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Abstract

Training HMMSs on the same conditions as in recognition makes models learn not only the
features of the speech, but also those of the environment. However, attempting to produce
models for all possible environments is impractical. One way to solve this problem is to
compensate models trained on clean speech to give “artificially” adapted models. The
goal of these noise adaptation techniques is to reach the same recognition performance as
would be obtained by training in the noisy conditions.

However, even training in noise can only achieve limited recognition performance be-
cause the high variance at low SNR makes the features begin to overlap thereby reducing
discrimination. The problem is even worse when the vocabulary grows. In order to im-
prove recognition performance in very noisy environments, speech enhancement techniques
must be useful. Enhancement schemes can improve the SNR, minimise the variance, and
emphasise the important features of the signal, but at the expense of signal distortion.
Minimising both signal distortion and noise, a signal with better features and lower vari-
ability is obtained.

In our earlier work [11], speech models were adapted to a signal enhanced by spectral
subtraction using Parallel Model Compensation (PMC) in a scheme called SS-PMC. Al-
though very good performance was demonstrated for the SS-PMC scheme, it does require
a explicit word boundary detector and this limits its use in practice. In order to avoid
this drawback, a Continuous Spectral Subtraction(CSS) scheme has been developed.

In this new system, speech models are adapted for a signal enhanced by this CSS
scheme. It will be shown that the enhanced signal after being processed by the CSS can
be represented by the addition of the noisy speech plus a correction term A® in the linear
domain. SS-PMC transforms the noise and speech model parameters from the cepstral
domain to the linear domain, adds these parameters and the SS correction term, A, and
then creates an adapted model by returning to the cepstral domain. Therefore, SS-PMC
can be modified to compensate for the correction term A in the linear domain. This
modified version of SS-PMC will be called the CS5-PMC method.

The results obtained by the CSS-PMC technique are very encouraging, showing that
it is very effective to use adaptation techniques to compensate for the signal distortion
which is a side effect of a CSS-based enhancement scheme.
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Introduction

1 Introduction

The practical application of speech recognition in the real world must deal with the serious
environmental problem. The environment seriously degrades the performance of a speech
recogniser designed on low noise input. This is why a lot of research effort has been given
to this subject.

The environment is one of the causes of speech variations. It can cause speech-
correlated noise, such as reverberation and reflection, and uncorrelated noise, either sta-
tionary or nonstationary. This variation affects the spectrum of the speech, that is the
spectral peaks disappear, spurious spectral peaks appear, the spectral bandwidth changes,
or other nonlinear transformations occur. Environment can also affect the way a person
speaks, for example when a person speaks at low SNR not only the energy of the speech
is increased, but the pitch and frequency are changed: this is known as Lombard effect.

Acoustic ambient noises are usually considered additive. Sources of this kind of noise
are common, for example in the office environment, the office machinery such as typewriter
or printer, disk and fans of personal computers or workstations, telephone ringing and
background conversation; in car, the acoustic noise level due to engine, cooling fan, wind,
tires and road are added and for this noise the SNR of the speech signal could drop -
5 dB when the car cruises above 90 km/h, [9] [13]. Most noises are additive, this can
be correlated or uncorrelated to speech. Noise also can be classified as stationary or
nonstationary. The difficulty of tackling noise depends on the characteristics of the noise.
This work deals with stationary uncorrelated additive noise.

Studies on the effect of noise on the performance of HMM based speech recognisers
have shown that by training and testing, see Fig. 1, in the same conditions, the HMM
recogniser achieves the best performance [7]. This is because the parameters of the HMMs
“learn” the features of both the speech and the noise [3], [4] [13]. However, trying to build
a database with models for all conditions is impractical. Therefore, one way to deal with
this practical problem is to automatically adapt the clean speech models to the noise. The
aim of any noise adaptation technique is to reach the recognition performance obtained
when the HMMs are trained in the same environment.

One particular effective method of performing this adaptation is Parallel Model Com-
bination [3]. In this case, the speech and noise parameters are transformed from the
cepstral domain to the linear domain, the parameters are added, and finally they are
returned to the cepstral domain. This adaptation method has been very successful in
adapting clean models to noisy environments and very good results have been achieved,
for example 93% word correct for Lynx Helicopter noise on a digit database at 0 dB [4]
outperforming the results obtained by training and testing in the same noisy conditions.

As pointed out in [15], when adapting the speech models by adding noise, the level of
noise that has to be added to effectively mask all background noise is rather high, spe-
cially at low SNR, and causes a significant reduction in accuracy. Therefore, recognition
performance in very noisy environments is not completely solved by training in noise, and
eventually these noise adaptation techniques must reach a limit. The variance becomes so
large that feature overlapping begins to affect discrimination, and the problem becomes
worse when the vocabulary grows. For example, it has been shown, [7] that the recogni-
tion performance can drop to 80% at 0 dB even when training and testing was on the same
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noisy conditions. Therefore, in very noisy environments, or when the vocabulary grows,
even training in noise is not enough to obtain good recognition performance. In order to
improve recognition performance in very noisy environments, enhancement techniques are
needed. These may attempt to improve the SNR, minimise the variance, or emphasis the
main features of the interesting signal. However, all of these improvements are usually at
the expense of signal distortion. If both signal distortion and noise are minimised, then a
signal with better features and lower variability is obtained. However, if the good features
of these enhancement techniques are to be exploited, then the speech models need to be
compensated to the distorted signal.

Adapting the models to the enhanced signal should raise the achievable limit of recog-
nition performance. In order to determine this limit, a test similar to training and testing
on the same condition can be made. Training and testing on the enhanced speech signal
is shown in Fig. 2. In this case, the enhancement algorithm affects both the training and
testing database. Although, trying to create a model database for all environments is im-
practical this configuration gives an indication of the maximum performance which can be
achieved with an enhancement scheme. In [11], it is shown that adapting(compensating)
the HMMs to the signal distortion, for a SS scheme, this maximum is considerably higher
than a scheme without HMMs adaptation. Moreover, the SS scheme and PMC were
successfully combined to obtain an automatic method to adapt clean speech models to
the enhanced speech signal. The experimental results of the SS-PMC scheme were very
satisfactory showing that it is very effective to use adaptation techniques to compensate
for the signal distortion which is a side effect of an SS-based enhancement scheme.

One drawback of Spectral Subtraction is that in order to obtain the noise estimate a
word boundary detector is needed, and this word boundary estimator is a complex task
specially for low SNR. In order to avoid the word boundary detector Continuous Spectral
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Subtraction(CSS) is proposed, see Fig. 4. This CSS scheme obtains a low-frequency
estimator of the time-frequency noisy speech and subtracts this estimator from the noisy
speech. This low-frequency estimator is a function of the stationary noise and the low-
frequency speech (smoothed speech).

In this work a HMM based recogniser with Gaussian state distributions is used. The
(Gaussian probabilistic density function, pdf, is completely modelled by the mean and the
variance. Hence, in order to adapt the HMM, the mean and variance of each state have
to be adapted as follows

fo="Ta{p} (1)
S =T {3} (2)

where

T:{.} is the transformation from the mean of the clean speech model to the enhanced
speech model, and

Ts{.} is the transformation from the variance of the clean speech model to the en-
hanced speech model.

In this paper, the integration of Continuous Spectral Subtraction as enhancement
technique, and PMC as adaptation technique is presented. Because PMC only adapts
the HMMs to the noise, it has to be extended to include the effects of the distortion. It
is shown in Sec. 2, that the enhanced speech spectrum can be represented in the linear
domain by the spectrum of the noisy speech plus a correction term, A¢. Therefore, this
extension turns out to be relatively straightforward.

The remainder of this paper is organised as follows. Chapter 2 presents the underlying
theory and shows that the distorted speech (output) can be modelled as the addition in
the linear domain of the noisy speech (input) plus a correction value. Chapter 3 reviews
the details of the CSS-PMC algorithm. Finally, Chapter 4 presents experiments and
results on the Noisex-92 database. Section 5 gives some comments and conclusions.
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2 Theoretical Background

2.1 Spectral Subtraction

SS is attractive because in practice it has shown to be successful for both signal enhance-
ment [2] [1] and speech recognition in noise [10]. This pre-processing scheme assumes
zero-variance noise, but, because real noise is highly variable, especially for low SNR, SS
sets a minimum positive value and subtracts an over-estimation of the noise. By using SS
we obtain a signal with better features and lower variability. However, over-estimation and
flooring makes Spectral Subtraction a non-linear compensator and hence the noise level is
reduced at the expense of introducing distortion into the speech signal. Over-estimation
can be seen as a way to make a trade-off between reducing the noise and distorting the
speech, the optimum over-estimation value is when both the noise and the distortion is
minimum. Experimental results show that the optimum over-estimation factor is about
two for the magnitude spectrum.

There are different spectral subtraction schemes, but the work presented here is based
on the scheme describe by Van Campernolle [14], see Fig. 3,

D(Y)=Y —aN
w={ 0 ol ®

where

Yp(Y) is the enhanced signal which is a distorted estimation of the speech S

Y is the either the power or the magnitude spectrum of the noisy speech

N is the noise estimator

« is an over-estimation factor, and

B is the spectral flooring.
SS needs a word boundary detector to estimate the noise, N. The need for this word
boundary detector presents serious implementation problems for low SNR. The next sec-
tion describes a modification of the standard SS method such that no word boundary
detector is needed.

2.2 Continuous Spectral Subtraction

A practical SS scheme as defined in 3 needs a word boundary detector but word boundary
detector algorithms are not reliable, specially at low SNR. To avoid the need for this word
boundary detector, an average from the last n frames of the time-frequency noisy signal
can be computed and subtracted from the current frame of the time-frequency signal.
This scheme will be refered as Continuous Spectral Subtraction (CSS).

Therefore, the CSS scheme, see Fig. 4, is as follows

DY)=Y —ay™

D0 =1 i e g
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where

Yp(Y') is the enhanced signal which is a distorted estimation of the speech S

Y is the either the power or the magnitude spectrum of the actual noisy speech or
background noise input frame

Y™ is the average of the last n frames of Y

« is an over-estimation factor, and

3 is the spectral flooring.

In this scheme, the choice of n is very important. If we assume that the noisy speech
is the addition of the speech plus the noise, that is ym = N0 4 S'(n), then for very
large n we lose the transitional information in S and the scheme is only useful for highly
stationary noise, on the other hand for small n, we will distort the speech too much and
a lot of information will be lost. The optimum value will depend on the vocabulary size
of the speech recogniser, on the number of sounds in the language, on the kind of noise,
etc. In order to simplify notation, in most of the cases Y will be used instead of Y™,

The aim is to adapt the speech models to the enhanced speech by CSS as in [11] is
done for SS. The next section is concerned with how the mean and variance of the signal
are affected when we process them by this Spectral Subtractor.

This scheme has some similarity to the Spectral Normalisation(SN) scheme proposed
in [5], but there are important differences. First, in this work the spectral subtraction
is performed in the linear domain to tackle additive noise, and SN performs the spectral
subtraction in the log domain to tackle convolutive noise. Secondly, in this work n frames
of the time-frequency noisy signal are averged in time. This average operation is an
estimation of the mean when the noise is modelled as a HMM and, we can think of
this as a low pass filtering operation in time on the time-frequency signal. Thirdly, SN
does not peform over-estimation, perhaps because of the high signal distorion caused by
this operation: this is an important difference because over-estimation is a key feature
of SS. Fourthly, the SN scheme uses a fix flooring constant, in that case, flooring is not
important because SN does not rely on over-estimation. Finally, the last difference is the
compensation technique, in SN the filtering operation is affecting the speech signal so
they compensate the models for this distortion by training with the same low-pass filter.
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For CSS the over-estimation is adding another level of distortion caused not only for the
speech but for the noise, therefore we need to compensate the models to this distortion
the same way as SS-PMC [11] does.

Another scheme which can be related to the this work is the one by Hirsch et al [6].
They avoid using a boundary detector by time high-pass filtering of the time-frequency
signal®, such that the low frequencies are removed

Yp =g(Y)

where ¢(Y') is a high-pass linear filter. This scheme does not use a word boundary detector,
but the filtering operation returns a speech signal with both less information and time
distortion. But, a signal with better features is obtained if the noise reduction is higher
than the distortion. Moreover, the distortion can easily be compensated by training
the models with the same time high-pass filter applied to the clean speech. Because
this scheme filters the noise, another drawback of this technique is that they do not use
information about the noise to compensate the signal distortion.

2.3 Continuous Spectral Subtraction Analysis

At the CSS output an enhanced signal is obtained but it is distorted. To determine

the impact of this distortion, its effect on the mean and variance of the signal need to

be calculated. For simplicity, it is assumed that each frequency channel is statistically

independent, hence it is only necessary to develop the theory for one-dimensional case.
The expected value of the enhanced speech, Yp, is

E[Yp] = /OO Yo (Y)dY
by using the SS scheme defined in eq. 4, we obtain

ElYp] = [

ac(a,ﬁ,ff)

R ac(a,ﬁ,f’)
(v = a¥)P(Y)ay + [ BY P(Y)dY

[e.e]

'The time domain of the time-frequency signal is what they call modulation frequency.
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where a%(a, ﬁ,f/) = % Following as in [11], we obtain

E[Yp] = E[Y] —aY + (8 —1)B(e, 3,Y,P(Y)) + aY A(a, 8,Y, P(Y))

where
ac(oz,ﬁ,f’)
Ao 8, P(YV) = [ P(Y)dY (5)
R ac(oz,ﬁ,ff)
B(a, .Y, P(V) = | Y P(Y)dY (6)
Defining

AS(a,B,Y,P(Y)) = —aY + (8 —1)B(a, 3,Y, P(Y)) + aY A(a, 3,Y, P(Y))  (T)

we obtain

E[Yp] = E[Y] + AS(a, 3,Y, P(Y)) (8)

From this equation, it can be observed that the effect on the distorted signal can be
expressed as the addition of the noisy speech and the correction values Af in the linear
domain, and this function depends on the spectral subtraction parameters, a and 3, the
smoothed noisy speech, Y, and the pdf P(Y).

By comparing eq. 8 with eq. 1, we see that in this case T,{u} is the addition
in the linear domain of the expected value of the noisy signal, E[Y], plus a correction
constant, AS. This is an interesting result, because it shows that, in the SS domain, we
have the freedom to use any noisy adaptation algorithm and the correction Af can be
compensated independently. For example, the PMC [3] adaptation technique assumes
that the addition of the expected value of S, E[S], plus the expected value of N, E[N],
is equal to the expected value of E[Y]. This is an approximation which can be used in
eq. 8, but we are not restricted to using this approximation. If more accurate methods
of estimating E[Y] are developed, then they can be used instead.

Most of the algorithms for speech recognition in noise prefer not to compensate the
variance, and it is common to use fixed variances. Fixed variance techniques replace
the state variances with a single global variance which is obtained from all the words in
the training database. Although, this is not a very elegant way to tackle the problem
some good results have been obtained using this approach [12]. Parallel Model Combina-
tion(PMC), see Sec. 3, combines in the linear domain the speech and noise parameters,
and transforms them back to the cepstral domain to obtain both mean and variance com-
pensated models. In [4], Gales & Young show that this technique is more successful than
the fixed variance technique. Therefore, we can either replace the state variance of the
clean speech by a fixed variance or use the combination of the clean speech and noise
variances generated by PMC.

As in the latter case, we can also extend the equations to compensate for the effect of
the distortion on the variances. The effect of CSS on the variance can be calculated as
follows
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V[Yp] = E[Yj] — {E[Yp]}’

because we have calculated E[Yp], we only need to calculate E[Y2], then

E[V2] = /;(am(y—ay Y)dY + / " g2y pryyay

where a%(a, 3,Y) = "‘Y . Proceeding as in [11] we obtain

V[Yp] = VI[Y]+{E[Y]}? = 2aVE[Y] + o?V? + 2aY B(e, 8,Y, P(Y))
—a®N?A(e, B,Y , P(Y)) + (8> = 1)C(a, B,Y, P(Y)) — {E[Yp]}2.
where . -
Cla, 8.V, P(Y)) = /_ I e pyyay

and A(a,ﬁ,f/,P(Y)) and B(a,ﬁ,f/,P(Y)) are defined as 5 and 6, respectively.
Defining

AS = {E[Y]}? —2aYE[Y] +a?Y? 4 2aY B(a, 3,Y, P(Y)) — 2N2A(a, 3,Y, P(Y))
+(/82 - 1)0(0{, 57Y7 P(Y>) - {E[YD]}2 (9)

we obtain

VIYp] = VY] + Af(a, 8,Y, P(Y)) (10)

By comparing eq. 10 with eq. 2, we can see that in this case Tx{V][Yp]} is the
addition of the variance of the noisy signal, V[Y], plus a correction on the CSS domain,
Af(a, B,Y, P(Y)).

Assuming the additivity of the speech and the noise in the linear domain and substi-
tuting it in eq. 8 we obtain

E[Yp] = E[S] + E[N] + A%(a, 8,7, P(Y)) (11)

From this equation it can be seen how the clean speech is distorted by the CSS for the
addition of E[N] and A¢.

As in SS-PMC, compensating A® is not directly implementable at signal processing
stage since AS or AS depend on the spectrum of the underlying clean speech signal which
is not known. In this case, the model means themselves provide the required estimates
of the clean speech spectrum. Therefore, AY is going to be implemented using a model
adaptation algorithm.

In the adaptation algorithm, see eqs. 8 and 10, we also need g (f/ ~ S+ N) to
compensate for Ag and A§. Now, let us define the average operation over n frames of
the speech as follows



Theoretical Background

a p
| v 4
Noisy » DFT | |b >SS 5D »| Coding| Recogniser
Speech : -
[ 7y 7y
Mean and
. g —™ Variance
L r > Y | Adaptati Yp
ptation |
Averager Algorithm Models
| T 1
' Cao)
N
L Models
| Silence Model
" | Detector _
S
Models

N
Model

Figure 5: HMM compensation using the clean models, 5, and the smoothed speech mod-
els, S, the noise model, N and the residual noise model, N.

A iag) S((k— )T, w
ity = 3wk — j)2 =)L)
k=1 n
where
1 0<k<n
w(k) = { 0 otherwise
and

n is length of the window.

In a practical speech recogniser it is impossible to store all of this smoothed speech,
therefore, we will create a model, S, for each smoothed speech recognition unit (i.e. word,
phoneme, etc.). Hence, in the adaptive algorithm, the HMMs, S, are approximations to
the smoothed speech, S.

Using this approximation, when models are trained with the clean speech, E[Yp] and
V[Yp], egs. 8 and 10, can be solved with the configuration shown in Fig. 5. We can
observe that this configuration needs the clean speech, S, the smoothed speech models,
S, and the noise model, N, for the CSS-PMC algorithm, and for the recogniser, it needs
the compensated models, Yp, and the residual noise model, N = g(N), where g(.) is the
continuous spectral subraction function.

10
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2.4 Training with the Pre-distorted Speech

Basically, eq. 8 and 10 compensate a noisy signal enhanced by CSS by modelling the
speech signal distortion caused for both the over-estimation of the CSS and the noise.
This problem can be split into two subproblems, first, the distortion caused by the CSS,
and second the distortion caused by the noise. Hence, it is possible to solve the former
subproblem by training the models on clean speech passed through the CSS process,
and leaving the latter for mathematical modelling leading to a more accurate model
adaptation.

Let us define E[Sp] as the clean speech after being preprocessed by the CSS. By a
similar development, as in the last section we obtain

E[Sp] = E[S] + A[(a, 4.5, P(5))
by substituting this equation in eq. 11 we obtain
E[YD] = E[SD] + E[N] + Ag(aa 67Y7 P(Y)) - Ac(av ﬂv S: P(S)>

Defining
AS(, B,Y, 8, P(S), P(Y)) = A (o, B,Y, P(Y)) — AJ(a, 3,5, P(S))  (12)

we obtain

E[Yp] = E[Sp] + E[N] + AS(e, 3,Y, S, P(S), P(Y)) (13)

Proceeding as before for the variance distortion, when the HMMs are trained with
clean speech distorted by CSS we obtain

V[Yp] = V[Sp] + V[N] 4+ A& (e, 3,Y, 5, P(Y), P(S)) (14)
where
AS(a,B8,Y,5, P(Y),P(S)) = AS(a, B,Y, P(Y)) = AS(a, 8,5, P(S)) (15)

Therefore, eq. 13 and 14 show how to compensate the models when these models are
trained with the clean speech distorted by the continuous spectral subtraction scheme.
The advantage of training with the distorted speech is that we reduce the number of
approximations in the system.

When models are trained with the clean speech distorted by the spectral subtractor
E[Yp] and V[Yp], egs. 13 and 14, can be solved with the configuration shown in Fig. 6,
observe that this configuration also needs the clean models, but these clean models are
only used to calculate AS and A§.

In theory, compensating at the training stage and compensating using an adaptive
algorithm is the same. In practice there are differences. Firstly, when compensating at
the training stage, SS works directly at the frame level which is more accurate than using
the adaptive algorithm which compensates using the model parameters which spread the
information over more than one frame, Secondly, our equations are inherently approximate
anyway. Therefore, if we can compensate during training, we would expect better results.

11
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2.5 Solutions of the Integrals 4, B and C

A potential problem of the compensation equation are the solution of the integrals A(«, 8, P(Y')),
B(a,p,P(Y)) and C(a, 3, P(Y)) since the transformation can yield on untractable pdf
P(Y).

By assuming that Y has a log normal pdf, P(Y) is completely defined by ¢ and
i, therefore, we can rewrite A(a, 3, P(Y)), B(«a,3,Y, P(Y)) and C(a%(a, B), P(Y)) as
Ale, B,Y,E,0), B(a,8,Y,€,¢) and C(a, B,Y,€,9). Solving this integral as in [11], we

obtain

A B,Y,6,6) = G (Z”(“C(“’ 2= 5) (16)
B(a,,V,¢,v) = EY]G ("‘“‘C(“’ PPz ‘1’2)) (1)
0(076,Y,£7¢) — E[YQ]G (ln(ac(aa 57 (YF(Z)) — (f + 2¢2>) (18)
where
E[Y] = e£19°/2

E[Y?] = e2(e+9%)
The cumulative function G(z) does not have an exact solution but for small values, it
can be approximated by a look-up table and for large values, it can can be approximated

12
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by G(z) = %6_902 or by G(z) = (L + %)6_1’2. Moreover, A'(0,1) is a symmetric function,

xT

hence the size of the table look-up can be reduced by half using the following equation [§]

G(z) = 1 — G(~a).

The above expressions for A(a,ﬁ,f/,f,z/)), B(a, 6,17,5,1/)) and C(a,ﬁ,f/,f,l/)) allow
the required correction factors AS and A% to be calculated in terms of the expected values
of Y and Y? and the parameters ¢ and € of the log normal distirbution P(Y). As shown

in the appendix,
E[Y] = ST /2

and

E[Yz] — 2+
from which it is straightforward to show that

¥? = (VY] +{E[Y]}?) — 2in({E[Y]})

and
¢ = n(E[Y]) - 0?/2
replacing eq. 19 in eq. 20 we obtain

¢ = =05 (V[Y]+{E[Y]}) + 2in({E[Y]}?)

13
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The CSS-PMC Algorithm

3 The CSS-PMC Algorithm

In the previous section, it has been shown that assuming the spectral distributions in the
linear domain are log normal then it is possible to calculate either the correction values AS
and A§ or AS and AY. A, and Ay are computed when the clean models, S are going to
be adapted to the distorted speech, see eq. 8 and 10, or the correction values Ag and A§ |
when the noisy speech models are adapted, see eq. 12 and eq. 15, to the distorted speech.
The assumptions of log normality in the linear domain cover the main representations
used for speech recognition. Recognition may use either the log filter bank parameters or
a cepstral representation. However, these are linked by a linear transformation and both
may be assumed to be log normal.

The calculation of AS and A§ or Af and A§ requires the spectral subtraction param-
eters, a and 3, the pdf P(Y) which in this case is completely defined by & and ¢y ,the
pdf P(S) which in this case is completely defined by és and g, an estimate of the noise,
N, and an estimate of the clean speech, S, and an estimate of the smoothed speech, S.
All these model estimates are in the linear domain.

As noted earlier, the PMC technique developed by Gales & Young [3] allows the latter
expectations to be calculated by assuming that the HMM Gaussian output distributions
characterise N and S in the log domain. These parameters are then mapped into the
linear domain where additivity is assumed to hold, thereby allowing E[Y] and V[Y] to
be calculated. Given the theory developed in section 2, it is straightforward to extend
this PMC approach to the CSS case. As shown in Fig. 7, the basic PMC framework is
unaltered save for the inclusion of the AY and A%factors in the linear domain. Thus, the
overall steps in the CSS-PMC scheme are

1. Transform the cepstral (or log) means and variances back into the linear domain as

in standard PMC.
2. Calculate E[Y] and E[Y?] assuming additivity of the speech and noise.

3. Calculate &y, vy, &s and g given the noisy speech mean and variance, E[Y] and
V]Y], and the clean speech mean and variance, E[S] and V[S], see eq. 19 and 20.

4. Calculate Ag and A§ and adjust the means and variances, or calculate, when the
speech is pre-distorted Sp, Ag and A§ and adjust the means and variances.

5. Transform the compensated means and variances back to the cepstral (or log) do-
main as in standard PMC.

Fig. 9 shows the block-diagram representation for the Af and A§ calculation can be
calculated by a substraction of As, therefore this block-diagram is also used to calculate
A, and Ay. In order to make the explanation of the algorithm clear, the problem is
divided into three general steps. Each step is completed with intermediate steps. Fig.
9 shows the general steps separated by thicker lines. The calculations are based on the
equations developed in Sec. 2, specifically, on egs. 16, 17, 18, 7, 9, 20 and 19.

The realization of this block diagram in a sequential computer can be done has follows,
given the mean and variance, g and ¥, and the parameters of the SS, o and 3, as input
parameters, the general steps to solve are:
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Obtain a, £ and .

Calculate AS and A%

The detailed intermediate steps should be clear from Fig. 9.

Once the correction factors have been applied we return to the standard PMC algo-
rithm and transform from the linear domain back to the cepstral (or log) domain.

AC and A§ need estimation of the average noisy speech Y, and AC and A§ also needs
the average clean speech, S. Fig. 8 shows how to obtain these values when the smoothed
models, S and the noise model, N are trained in the cepstral domain.
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4 Experiments and Results

The CSS-PMC technique described in the previous sections has been evaluated using
the Noisex-92 database. This database was created by artificially adding noise to clean
speech, therefore, it does not exhibit the Lombard effect. This database contains digits,
100 training utterances recorded in silence and 100 testing utterances with different noises,
e.g. car and helicopter, at levels in the range +18 dB to -6 dB. Lynx helicopter, car and
F16 were the noises used for our experiments. These noises were chosen because the
scheme assumes stationary noise, and these are more or less stationary. 0 dB and -6 dB
were the levels used to test since these are the noisiest conditions. This database has
a male speaker and a female speaker, using their native language, English. The male
speaker was used for our experiments.

The baseline recogniser used 10 state word-based HMMs, with 8 emitting states and
single Gaussian diagonal covariance matrix output probability distributions. The speech
was pre-processed using a 25 ms Hamming window, and then parameterised into the first
14 cepstral coefficients obtained from the power spectrum (PMFCC). The speech signal
was sampled every 10 ms. The clean speech model variances for the baseline recogniser
were replaced by a fixed-variance. This fixed-variance was obtained from all the training
data.

For the CSS-PMC scheme, a HMM for each digit was trained using either the clean
speech, S, or the pre-distorted clean speech, Sp. The noise, N, and residual noise mod-
els, N, used a single emitting state model and it was trained on all the available noise
data. This noise model uses 1 emitting state and single gaussian diagonal covariance
output probability distribution. The topology for all models was left-right with no skips
and diagonal covariances were assumed throughout. For each frame, a set of 15 MFCC
coefficients were computed. The zeroth cepstral coefficient is computed and stored since
it is needed in the CSS-PMC mapping procedure. However, it is subsesquently dropped
in the actual recognition process. CSS-PMC compensates for the means as discussed in
Sec. 3. In order to obtain wider variances, the term Ay was set to zero. Another way
to keep the variance wider is using fixed-variance, but no experiments were tried using
fixed-variance.

Recognition used a standard connected word Viterbi decoder constrained by a syntax
consisting of silence followed by a digit in a loop. Thus, no explicit end-point detector was
used and insertion/deletion errors occurred as well as classifications errors. The results
are in terms of percentage(%) accuracy where for N tokens, S substitution errors, D
deletion errors and I insertion errors, accuracy is calculated as [(N — S — D —1)/N]100%.
The error counts themselves were calculated by using a DP string matching algorithm
between the recognised digit sequence and the reference transcription. Since NOISEX
data is synthetic, the gain matching term ¢ can be set exactly. Hence for all experiments
here ¢ = 1 was used. All the training and testing used version 1.4 of the portable HTK
HMM toolkit [16], with suitable extensions to perform CSS-PMC.

The continuous spectral subtraction scheme discribed in section 2 is used for the
signal enhancement. The parameter a was varied from 1.0 to 2.4, and 3 was fixed at 0.1.
Some experiments varying [ were performed, and it was found that 8 = 0.1 has a good
behaviour and values around this have similar recognition performance. No attempt was
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made to apply time smoothing.

As was discussed in Sec. 1, an upper limit on recognition performance can be estimated
by applying the enhancement technique to the training noise data, see Fig. 2, such that
the models “learn” the features of the enhanced signal. Fig. 10, shows the results on the
Lynx noise when PCSS-PMFCC 2 preprocessing are applied for different values of a. Fig.
10 also shows the result when the spectral subtractor is applied before the filterbank, we
will refer this latter preprocessing as the bPCSS-PMFCC. The theory developed in Sec. 2
assumes that the spectral subtraction is applied after filterbank processing, but assuming
that the filterbank is some kind of frequency smoother and that the smoother does not
have a significant effect on the subtracted signal, hence the theory of Sec. 2 can also be
applied to the bPCSS5-PMFCC case.

Fig. 10 indicates the best performance of each of the schemes for Lynx, Car and F16
noises at 0 and —6 dB SNR. For all cases, the introduction of the speech enhancer im-
proves the recognition performance. The best recognition performance, when training and
testing in the same noise environment without any enhancement corresponds to a = 0.
For example, Fig. 10 shows that when training and testing in the noise conditions for the
Lynx noise at -6 dB, 40% recognition performance is obtained for PCSS-PMFCC. This
represents the best performance that we can expect to obtain with an ideal model noise
adaptation algorithm. However, when the enhacement scheme is included, the best recog-
nition performance goes up to 60% (1.4 < o < 2.4). Hence, by adding the enhancement
scheme, the upper limit of recognition performance is increased. Therefore, compensat-
ing for the distortion of the CSS scheme, in the best case it should be possible to reach
this improved recognition performance. It can be observed that a similar improvement is
obtained by bPCSS-PMFCC.

In general, for these noises at 0 and -6 dB SNR, for any value of «, when with CSS
is used after the filterbank better results are obtained. Although this suggest the use of
CSS after the filterbank preprocessing, it is useful to see how well both PCSS-PMFCC
and bPCSS-PMFCC enhancement schemes work with our compensation algorithm.

It can be observed that these schemes reach maximum recognition performance for
some values of « (e.g. maximum recognition performance for PCSS-PFCCis at 1.4 < o <
2.0 for Lynx noise at -6 dB). These « represent the values of @ at which maximise noise
reduction and minimise speech information loss, and hence give maximum discrimination.
It is expected that these values will be dependent on the SNR, the noise variance and the
vocabulary size.

To test the CSS-PMC scheme, the models were trained with either the clean speech,
S, or the clean speech processed by the CSS, Sp, decribed in Sec. 2. If the models
were trained with the clean speech, S, then the adaptation algorithm compensate for A°,
otherwise for AY. For pre-processing PCSS was used, before and after the filter bank,
and as discussed above, in order to keep the variance wider, we only compensated for
the means. In order to compensate for all the assumptions and approximations, A, is
weighted by «. The experiments show that values of v around 0.7 are good for 0 dB SNR,
and around 0.6 for -6 dB SNR.

Fig. 11 and 12 show the results for 0 and -6 dB SNR for Lynx, Car and F16 noises

2PCSS means that CSS is applied in the power domain and PMFCC means that MFCCs are obtained
from the power spectrum.
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Figure 10: Upper limit recognition performance for Lynx, Car and F16 at 0 and -6 dB
SNR for PCSS-PMFCC and bPCSS-PMFCC. Y was obtained using a window length of
20, this is n = 20.
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for bPCSS-PMFCC and PCSS-PMFCC, respectively. This figure shows the performance
for vy =0.7, v = 0.6, v = 0.5 and the upper limit indicated by “best”. From these figures,
we can observe that in most of the cases the recognition performance of the CSS-PMC
reachs the upper limit. In general the maximum recognition performance was obtained
for 1.0 < a < 1.6.

Table 1 sumarises the baseline results for a standard fixed variance HMM based recog-
nition system, PSS and bPSS when ideal word detector is used. The noise estimator is
obtained from the average of the twenty spectral samples before the words starts. These
results were obtained for 0.0 < o < 3.0 and 8 = 0.1. As noted earlier, the value of 3 was
fixed at 0.1 from the outset. This may not therefore represent an optimum setting. Table
2 summarises the accuracy obtained for the standard PMC algorithm, see [4], for Lynx,
Car and F16.

Table 3 shows the results when CSS-PMC compensate the clean models using A°.
The noisy estimator, Y, is obtained using a window length of the twenty spectral samples,
this is n = 20. Very good results were obtained when the PSS was applied before the
filterbank, and when SS was applied at filterbank level the results were only significantly
better than PMC results for the F'16 noise.

Table 4 sumarises the performance obtained using the CSS-PMC scheme for PCSS-
PMFCC and bPCSS-PMFCC, when training with the distroted speech. Again, very good
results were obtained when CSS was performed before the filterbank, and slightly better
results than PMC were obtained when SS was applied at filterbank level.

Finally, table 5 and 6 shows how the recognition accuracy change for Lynx, Car and
F16 noises when the average window length is varied from n = 10 frames, 100 ms, to
n = 50 frames, 500 ms., and training using the distorted speech for PCSS-PMFCC and
PCSS-PMFCC. We can observe that the recognition performance is quite high even for
n = 20 frames (200 ms), which means the effectivity of compensating the speech distortion.
Again, this have two important advanages, first the CSS can be used for quasi-stationary
noise, and this technique can be used for smaller recognition units such as phonemes,
therefore, continuous speech recognition task are possible.
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Figure 11: Recognition performance for Lynx, Car or F16 at 0 or -6 dB SNR for bPCSS-
PMFCC when training with speech distorted by CSS and compensating A, (n=20),
weighted for v = 0.7, v = 0.6 and v = 0.5. This figure also show the upper limit indicated
by “best”.
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PMFCC when training with speech distorted by CSS and compensating AY, (n=20),
weighted for v = 0.7 and v = 0.6. This figure also show the upper limit indicated by
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SNR(dB) | Lynx (%) | Car (%) | F16 (%)
Std. HMM 0 32 42 42
-6 20 16 12
PSS-PMFCC 0 70 81 60
(S) 6 46 56 43
bPSS-PMFCC 0 78 83 64
(SS) 6 50 53 46
PSS-PMFCC 0 97 99 99
(SS-PMC) 6 82 92 85
bPSS-PMFCC 0 100 100 99
(SS-PMC) 6 81 92 81

Table 1: Correct words baseline results (0 < o < 3.0 and 3 = 0.1).

SNR(dB) | Lynx (%) | Car (%) | F16 (%)
PMC 0 92 94 82
-6 48 72 54

Table 2: Accuracy baseline results (0 < o < 3.0 and 8 = 0.1).

Method SNR (dB) | Lynx (%) | Car (%) | F16 (%)
bPCSS-PMFCC 0 96 99 98
-6 65 75 75
PCSS-PMFCC 0 81 94 97
-6 44 73 67

Table 3: Accuracy for CSS-PMC using the clean speech models, S, and window length of
20 frames.

Method SNR (dB | Lynx (%) | Car (%) | F16 (%)
bPCSS-PMFCC 0 97 96 96
-6 62 78 72
PCSS-PMFCC 0 89 96 93
-6 46 71 60

Table 4: Accuracy for CSS-PMC using the distorted speech models, Sp, and window
length of 20 frames.
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SNR | n=10 | n=20 | n=30 | n=40 | n=50
Lynx | 0 95 97 97 97 96
-6 61 62 65 64 64
Car 0 92 96 97 95 94
-6 73 78 78 80 77
F16 0 91 96 94 95 96
-6 69 72 70 73 72

Table 5: Accuracy for Car, Lynx and F16 using bPCSS-PMFCC when varying the average
window lengths, when using the distorted models, Sp.

SNR | n=10 | n=20 | n=30 | n=40 | n=50
Lynx | 0 86 89 87 87 87
-6 46 46 47 48 47
Car 0 91 96 95 94 93
-6 67 71 74 74 79
F16 0 87 93 92 93 90
-6 37 60 60 61 62

Table 6: Accuracy for Car, Lynx and F16 using PCSS-PMFCC when varying the average
window lengths, when using the distorted models, Sp.

26



Conclusions

5 Conclusions

By enhancing noisy speech we obtain a signal with better features and less variability, at
the expense of signal distortion. In this work, we have proposed the use of adaptation
techniques to compensate the clean speech models to match them to the distorted speech
produced by a signal enhancer.

The experiments show that using an ideal model adapting algorithm applied to en-
hanced signal, we obtain higher potential performance than is possible using an adaptation
scheme alone. These results encourage us to study the best way to adapt the distortion
of the signal caused by the enhancement techniques.

We developed the necessary compensation for a Continuous Spectral Subtractor en-
hancer and we tested on the NOISEX-92 database. First, we showed that the effect of the
CSS on noisy speech can be separated in the linear domain into the effect of the noise on
the speech and the distortion caused by the CSS, A or A”. Because the standard PMC
algorithm returns the model to the linear domain, compensating the distortion is easily
achieved on this linear domain by modifying the PMC adaptation technique to compen-
sate for the enhanced signal. We refered to this modified approach as the CSS-PMC
scheme.

Second, the theory behind of our adaptation algorithm is based on several assumptions
and approximations. In order to compensate for these approximations, we weight the
distortion compensation by a v factor, and the best performance was obtained when this
factor was around 0.7 for 0 dB SNR, and when this factor was around 0.5 for -6 dB SNR.
Finally, we tested CSS-PMC, and the results we obtained were comparable or better than
the results of an ideal adaptation algorithm.

The compensating equations A® and A were developed assuming a log normal dis-
tribution of the signal before being preprocessed by the CSS. AY is used when the models
are trained using the clean speech, and A® is used when the models are trained with the
distorted speech.

The experimental results show that for 0 dB the recognition performance is slightly
better when the models are trained with the clean speech, however the experimental results
for -6 dB show slightly better recognition performance when the models are trained using
the pre-distorted speech.

It was also shown that the CSS scheme obtains good recognition performance even
for small window lengths, such as 200 ms, allowing the cancellation of quasi-stationary
noises.

The Noisex-2 database artificially adds real noise to the clean speech, hence there is no

Lombard effect. If we wish to test on real noisy speech, we will also need to compensate
for this effect.
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A Appendix.

By definition,

n(¥)=6)? 4y
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this integral can be solved by the variable substitution z = In(Y) to give

In(a)  €*  _ _1_(,_¢)2
B(a’f’l/)):/;oo \/ﬂd}e 21{12( 6) dZ

which can be re-expressed as follows
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completing the square gives
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hence
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and if In(a) = co we obtain

E[Y] = TP /2
Similarly,
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again using the variable substitution z = In(Y') gives
In(a) 2z 2
* e a0 dz
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and by completing the square we obtain

C(a,&,0) = 2E+¥?) (ln(a) —({+ 2771)2))

W

If In(a) = co we obtain

E[Y?] = 2+,
By using eq. 21, E[Y?] can also be expressed as follows

E[Y?] = E[Y]e¥
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