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Abstract

An object-oriented framework for the divide-and-conquer paradigm is presented. This
framework does not require a parallelising compiler and thus provides an environment that is
flexible and easily extensible. The framework enables a divide-and-conquer representation of
a problem to be built up for subsequent evaluation. Evaluation is delayed until the maximum
amount of computation that can be performed in one divide-and-conquer pass has been inte-
grated into the representation. Results are presented for two different implementations of the
back-propagation algorithm. Divide-and-conquer provides a flexible framework for the par-
allel implementation of various algorithms. Object-oriented programming techniques provide
a means to encapsulate the divide-and-conquer semantics and provide a uniform interface to
the end-user. This results in a reasonably efficient system for parallel problem solving which
is easy to use and useful in a wide range of tasks.

1 Introduction

Parallel processing has the potential to deliver cost effective computational power. However, if
the benefits of parallel processing are to be experienced by all computer programmers, then the
difficulties in implementing parallel programs need to be tackled. Two common approaches to
the problems of achieving this accessible parallelism have emerged. The first approach involves
producing a custom language for which all language constructs can be easily implemented in parallel
- for instance functional languages. The second approach involves taking any serial specification
and extracting parallelism from it using a compiler. These two approaches both fail to some
degree because of their extremeness. Custom languages that are easily parallelised are not easily
programmed. The compiler benefits, the programmer does not. Parallel feature extraction is
difficult and inefficient at best, and limited by the number of parallel features present in a program.
At worst 1t is impossible. The programmer benefits at the expense of parallelism.

Divide-and-conquer [1] in conjunction with object-oriented programming [23] may offer a middle
ground which achieves the best of both worlds. Divide-and-conquer is a well studied computational
paradigm that can be easily and efficiently parallelised. Object-oriented programming allows the
complexity of the parallelism provided by divide-and-conquer to be hidden from the programmer.
At the same time the programmer can benefit from the features of object-oriented programming in
general. This paper presents an object-oriented framework for divide-and-conquer and describes
the benefits of the object-oriented approach.

The next section describes the divide-and-conquer paradigm and it parallel implementation.



2 Divide-and-Conquer

Divide-and-conquer has been most widely used in a graph reduction context with functional lan-
guage evaluation [18]. However, divide-and-conquer can also be used as a programming paradigm
in its own right as set out by Axford [3] and Mou [17, 16].

The divide-and-conquer algorithm can be represented in pseudocode as follows:

FUNCTION Divacon (data)

BEGIN

IF isSimple (data)

THEN RETURN Function (data)

ELSE Combine (Divacon (Divide (data)))
END

where Divide() divides a task into sub-tasks, isSimple() specifies if the task is small enough to
compute, Combine() combines partial results and Function() yields a partial result from a sub-
task.

Many common algorithms - merge sort, matrix multiplication, fibonacci sequence etc - have
been represented concisely in a divide-and-conquer format and implemented in parallel [3, 17, 22, 2.

2.1 Divide-and-Conquer as a Means to Parallelism

Interest in divide-and-conquer as a programming paradigm lies in the potential for parallelism in
computing partial results for divided data. Axford [3] describes it as follows:

Suppose there are P processors available for parallel computation, then y = Divacon (d) can
be computed by:

1. Compute a set of data values dy,ds,ds, ..., dp by repeated application of Divide() to d until
the data is subdivided into P parts.

2. For each of the data values d;, compute a partial result by sequential computation on the
i-th processor.

3. By repeated application of Combine() to pairs of partial results, compute the final result y
from the set of partial results y1,ys2,ys, ..., yp-

These three stages can each be implemented in parallel, although the greatest parallelism is possible
for stage 2.

This property of divide-and-conquer makes the solution of general computational problems by
a divide-and-conquer method desirable. Axford [3] gives some examples of these. In addition to
simple computational problems, many computationally demanding ones have now been solved by
divide-and-conquer methods, because it provides a way of implementing them in parallel [10].

The ZAPP project [14, 15] has shown that excellent parallel performance can be achieved by
a divide-and-conquer method, although it should be noted that the kernel was written in OC-
CAM. Many other divide-and-conquer architectures have been implemented with varying degrees
of success. [18, 12]

2.2 Discussion

Divide-and-conquer is a computational paradigm that is simply expressed, easily parallelised and
easily implemented. However, it provides a programming building block rather than a complete
solution. It is therefore essential that divide-and-conquer units be combined a sensible and efficient
way. How this can be achieved using object-oriented programming is demonstrated later in this
paper.

The next section describes the nature of object-oriented programming and goes on to describe
its potential benefits in a parallel context.



3 Object-Oriented Programming : C++ and Divide-and-
Conquer

Object oriented languages have been long considered good at encapsulating parallel concepts [9];
many systems exist which attempt to extend, and capitalize on, their ability to express parallelism
[4, 13, 11].

C++ is a common choice for object-oriented parallel systems because of its retention of C’s
efficiency - of obvious importance in parallel systems. Most systems achieve parallelism by aug-
menting the language features of the language concerned. However C++, as described by Coplien
[7], is rich in meta-features - simple building blocks which allow the construction of features that
are not intrinsically part of the language. This is obviously preferable to additional language fea-
tures, as it yields programs that are portable across a range of platforms which support the base
language.

Some of the other salient features of object-oriented programming languages are:

Code Reuse The internals of any divide-and-conquer system are usually composed of a collec-
tion of well defined structures - trees, lists, stacks. The structured nature of object-oriented
languages and their ability to encapsulate generic implementations means that these con-
structs can be rapidly assembled from existing software which is known to be correct. It
also means that system components can be easily replaced in a modular fashion when better
implementations are available.

Data Abstraction Data abstraction is particularly useful in this context. Data abstraction al-
lows the internals of code, with some particular functionality, to be hidden from the developer
using that functionality. In the case of parallel processing, data abstraction allows the ‘hard’
bits of parallelism, even the parallelism itself, to be hidden from the programmer. Addi-
tionally, data abstraction allows higher-level concepts to be grouped together without being
hindered by the detail of implementation. Thus the problem of divide-and-conquer can be
addressed at a system, divide-and-conquer or problem level, whichever is appropriate.

Operator Overloading Operator overloading allows the intuitive expression of the message pass-
ing paradigm; code like:

bytel >> processA;

is possible, meaning “pass a byte of data from my process to process A”. This means that
the notational convenience of CSP can be simulated if so desired.

Operator overloading also allows divide-and-conquer methods to be hidden within a simple
syntax that is easily used. For example, matrix multiplication by divide-and-conquer can be
hidden in the “*” operator.

Inheritance and Polymorphism Object-oriented programming, coupled with inheritance, al-
lows the specification and implementation of a basic parallel framework and interface, which
is easily augmentable for increased functionality. This framework can be split into functional
groups, and even abstract groups to which the functionality is added later. In terms of divide-
and-conquer it means that a uniform interface can be developed between the implementation
of parallelism and the divide-and-conquer paradigm. Augmentation of this basic interface
using inheritance, allows the polymorphic development of divide-and-conquer functionality
whilst capitalising on code-sharing.

3.1 Discussion

Many people have obtained good performance results from divide-and-conquer based systems.
However, these systems have tended to be functional language based at the user level, and coded

in OCCAM at the kernel level. While OCCAM gives the desired performance, it is difficult to see



how these systems can be robust, maintainable and extensible; three desirable aspects of software
systems [21]. A high level language and operating system would yield these three attributes, but
would the performance suffer too much 7 In addition to these basic software engineering principles,
object-oriented programming has characteristics which are particularly suited to both parallelism
in general, and to divide-and-conquer itself.

The next section outlines the development of the divide-and-conquer paradigm in a object-
oriented programming context using C++. Data representation and some of the practical issues
involved are described and discussed.

4 Object Oriented Design

As shown the divide-and-conquer paradigm is notationally simple, and an initial object-oriented
representation is a matter of encapsulating the basic functionality within an object.

4.1 Basic divide-and-conquer

In order to practically implement the primary functions - isSimple(), Function(), Divide() and Com-
bine() - it is convenient to split Divide() into two functions, divideUpper() and divideLower().
A call-by-reference scheme could have been adopted to unite the functionality, and for dividing on
a non-binary basis this would have probably been necessary. However, the notational aspects are
perhaps less intuitive.

4.2 Data Representation

Divide-and-conquer relies on manipulable data structures. For balanced divide-and-conquer where
the computational demand is determined by the problem size, a vector structure is most useful.
With this structure data sub-units can be directly extracted rather than having to traverse the
sub-units, which would be necessary for a list based structure. Additionally, larger sub-units can
be constrained to be contiguous in memory so that IO can be performed with a minimum of CPU
cycles.

Alternatives are linked lists or binary trees. Linked lists would be especially useful for com-
plicated combine() or divide() functions as the data sub-units can be rearranged very easily.
However, the overhead in traversing the list to extract sub-units and to perform 1O, is unnecessary
in the problems that will be considered here.

McBurney and Sleep shared matrix structures between divide-and-conquer operations. This
meant that data was not duplicated in the divide() stage, and so memory was conserved. This
is especially important for matrix multiplication and other algorithms which are not data-parallel,
as the splitting up of the data involves a certain amount of duplication. In cases such as these,
it would seem sensible to use, as much as possible, a description of the data, rather than the
data itself. This would also ease the task of passing virtual data descriptors around the processor
network, when the problem is initially too big to fit on one processor.

4.3 Implementation

A simple, high-level (C++) interface for the divide-and-conquer paradigm, takes the form:

template <class T> class Divacon {

public:
virtual T divideUpper (const T&) =0;
virtual T divideLower (const T&) =0;
virtual T combine (const T&, const T&) =0;
virtual T function (const T&) =0;
virtual const boolean isSimple (const T&) const =0;
¥



Although other possibilities; not involving parametrization, are possible the outline above
achieves the most flexibility.

Given this initial framework, a number of extensions are necessary. This framework provides
an interface to the problem through which the actual graph-reduction routines can operate. As
such the interface can provide no information about the underlying problem specification, derived
classes will build up this information.

Thus for a problem involving matrices the class derivation would be as follows:

struct MatrixData_t {

unsigned int IOoWS;
unsigned int columns;
unsigned int row_position;
unsigned int column_position;
double* data;

};

class MatrixDivacon : public Divacon<MatrixData_t> {

public:
virtual MatrixData_t divideUpper (const MatrixData_t&);
virtual MatrixData_t divideLower (const MatrixData_t&);
virtual MatrixData_t combine (const MatrixData_t&, const MatrixData_t&);
virtual MatrixData_t function (const MatrixData_t&);

virtual const boolean isSimple (const MatrixData_t&);

};

Whatever functionality is known at this stage can be added to the MatrixDivacon class, and
the complete functionality added in derived classes e.g MatrixMultiplicationDivacon.

For any non-trivial problem the number of MatrixData t’s created is quite large and therefore
the size of MatrixData t must be kept to a minimum. This means reducing data-members and
eliminating virtual functions.

Finally, it was found that a number of other functions were necessary in order to conceal the
actual data and methods beneath the Divacon interface. The interface then becomes:

template <class T> class Divacon {

public:
virtual const boolean isSimple (const T&) const =0;
virtual T divideUpper (const T& ) =0 ;
virtual T divideLower (const T& ) =0 ;
virtual T combine (const T&, const T&) =0 ;
virtual T function (const T& ) =0 ;
virtual void outputData (const T&, const Process&)=0;
virtual void outputResults (const Process&)=0;
virtual T inputData (const Process&) =0;
virtual T inputResults (const T&, const Process&)=0;
};

where Process is a compute node process identifier.

5 The Object Oriented Approach

As shown, object-oriented programming forms a viable framework not only for building a divide-
and-conquer system, but also for expressing the divide-and-conquer paradigm elegantly and flex-
ibly. However, object-oriented programming also provides the means for achieving an integrated
approach to parallel processing.
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5.1 Motivation

In most engineering disciplines, real problems are characterized by their complexity and their
non-uniform nature. Given a problem, there are usually many steps involved in solving that prob-
lem. Computationally, the requirements of a solution are usually diverse and multi-faceted. For
instance, to recognise human speech usually requires some combination of acquisition, filtering,
preprocessing, recognition, postprocessing and lexical-access. With today’s problems any compu-
tational system must be able to provide sufficient flexibility to accommodate steps such as these,
whilst maintaining efficiency as much as possible. It is possible to be overly concerned with the
efficient solution of very specific problems, and give insufficient thought to the cost of integration
of these solutions into a real system. Efficiency must be measured in software life-cycle terms as
well as actual algorithmic efficiency.

Divide-and-conquer provides the flexibility necessary to accommodate a large problem solution
set. Object-oriented programming provides the means for integrating efficiently, in all senses of
the word, these various solutions to make up a complete solution.

5.2 Integration Using Object-Oriented Programming

It has already been described how the data abstraction and operator overloading aspects of object-
oriented programming allow the ‘hard’ bits of parallel processing in this context to be abstracted
from the programmer interface. This abstraction, together with the reusability and encapsulation
of functionality, allows libraries of objects to be efficiently created and easily used. However, as



described above, the interaction between these various objects and methods is as important as the
objects and methods themselves. If this interaction is poor then methods that are individually
extremely efficient can be next to useless, leading to poor overall system efficiency.

With the parallel evaluation of divide-and-conquer methods, it is crucial that the number of
divide-and-conquer passes ! is reduced to a minimum so that the communication cost exacted
by such a system 1s minimised. Data dependencies may mean that computation cannot all be
performed in one pass, but the number of times this is necessary must be kept low.

5.3 Sequential-Parallel and Parallel-Parallel Integration

Parallelised object methods can be made transparent to the user using appropriate functions and
overloaded infix operators - for instance MatrixMultiplicationDivacon can be integrated into the
operator “*”. This allows the parallel and serial aspects of a problem to be integrated seamlessly
without the parallel aspects interfering with the overall solution strategy. This also means that
several parallel methods can be grouped together to yield a more complex method. The problem
with small sub-units being combined to yield a larger solution is that this can lead to unnecessary
inefficiencies. To take a trivial example - it is inappropriate to compute ,using divide-and-conquer
many pairs of matrix operations separately - constant * A+ B computed as constant x A and then
result + B would involve a tremendous amount of unnecessary communication the data would
be broadcasted/retrieved twice when really all that is needed is for all data to be broadcast and
each result element to be calculated as constant ¥ A; + B;. As communication is the overriding
overhead in MIMD parallel processing this needs to be avoided. This can be achieved by using
delayed evaluation whilst still maintaining the notational convenience of operator overloading :

class vector { // a vector
unsigned s; // size of the vector
double *e; // contents of the vector

vector(unsigned ss=0) : s(ss), // constructor with size
e(new double[ss]) {}

“vector() {
deletel[] e;
}
operator() (unsigned i) { // element access operator
return el[i];
}
};
class cvector { // a vector and constant class
double c; // the constant
vector v; // the vector
cvector(double cc, vector& vv) : c(cc), v(vv)
{3 // constructor from a vector and a constant
};

cvector operator* (double cc, vector& vv) {
// multiplication operator (just returns a cvector)
return cvector(cc, vv);

}

vector operator+ (cvector cv, vector& vv) {
// plus operator does the actual computation
vector rr(vv.s);

1A divide-and-conquer pass is divide-and-conquer evaluation involving some form of data broadcast, with all the
data being present on the root processor at the beginning and end of the evaluation.



for(int i = 0 ; i< vv.s; i++)
rr(i) = cv.c * cv.v(i) + vv(i);
return rr;

¥

{ // example usage
vector a,b,c
c=1.2 ¥ a + b;

¥

This trivial example serves to illustrate the method of delayed evaluation. In order to be useful
an additional level of complexity is required.

5.4 Compound Divide-and-Conquer Objects

Delayed evaluation can be extended to perform a whole range of evaluation optimizations. In a
sequential context, every object is characterized by its derivation from a single base object which
specifies an interface to basic functionality. Compound objects have the basic form:

class Compound : public Base {

public:
Data evaluate() { // virtual in the Base class
// foo is some arbitrary function
return foo( bpl->evaluate(), bp2->evaluate() );
}
protected: // constructor is protected to
// keep access internal
Compound(Base* bl, Base* b2) : bpi(bl), bp2(b2) {}
private:
Basex* bpi;
Basex*  bp2;
friend class Base;
};

The function foo() will vary depending on the type of compound object. For instance if the
object is an AddedData object then foo() will be the infix operator “4”. The infix operator “+”
will then be overloaded for Base objects to be:

Base& Base::operator+ (Base& bi) {
return *new AddedData(this, bil);
¥

with some appropriate garbage collection to release the AddedData object when it has been
used. Objects that actually contain data are a special case and evaluate() simply returns the
data itself.

This approach results in the construction of an evaluation tree. The tree can be pruned to
eliminate temporaries and unnecessary operations - for example AT x B can be evaluated without
calculating A”. The tree is then evaluated by overloading the operator “=" so that it calls the
root object’s evaluate () function. This call recurses down the tree until evaluate() returns plain
Data. Then as the recursion unwinds, evaluation takes place.

This is essentially how Davies’ Newmat04 [8] package works. This method can be further
extended to work with divide-and-conquer . In order to achieve this, every object is derived from
Divacon as well as some Base object. The compound object i1s constructed so that all the primary



and IO functions - divideUpper(), divideLower() etc - are recursively called like evaluate().
The operator “=" is then overloaded to perform the actual divide-and-conquer evaluation.

Of course, this integration will only work within the constraints of one divide-and-conquer
pass and it is essential that the maximum possible computation is performed within each pass.
Unlike the sequential example, data dependencies will mean that the evaluation tree can rarely be
evaluated in one pass. It is therefore possible to envisage an evaluation scheme in which nodes
of the evaluation tree are identified, at which no further single pass evaluation can be performed.
When these nodes are identified divide-and-conquer processing takes place, rather than just in the

operator “=".

5.5 Problem Partitioning

Rabhi [18] identified problem partitioning as crucial to achieving optimal speedups for balanced
divide-and-conquer systems. The compound object scheme as described above, means that par-
titions can be specified for each divide-and-conquer operation 2. For the recursed isSimple()
function, the overall partition can be specified as a suitable combination - currently the minimum
- of the individual operation partitions.

5.6 Conclusions

Thus integration of parallel methods in this context can be achieved in an efficient and flexible
way for some problems. These ideas are denoted schematically by Figure 1.

The next section seeks to illustrate the ideas introduced so far by tracing through the implemen-
tation of the back-propagation algorithm in a divide-and-conquer fashion. Results are presented
for such an implementation. The speedup gained is obviously not optimal but it is a speedup
gained at a relatively low implementation cost.

6 The Back-Propagation Algorithm

Given a three-layer neural network with I input units, J hidden units and K output units, then
the output o is related to the input ¢ by:

of = fr(WT)Tf,(W!)Tol)) (1)
This is the feed forward equation. The back-propagation of the error is given by:

AW'E = pol (t% - o®) @ fic (e% )T (2)
AW = ol (WK (K — oF) @ fic(c®)] @ fh(e”))" (3)

6.1 Approaches

It is necessary now to consider how this problem can be broken down modularly in a divide-and-
conquer fashion. There are two options:

o If the network is very large then the algorithm itself can be broken down using divide-and-
conquer and basic matrix operations. This is not necessarily highly efficient. This will be
denoted as a vertical implementation.

2For instance matrix multiplication



o If the network is small then the whole algorithm can be kept on each node and different
weight updates can be calculated on each node and the results combined. This is a common
way to implement back-propagation - to run the entire training set through the network and
to sum the weight updates. This has the advantage of eliminating random noise. This will
be denoted as a horizontal implementation.

Let us consider the second possibility first as this is likely to be the easiest one to implement.

6.2 Horizontal Back-Propagation

Given a training set of n frames Tg(n) = {f1,..., fu}, this can be split recursively into groups of
frames. Thus

Divide() : Tg(ns) — {Tg, (ns/2),Tg, (ns/2)} WHERE
Tsl(ns/2) = {fla R fns/Z}
Tg,(ns/2) = {fn.s2415 0 fn.} (4)

If n, defines the number of frames in a given set then a straightforward isSimple() function is
when n; is equal to some suitable partition.

isSimple() : Tg(ns) = n, = partition (5)

10



The Function() function then becomes a cycle of the feed-forward / error back-propagation
equations.

The combination function is equally straightforward and involves an addition of the returned
weight updates. Thus the result set Rg for each node is defined by:

Combine() : {Rg ,Rg.} — RgWHERE
Rg = {AW"/ AW/S} WHERE
AW = AW{7 + AWS/
AWTE = AW/E 4 AWK (6)

In addition to these primary functions it is also necessary to define the sets for input/output
functions. These will be called Bg the Broadcast Set and Reg the Reel Set. These are:

BS — {WJK;WIJ,QI;EK} (7)
Reg = {AW!/ AW/} (8)

Note that this approach runs into the problem of lack of memory. With a simplistic implemen-
tation the entire training set would need to be initially held on the root node together with all the
other associated data. A more sophisticated approach might use some through routing technique
so that data was not actually transmitted until needed. Additionally the idea of using the host
as the root and initially employing divide-and-conquer as a scheduling strategy would be helpful
here. This would involve dividing the data until the sub-divided parts are small enough to run on
the first node, and the evaluation function becomes that of scheduling this load onto the first node
for computation.

6.3 Vertical Back-Propagation

The second approach is to break down the algorithm itself into divide-and-conquer format, rather
than the data. Only the feed-forward equation will be considered to illustrate the method. It
is necessary at this stage to define some new terminology to specify the state of data structures.
Principally whether the leaf result of a divide-and-conquer operation is in a column-wise seg-
mented or row-wise segmented state. These will be denoted by the subscripts ¢ and r respectively.
Unsubscripted data structures are unsegmented.

By definition f(o) is a data parallel operation, and thus can be computed by divide-and-conquer
by simply splitting the vector along its length. This gives:

Divide() : v. — {v; ,vo, } WHERE

!1 - (Ula"'avn/Z)T

!1 = (Un/Z-}—la ey Un)
isSimple() : v — elems(v) < const
Function() : v, — v. WHERE

ALY

T

v = f(vi)
Combine() : {v,,,vo,} — v WHERLE
v=(vi vi)T (9)

Note that functions of this nature can be recursively applied so that only one divide-and-conquer
pass is necessary.

Matrix-Vector multiplications can be performed by segmenting the matrix row-wise and keeping
the vector intact. Thus:

Divide() : {M,v} — {M; M, ,v} WHERE

11
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(10)

The vector u generated by this function is in the row-wise segmented state when Function() is
applied. Thus, data-parallel vector operations can be applied to this result in the same divide-
and-conquer pass. For example:

Since the resultant vector is row-wise segmented it is cannot be re-used by equations 10. Thus the
calculation of o requires two divide-and-conquer passes.

An attempt was made to implement the two schemes described above, on a network of trans-
puters using the Trollius™™ [5] operating system and AT&T C++ v3.0.1. During the course of



implementation a divide-and-conquer object hierarchy evolved as illustrated by figure 2. This hi-
erarchy was influenced by the delayed evaluation techniques described in section 7, and embodied
the algebraic manipulations necessary to implement the vertical scheme. Programs could then be
written in simple algebraic style:

main()
{
const SZ = 128;
VectorDac<float> A(SZ), B(SZ), C(SZ), R(SZ);
MatrixDac<float> M(SZ,SZ);
R =A + B % exp(MxC);
¥

As discussed previously, the operator “=" actually performs the divide-and-conquer operations,

with the other operators simply building up the compound divide-and-conquer object.

The feed forward equations 21 & 22 were implemented for the vertical scheme. The execution
time for evaluating the first layer of one frame on one processor was found to be so low ( < 1s ) that
parallel implementation yielded very little improvement and was in some cases slower! This was
due to the parallelising overhead for this case being comparable to the actual computation being
performed. No further implementation was made as the overheads involved would only multiply
with further divide-and-conquer passes. However, the insight gained into combining divide-and-
conquer objects was invaluable in implementing the horizontal approach.

6.4.1 Parameterized Typing

The parameterized typing facility of C++ proved to be invaluable in crossing from the vertical
implementation to the horizontal implementation. This facility, which allowed VectorDac’s of
floats or doubles to be created, was flexible enough for VectorDacs of Vectors of floats to be
created easily using the existing code. This meant that implementing Vectors of training frames,
for example, was a simple matter of providing more generalised 1O routines.

6.4.2 Object Combination

The horizontal implementation is currently coded as:

void main()

{

/[ kkkkokkokok ok kokok setup data structures *¥kkkkkkkkkkx

const TRAINING_FRAMES = 512;

const I = 32; // nn parameters
const J = 136;
const K = 10;

VectorDac< Vector<float> > inputs(TRAINING_FRAMES),
outputs (TRAINING_FRAMES) ;

Vector<float>(I); // resize the data
Vector<float>(K);

inputs
outputs

Matrix<float> d_wij(I,J), Wij(1,J),
d_Wjk(J,K), Wjk(J,K);
CombVectorDac< Matrix<float> > delta_Wij(d_Wij, TRAINING_FRAMES),
delta_Wjk(d_Wjk, TRAINING_FRAMES);

13



// #x*x*kxxx¥xx initialisation for root node *k¥kk*kk*
if (getnodeid() == 1){
inputs = outputs = Wij = Wjk = Random; // randomize everything
// in lieu of actual data

}
// **x**kx*x* Divide—and-Conquer operations *kkikkix*

BackpropDac<float> bp(inputs, outputs, delta Wij, delta_Wjk, Wij,Wjk);
bp.evaluateExpression();

// *¥x*kx%kx*% post-processing for root node ¥kkkikkk*
if (getnodeid() == 1) {

Wij += d_Wij; // update weights

Wjk += d_Wjk;

The divide-and-conquer object BackpropDac<T> simply applies the training algorithm to its
component divide-and-conquer objects. The training algorithm is simply expressed using standard
C++ Vector / Matrix objects and infix operators. It is apparent that in this case the actual
combination of the divide-and-conquer objects is rather cumbersome - a six parameter function
call - as opposed to the elegance of the vertical implementation. Thus a more intuitive combination
scheme would be of much value.

6.4.3 Memory Exhaustion

The largest problem size that could be tested was I = 32,J = 136, K = 10, Frames = 512. Any
larger than this and the memory was exhausted. This limitation was partially due to the large code
size generated by the C++ compiler, but mainly due to the fact the all the problem data starts out
on the root node, and as the job diffuses the data thins out. When actual evaluation is performed
the data required for this evaluation is relatively small in comparison with the total data. Thus,
some sort of virtual data transmission scheme would be necessary in order to implement larger
problems, and make efficient use of the available resources. This would mean that data was only
present on a node when it was actually needed and that a virtual representation was transmitted
at other times.

7 Results

Figure 3 shows the speedup gained for the horizontal scheme with I = 32,7 = 136, K =
10, Frames = 512.

The experiments were conducted on a 4x4 mesh of T800 transputers. The mesh was wrapped
into a torus. The processor numbers used was increased rasterwise - left to right, top to bottom -
the root node being at the beginning of the raster.

A number of features are worth noting.

¢ Because of the way the processor numbers were increased, the root transputer uses one of its
links for processors 1-4, two for processors 5-12 and three for processors 13-16. The fourth
link is connected to the host. In the worst case the expected speedup will be 2##inks | ag there
will be Z#I}nks of the problem left on the root processor. This observation is borne out by
the results, speedup break points coming at 2,5 and 13 processors. This constitutes a strong

argument for using a hypercube connected topology.
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Figure 3: Results for Horizontal Back-Propagation

For large partitions, the number of available problems decreases until it is less than the
number of available processors. At this point performance tails of rapidly. In the limit, the
speedup tends to that of the single processor case.

When more than one processor is available, but the partition size constrains the system to
use only one, the speedup gained is slightly less than the single node case. This is probably
because of the overhead introduced by the bidding scheduling scheme - scheduling requests
are still made to the root node, it just cannot satisfy any of them.

Rhabi’s [18] partitioning results - optimal speedups for partitions matching the sub-task size
to the number of processors - are not observable here. This may be because of a difference in
scheduling strategy between the two systems. The strategy employed here means that with
more sub-tasks, more processors will be able to be used towards the end of a processing pass.
With less sub-tasks, the root processor will be the only processor left computing, towards
the end of the computation, when the sub-task queue has been exhausted.
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8 Conclusions

It has been shown that divide-and-conquer provides a general means to parallelism constrained
by the expressive power of divide-and-conquer paradigm. The limitations imposed by this con-
straint restricting in many ways. However, divide-and-conquer allows a shift of emphasis from
that of solving parallel problems to that of re-expressing algorithms within a set of clearly defined
boundaries.

Object-oriented programming does not provide any ‘magic’ means to parallelism through divide-
and-conquer. However, it does allow the divide-and-conquer paradigm to be represented conve-
niently and flexibly in a declarative environment. It also allows divide-and-conquer solutions to be
combined in a uniform fashion. Again, this combination does not magically happen; the combina-
tion of divide-and-conquer solutions requires a good understanding of the overall problem and has
to be specifically defined. However, object-oriented programming provides the framework for its
implementation and allows this implementation to be hidden from subsequent users.

From an implementation standpoint, it is known that divide-and-conquer can provide a usable
degree of efficiency. However, this paper has shown that even an extremely high-level approach,
using object-oriented programming does not have to be less efficient. The advantage of a high-level
approach is that it paves the road for more complex algorithms and implementations.

This approach in no-way presents a magic formula that automatically parallelises every problem
encountered; the C++ code is compiled to standard C-code and as such the actual functionality
could be written using C. However, the approach does sufficiently alter and abstract one’s viewpoint
of parallel processing problems so that their solution becomes achievable in a structured, sensible
and efficient - in every sense - way.

9 Further Work

Providing a suitable framework for divide-and-conquer in C++ has proved relatively straightfor-
ward. Providing this framework whilst maintaining efficiency has proved less than straightforward
and there is much scope for improving the implementation to achieve better efficiency, especially
in the scheduling scheme.

The choice of representing the data as vectors has been suitable in this context. However, for
different classes of problem some other data structure might be preferable - for instance a linked
list. The generic nature of C++ will make an implementation based on this straightforward.

The compound divide-and-conquer representation could be more subtly evaluated. Unnecessary
operations could be pruned from the tree. Objects which were candidates for single divide-and-
conquer passes, could be identified and evaluated automatically.

A virtual data transmission scheme would ease memory problems. If data was only actually
transmitted when it was required for computation, then all the data would not need to be held
initially on the root processor.
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