reference target, obtaining similar results). Figure
5(d) shows the initial view of the leaves and the ivy
matched with our algorithm. In both views the ivy
is represented by an active contour that is used dur-
ing the servoing to track the contour. In Figure 5(a)
and 5(b) are shown respectively the reference and ini-
tial robot position. Figure 5(e) and 5(f) show the be-
haviour of the extended image coordinates and ori-
entation of the camera, while Figure 5(g) and 5(h)
show the translational and rotational velocity (i.e. the
control law). The control law is stable and the error
converge to zero but not exponentially (as it should
in ideal conditions) since the system is coarsely cali-
brated. Furthermore, the centre of gravity of the con-
tour was used instead of a point of the contour. The
convergence of the visual servoing demonstrates that
the initial matching was good in spite of the noise and
the camera displacement. The visual servoing stopped
when the error between corresponding points is less
than 0.5 pixel. It is surprising that such a precision
can be reached if the initial matching error was bigger.
However, the matching error depends on the camera
displacement between the two views. As mentioned
previously, it would be then a great improvement of
the system precision to repeat the matching step on-
line near the convergence.

6 Conclusion

In this paper a system for segmenting and matching
a planar contour was presented. The matching algo-
rithm find the homography between the initial and the
target view, which is used to position a robot with re-
spect to the contour with a 2 1/2 D visual servoing
technique. The experimental results show that the
system is able to match objects with complex shapes
for which invariants cannot be used. Moreover, the
selected object is recognised even in presence of other
similar ones. The accuracy of the estimated homogra-
phy is tested servoing a camera mounted on the end-
effector of a 6 d.o.f. robot. The experiments show that
the system can position the robot end-effector with a
great precision even for complex planar objects and
large camera displacements.
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