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Abstract

This report describes an attempt at capturing segmental transition information for speech recog-
nition tasks. The slowly varying dynamics of spectral trajectories carries much discriminant in-
formation that is very crudely modelled by traditional approaches such as HMMs. In approaches
such as recurrent neural networks there is the hope, but not the convincing demonstration, that
such transitional information could be captured. The method presented here starts from the very
different position of explicitly capturing the trajectory of short time spectral parameter vectors on a
subspace in which the temporal sequence information is preserved. We approach this by introducing
a temporal constraint into the well known technique of Principal Component Analysis. On this
subspace, we attempt a parametric modelling of the trajectory, and compute a distance metric to
perform classification of diphones. We use the principal curves method of Hastie and Stuetzle and
the Generative Topographic map (GTM) technique of Bishop, Svenson and Williams to describe
the temporal evolution in terms of latent variables. On the difficult problem of /bee/, /dee/, /gee/
we are able to retain discriminatory information with a small number of parameters. Experimental
illustrations present results on ISOLET and TIMIT database.

Zusammenfassung

Dieser Bericht beschreibt den Versuch Informationen iiber dynamische Transitionen in phone-
tischen Sprachsegmenten zu erfassen, um sie fiir die Spracherkennung nutzbar zu machen.
Gerade die dynamischen Prozesse der spektralen Trajektoren reprisentieren charakteristische Unter-
scheidungsmerkmale, welche durch die traditionellen statistischen Mustererkenner, wie z.B. Hidden
Markov Model, ungeniigend beriicksichtigt werden. Man hoffte, durch die Anwendung von rekur-
siven neuronalen Netzen (RNNs) diese dynamischen Informationen besser in Systeme integrieren zu
konnen, welches aber nicht iiberzeugend belegt werden konnte. In diesem Bericht wird von einem
unterschiedlichen Blickwinkel aus gezeigt, wie Trajektoren, die aus spektralen Parametervektoren
gebildet werden, explizit modelliert werden kénnen. Diese Modellierung erfolgt in einem Unterraum,
der zeitlich-sequenzielle Informationen erhilt. Dies wird durch die Integrierung einer zeitbezogenen
Nebenbedingung in die Standardmethode Principal Component Analysis realisiert. In diesem
Unterraum erfolgt eine parametrische Modellierung der Trajektoren. Mittels einer Abstandsmetrik
wird eine Klassifizierung von Diphonen vorgenommen. Mit den Methoden Principal Curves von
Hastie/Stuetzle und der Generative Topographic Map (GTM) von Bishop, Svenson und Williams
wird die zeitliche Entwicklung der Vektoren mit Hilfe von latenten Variablen beschrieben. An der
Problematik zur Unterscheidung der Diphone /bee/, /dee/ und /gee/ mit Hilfe von charakter-
istischen Trajektoren zeigen wir, dal eine hohe Klassifizierungsrate erreichbar ist, wobei eine sehr
geringe Anzahl von Parametern bend6tigt wird. Unsere Ergebnisse werden mit Hilfe der Datenbanken
ISOLET und TIMIT experimentell illustriert, die in den Bericht integriert sind.
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1 Introduction

One important feature of the complex temporal structure of speech signals is the systematic variation
in the realisation of phones in different acoustic contexts. Smooth, and continuous, movement of
the articulators towards and away from some notional target positions produces the acoustic signal
that is rich in structure. It encodes not just the underlying linguistic content to be conveyed, but
also much more information relating to the context in which it is spoken. In fluent speech the target
positions towards which the articulators move may often not be realised, because of the movement
towards the subsequent position may already have begun in parts of the system. In the corresponding
acoustic signal, it would then be hard to isolate steady state regions that could be uniquely identified
with phones. Discriminatory information enabling the decoding process is not localized in the steady
states, but is likely to be smoothly distributed in the sequence of transitions of the signal.

The popular hidden Markov model (HMM) of speech signals, in its simplest form, approximates
the signal as a sequence of statistically stationary regions. Once a segmentation is assigned, either
at some stage of the iterative training process or at the Viterbi alignment in the test stage, the
probabilistic score of the model is insensitive to the temporal ordering of the acoustic vectors that
get assigned to a particular state. This clearly is a poor approximation to the dynamics of the vocal
tract. The hard segmentation imposed by a finite number of states is also a poor model of the
complex generation process.

Such weaknesses of the HMM approach have long been recognised. Techniques to deal with these
include building models for context sensitive phones, and expanding the feature vector to include
derivatives of spectral parameters. These refinements have resulted in highly successful speech
recognition systems [45, 44] that can produce impressive accuracies on very large tasks. However,
both specialized models for dealing with context and dimensionality expansion to capture ordering
results in an explosion in the number of parameters. Robust estimation of a very large number of
parameters then becomes the challenging task, requiring techniques such as tied mixtures.

Approaches such as Neural Networks [35, 7] attempt to optimise a nonlinear discriminant function
that assigns a phone class membership probability to each spectral frame. Here too the slowly varying
temporal dynamics is essentially ignored. Techniques to capture some dynamics include the use of a
moving window (TDNN, Waibel et al. [43]) and the Recurrent Neural Network with state feedback
[36].

In the speech research community it is well known that an adequate description of the temporal
evolution of speech parameters are essential for robust and efficient synthesis and recognition. Work
in the speech research community that emphasizes the importance of spectral transitions include
that of Ahlbom et al. [3]. They showed using resynthesis experiments that segmental transitions may
be used in reconstructing speech with minimal coarticulatory effect. Marteau et al. [30] show that
dynamic information is of great importance for the recognition of high speed or very coarticulated
transitions where it is difficult to detect any targets. They already suggested diphone-like segments
with trajectory concepts.

Recently there has been much interest in the use of segmental models [32]. These attempts to
model the time variation of a particular feature within a segment. Most approaches use phones as a
segment. Stochastic trajectory models were used for modeling phone-based speech units as clusters
of trajectories in parameter space. The trajectories are modeled by mixture of state sequences



of multivariate Gaussian density functions to explain inter-frame dependencies within a segment.
Similar results and methods for phone segments were reported being successfully used. Afify et al.
[1, 2] and Gong et al. [22, 23] focused on trajectories which are sampled into n points within a
segment and are represented by a mean and covariance vector for each point. Fukada et al. [17]
represented the mean and covariance matrix by a polynomial fit within a segment. All of them
found the mean and covariance matrix by employing a k-means algorithm to the representation
space. In contrast Gish et al. [20], Goldenthal [21] and Holmes et al. [25] modelled each feature
dimension directly using additional delta coefficients. Gish et al. modelled the mean vectors within
a segment as a quadratic function but having only a limited covariance matrix variation per segment
available. Holmes et al. modelled the trajectories using slope and mean to form a linear model
within a segment using only a Gaussian mixture specific covariance matrix to represent the segmental
variance. Goldenthal being aware of the statistical coefficient dependencies used the error component
to enhance recognition results. Deng et al. [10] showed that the stationary-state assumption appears
to be reasonable when a state is intended to represent a short segment of sonorant or fricative speech
sound but in continuously spoken sentences, even vowels contain virtually no stationary portions
[46]. They showed the importance of transitional acoustic trajectories for word segments reporting
superior results over traditional HMMs on a limited task recognising 36 CVC words. A dynamical
system segment model was proposed by Digalakis et al. [11, 12, 13] which resulted in significant
improvement over the independent frame model for phone recognition.

Although all approaches try to circumvent the frame independence assumption within a seg-
ment and report improved results in comparison to frame independent models, the inter-segment
correlation between segments is still modelled using the statistical independent assumption. This
in particular doesn’t hold for phones as segments where the acoustic transitions are located at the
segment boundaries rather than in the segment centers. The spectral trajectory of say the vowel [i:]
is quite different in the CV syllable /bee/ from that in the syllable /gee/. Clearly, a model for the
phoneme [i:] derived from occurrences [i:] in all contexts would be noisy due to co-articulation. In
this work we focus on diphones as units of speech carrying transitional information between acoustic
targets. The motivation is partly due to the work of Ghitza and Sondhi [19], who also used diphones
to represent non-stationary acoustic information. They used diphone units as states in an hidden
Markov model framework to circumvent the independent and identical distribution assumption for
successive observations within a state. Further diphones as units of concatenation has been very
effective in producing synthetic speech [37].

In a parametric space (i.e. cepstral space) a speech signal can be represented as a point which
moves as articulatory configuration changes. The sequence of moving points is called a trajectory
of speech. We address the problem of acoustic modeling of speech at a diphone level. The model is
motivated by the following ideas:

1. Context affects the trajectory of speech signals. Models for speech recognition should rely on
the trajectory of speech vectors rather than on the geometrical position of observations in the
parameter space, since a given point can belong to different trajectories.

2. The realisation of trajectories of a diphone form characteristic transitions that relate to acoustic
context.

3. If diphones are modelled as a sequence of states, then, due to contextual variability, the
distribution variance at the boundaries of a speech model is smaller than that of the center



part of the model. Joining models together will make the inter-model independency assumption
less important. A weighting giving more importance to the extremities of the model in the
recognition decision would thus improve the accuracy.

4. Diphones as speech model implies a certain inherent syntactic constraint on possible state
sequences, quite apart from any additional grammatical constraints that might be imposed.

In this report we describe an attempt to capture segmental transition information of diphones in
a speech recognition context. We look for the trajectory of the spectral parameter vector, projected
on a subspace. On this subspace we impose a parametric model of the trajectory. Transitions
corresponding to different diphones result in different representations in the subspace. We quantify
the discriminant information retained on the subspace by demonstrations on small scale speech
recognition tasks on the ISOLET and TIMIT database.

We present a method of modeling transitions in diphones in a subspace framework which is easy
to model and requires a small amount of training data. We illustrate our hypothesis on a typical
problem in speech recognition, the discrimination of /b/, /d/ and /g/ in the context of /ee/, an
ambiguous problem in phone classification. This method shares the same idea of modeling dynamic
transitions of speech with many other methods developed in the recent years mentioned above
[21, 41, 11, 28]. However, because we are deriving our model in a low dimensional space, this approach
does not increase model complexity for modeling the dynamics in speech. The incorporation of
this information in existing recognition systems could be made with an N-best rescoring scheme,
proposed by Schmid and Barnard [38, 39] and Rayner [33], to improve recognition results. This report
is organised as follows. Section 2 starts with the basic details of the front end parameterisation.
In 2.2 we discuss the subspace projection technique used. We introduce a simple idea to enforce
temporal ordering information into principal component projection of the data. In section 3 we
describe three approaches: a simple representation in terms of an average, the principal curves idea
of Hastie & Stuetzle and the Generative Topographic map of Bishop as mechanisms employed to
model trajectories. Section 4 describes the distance computations required in classification tasks,
and in section 5 we describe the experimental illustration of these ideas.

2 Subspace Model

In this section we show that our acoustic transition can be represented in a low-dimensional space. A
clue to how we can expect trajectory availability in low-dimensional space is given to us by the spec-
trogram, a two-dimensional representation of the short time Fourier transform, with frequency on
the vertical, time on the horizontal axis and amplitude represented by a gray or colour scale. Within
vocalised sounds and in particular at the boundaries between them, the spectrogram is characterised
by smooth trajectories. In earlier work [34] we presented some preliminary results illustrating the
visualisation of dynamic information within speech transitions in a lower dimensionality. Our aim
was to find a suitable subspace representation where the discriminant information can be modelled.
This approach would lead to a very simple model. Each speech unit consists of a transformation
matrix which projects the p-dimensional data onto a L-dimensional plane which needs L * p param-
eter (L <« p). The dynamics on this plane can be modelled by a stored template consisting of N
frames needing L * N parameters. Parameter requirements per model would be very small, since a



maximum of L x (p + N) parameters would be needed.

2.1 Feature Extraction

For short time spectral analysis, we use mel frequency cepstral coefficients (MFCC). A window size
of 25ms which is usually referred to as a frame. The analysis is repeated at short steps. We use two
different step sizes to show the importance and significance of our transition resolution. Step sizes of
5ms and 10ms were employed to capture the short-scale events, which results in 4 different feature
representations. These are shown in Table 1. The MFCCs are calculated from the log filterbank
amplitudes m; using Discrete Cosine Transform where N is the number of filterbank channels.

=2 zjjm (F6-09) 1)

The number of coefficients used varys in our experimental illustration because recent findings showed
that higher order MFCCs have oscillating characteristics and may not be suitable for trajectory mod-
eling, which was shown by Hu and Barnard [26]. Lower order MFCCs represent speech transitions
in a smoother way which will be shown in the results obtained for different speech segment repre-
sentations (see Figure 1). Hence we use either 5 MFCCs or 10 MFCC (including energy) for our
speech frame representation to distinguish the most suitable data space which results in optimal
performance (see Section 5).

|| Name | Speech frame representation ||

REP1 | 5SMFCC, 25ms window, 5ms step size
REP2 | 5SMFCC, 25ms window, 10ms step size
REP3 | 10MFCC, 25ms window, 5ms step size
REP4 | 10MFCC, 25ms window, 10ms step size

Table 1: Speech frame representation used in the experimental evaluation



Temporal evolution of MFCCs 0—4 of sentence sx61 within TIMIT
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Figure 1: Scatterplot of the MFCC representation over time for the TIMIT (see Section 5.1) sentence
sx61 “Chocolate and roses never fail as a romantic gift” uttered from the male speaker ABCO from
the training set using 25ms analysis window which is moved 5ms for each frame calculating the first
9 MFCCs plus energy (MFCC #0).



2.2 Subspace Definition

Since linear effects are directly captured by the covariance structure of the variable pairs the emphasis
here is on the discovery of non-linear effects such as temporal transitions or other general non-linear
associations among the variables. Friedman [16] and Huber [27] argued that, although arbitrary
non-linear effects are impossible to parameterise in full generality, they are easily recognised when
presented in a low-dimensional visual representation of the data density.

2.2.1 Time Constrained PCA (TC-PCA)

A very popular unsupervised technique for dimensionality reduction is the principal component anal-
ysis (PCA) or Karhunen-Loéve-Transform [14], the principal directions being given by the eigen-
vectors of the data covariance matrix. The aim is to find a set of M orthogonal vectors in data
space that account for as much as possible of the data’s variance. Projecting the data from their
original p-dimensional space onto the M-dimensional subspace spanned by these vectors performs a
dimensionality reduction. We add an additional constraint to the data to force the PCA algorithm
to focus on temporal dependencies.

Given a data set 7 which consists of D sequences of N p-dimensional points 7 = Tq,---,Tp
with Ty = ty1, -+, tkN, it is the temporal evolution of these vectors in each sequence that is of
interest. In order to preserve the temporal sequence information, we expand the dimensionality of
the data by one, using tx. = 7 % (1,--- ,N). Hence T, = tys,tk1,- - ,tkN, the extra dimension
representing a scalable frame ordering as time constraint. The scale factor 7 is introduced to control
the weighting imposed by this arbitrary choice of incorporating the order information. Tuning this
parameter is achieved by an exhaustive search to determine the most discriminant subspace among
all models during performance tests (see Section 5). Our subspace definition using TC-PCA can be
described by solving the covariance matrix of the set of temporal extended vectors and is given by:

D [N+1
2= (b — B (b — )T (2)
k=1 Li=1

the solution of the minimisation problem with respect to the choice of basis vectors u] leads to the
equation

STuf = N uf 3)

which is satisfied by u] being the eigenvectors of the covariants matrix. Optimal dimensionality
reduction can be performed in terms of projecting the data onto the eigenvectors corresponding to
the largest eigenvalues A]. Defining our 2-dimensional subspace which is dependent on the time
constraint 7 introduced above our transformation matrix is characterised by the following equation
assuming that AT > A7 > --- > AL, ;.



Such projection onto 2D enables interesting visualisation, which we think is an important first step.
This is not, however, a necessary restriction. The subspace projection analysis can be carried out in
any arbitrary dimension smaller than that of the original parameterisation.

3 Trajectory Models

The constrained projection outlined in the previous section, leads to a sequence of points in the
subspace. The next stage is to characterise the evolution of these points in a manner that enables us
to extract a distance metric with which we can classify these sounds. Three attempts at implementing
such characterisation are described in this section. Later in this report we show experimental
comparisons.

3.1 Meanframe Model

Our first representation is a simple average trajectory that minimises the frame-wise squared error.
Denoting the training set 7 consists of D sequences of N p-dimensional points for a specific diphone
model, 7 = {T1---Tp} with Tx = {tk1-- -t~} and tx € RP. This leads to a sequence of average
points where £7[-] denotes the expectation, or ensemble average.

{&r[{t11---tpa}] - - E7[{tan - - - ton}}
= {t,--- L t5) (5)

My

3.2 Principal Curves Model

The algorithm for principal curves by Hastie/Stuetzle [24] describes a method of extracting a smooth
one-dimensional curve that passes through the “middle” of a p-dimensional data set providing a
non-linear summary of the data. The algorithm for constructing principal curves starts with an
initial guess, originally the first principal line, to define the initial ordering of the data and hence the
neighbourhood relation. This line is then smoothly bent according to the actual data representation,
by locally averaging p-dimensional points and iteratively minimising the orthogonal distances to the
new curve. Below, we give a very brief description of the principal curves idea. For details, the
reader is referred to Hastie/Stuetzle [24].

Given T = {t1---t,} random vectors in RP. Then principal curves is defined by f, where f
denote a smooth curve in RP parameterised over ® C R, a closed interval, that does not intersect
itself (1 # ¢ = f(¢1) # £(¢2)). The projection index ¢¢ : RP — R is defined as:

pe(ts) = Sl;p{¢ [t — £() 1| = inf [|t: — £(u)]l}- (6)

Equation (6) is read as follows: A search for each data point t; is performed over all points on
the principal curve f parameterised over . For the closest point on the curve its parameter y is
assigned to ¢ as the best fit. The projection index ¢¢(t;) is the value of ¢ for which f(¢) is closest
to t;. If there are several values, the largest is picked. The definition can be interpreted as starting



with an initial guess to provide an ordering and collecting for any particular parameter value ¢
all observations that have f(¢) as their closest point on the curve. If f(¢) is the average of those
observations, and if this holds for all ¢, then f is called a principal curve. Because there is in general
only one observation t; related to a certain ¢; the observations projecting into a neighbourhood are
locally averaged.

The principal curve algorithm iterates through Projection-Ezpectation steps until the relative
change in the distance from the data points to its projections is below a certain threshold (see Fig-
ure 2(b)). The initial guess is very important because it should already represent temporal neigh-
bourhood. Therefore our principal curve starts as a line segment which is generated by connecting
each frame average by a straight line. The initial projection step of the data is hence calculated
by projecting the data onto the line segments which defines a neighbourhood relationship using the
parameterisation ¢ of the projected data points along the one-dimensional curve (). This carefully
chosen initial line delivers a good first guess for the temporal ordering of the data (see Figure 2(a)).

|D2(T, £i-1) — D2(T, £)|

DT, F1) < threshold. (7
with
D*(T, %) = Y _[[t* — £(¢3)|*- (8)
i=1

3.2.1 Expectation

For the expectation step, a locally weighted running line smoother is employed to estimate a new
f(#) which will be used to calculate the new projected points and hence the new distance from the
data points to its projections. In principle one considers a number of data points which project onto
the neighbourhood of each projected point which is defined by a kernel function over ¢ to perform
a linear regression. The linear regression delivers a new projected point which results in a new
principal curve. A new projecting step is then performed to define a new temporal ordering. We
used the algorithm for robust locally weighted regression suggested by Cleveland [8]. We calculated
the parameters using linear regression, minimising the following expression, such that Bj(gz&z-) are the
values of 3;:

n

> wi(g) (E(dr) — Bo — Brgr)®  with  wi(di) = W(h; ' (dk — 6:))- 9)
k=1
and
W) = (1-|zP)® for |z/<1
= 0 for |z|>1. (10)

For each ¢;, weights, wy(¢;), are defined for all ¢y, k = 1,...,n using the weight function W.
This is done by centering W at ¢; and scaling it so that the point at which W first becomes zero

10



is at the r*" nearest neighbour of ¢;. For each i let h; be the distance from ¢; to the r*" nearest
neighbour of ¢;. That is, h; is the r*? smallest number among |¢; — ¢;|, for j = 1,...,n. This
procedure for computing the initial fitted values is referred to as locally weighted linear regression,

where f(¢;) = Bo(¢s) + B1(¢i) i -

3.2.2 Projection

The aim of the projection step is to reorder the data according to its distance relationship to the new
generated curve. Starting from the curve represented by n points £ (-) we compute for each t; in the
sample the value ¢; = @¢q) (t;) which represents the temporal ordering of our data. First we find the
closest point on the line segment joining each pair (f(¢g), f(dr+1)). The closest point to the curve
is then either the projection onto a line segment or one of the f(¢). Using these values to represent
the curve, we replace ¢; by the arc length from fl(j) to fi(‘i). Potential problems with this projection
step can be found where the expected values of the observations project onto f(¢min) or f(dmaz)-
To circumvent this problem the corresponding data points generate a new f(¢min) or £f(dmaz) by
projecting the data point onto the first or last line segment extending the original principal curve.

This algorithm doesn’t use frame specific information but adjust the curve according to the
density distribution of the training data. Hence it is very important that the initial guess supports
the time correlation of the data points. To find a suitable trajectory model M pe, one has to find
the closest point on the principal curve for each average frame point. This data driven approach
adjusts the frame specific average points to the underlying data distribution.

Mpc = {f(argnhinllf‘f”—f(u)ll)---f(argngnllf%’—f(u)ll)}

{E:fc, 76111\?} (11)

11
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(a) Algorithm after initial temporal ordering

Principal Curve algorithm converged after 5. iteration
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(b) Converged Principal Curve algorithm

Figure 2: Principal Curves generated for the diphone /dee/ for male speaker extracted from ISOLET
database (see Section 5.1). The time-constrained transformation to emphasize temporal ordering is
using 7 = 2.8. (a) shows the initial guess which represents the first temporal ordering. (b) plots the
converged principal curve and the found trajectory model as squares on the curve. Time evolution
is shown in the scatterplot of the data in changing colours from dark to bright.
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3.3 GTM Model

A probabilistic generative model to explain high dimensional data in terms of a lower dimensional, or
hidden variable representation is the Generative Topographic Mapping (GTM) algorithm of Bishop
[6, 5]. The hidden space is called latent space, this term is new in speech literature, and the
generative mapping is non-linear. The goal of the latent variables x = (x1,---,x1) is to define
the data distribution p(t) of data in a p-dimensional space t = (t1,---,tp), with L <p. Since in
reality the data will only approximately live on a lower-dimensional manifold, it is appropriate to
include a noise model for the t vector. The non-linear mapping function y(x, W) transforms the
latent variables into data space where they represent centers of radially-symmetric Gaussians having
variance 371.

B \P/? B
Pt %W, 8) = (2-) exp{-Zlly(x, W) —t|}. (12)
27 2
If we specify a prior distribution p(x) on the latent-variable space, this will induce a corresponding
distribution p(y|W) in the data space. The distribution in t-space, for a given value of W , is then
obtained by integration over the x-distribution.

p(tW,9) = [ pltlx, W, )p(x)ax. (13)
For a given data set 7 = (t!,---,tN) one can determine the transformation matrix W and the

inverse variance § by finding a maximum log-likelihood solution using the EM-algorithm. The
likelihood is given by

N
L(W,5) =1n ]| p(ta|W. §). (14)
n=1
K
Choosing a sum of delta functions centered at the latent points p(x) = & >~ 6(x — x;) the integral
i=1
in equation 13 can be performed analytically, giving
1 X
p(tIW, ) = = ;p(tlxi,w, B)- (15)
The log likelihood then becomes
N 1 X
L(W,B) = nz:jlln{ﬁ 3 pltalx: W.5)}. (16)

Using a particular parameterised form of y(x, W) by a generalised linear regression model of the
form y(x, W) = W®(x) where the elements of ®(x) consists of M fixed basis functions ®;(x), one
is able to maximise £L(W, 3) finding the optimal weight matrix W* and a inverse variance 3*.

For our trajectory model Mgras we are defining a one dimensional latent space (L=1) with as
many latent variables as numbers of frames per speech unit. Using as an initial weight matrix W,

13



the transformation from the latent space to the average points in each frame in data space (see
Figure 3 (a)), we expect the positions of the Gaussian centers to be optimised according to the data
density distribution (see Figure 3 (b)).

MeTu {Y(XLW*),'“ ,Y(XN,W*)}

= {#F 8TV (17)

The Principal Curve algorithm discussed in section 3.2 can be interpreted as a latent space model
for density distribution estimation shown by Tibshirani [42], similar to the Generative Topographic
Mapping model. The similarity between both approaches was shown by Bishop [6]. Rather than
defining as many latent points as number of frames present in the trajectory model, Principal
Curves is using as many latent points as data points are available. In both cases one likes to
find a sequence of points in latent space which correspond to center of Gaussians in data space
representing the local density distribution. Principal Curves is starting from our initial location of
projecting the data points onto the line segments between the average values for each frame found
for our meanframe model. We adjust the location of the latent points according to the real data
distribution which is represented by data points which project onto the neighbourhood of each latent
point. Hence, moving along the principal curve we adjust each latent point which represents a center
of a density model iteratively by considering the local weighted average of data points projecting onto
the neighbourhood of the latent point. The projected neighbourhood defines a kernel function to
define influencing data. After each iteration the expectation step adjusts the position of each latent
point in p-dimensional space and the projection step defines the new neighbourhood relationship.
Finally our Principal Curve is the sequence of latent points.

In the case of GTM we start with an initial guess for the location of the Gaussian centers using
our average frame points, these positions in the p-dimensional space are then adjusted according to
the responsibilities of the local data points. The GTM algorithm is using spherical Gaussians with a
few latent points. It constrains the solution to equidistant points within the high dimensional data
which is not necessarily a good reflection of the real underlying generation process.

An attempt to model time varying signals using the GTM framework is reported in Bishop et al
[4]. Tt is worth noting the difference between their approach and ours. Bishop et al. use a hidden
Markov model in which the hidden states are given by a two dimensional latent variable of the GTM
model. Our model, on the other hand, characterises the trajectory through time by a sequence of
latent variable in a one dimensional space. Here the temporal sequence of data points is represented
by the ordering of the latent space. In our temporal constrained subspace the latent space induces
a sequence of trajectory knots which represents the temporal ordering through time which can be
used for similarity measures.
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(a) Algorithm after weight matrix initiation

GTM algorithm trained and converged after 22 iterations of training.
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(b) Converged GTM algorithm

Figure 3: Projected latent space generated by GTM for the diphone /dee/ for male speaker extracted
from ISOLET database (see Section 5.1). The time-constrained transformation to emphasize tempo-
ral ordering is using 7 = 2.8. (a) shows the initial guess which represents the first temporal ordering.
(b) plots the converged GTM algorithm and the found trajectory model as centers of Gaussians.
Time evolution is shown in the scatterplot of the data in changing colours from dark to bright.
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4 Trajectory Mapping

To use the ideas discussed above in a classification setting we impose a smoothing of the test data
by fitting a constrained natural spline through it before projecting onto the subspace. This section
describes the smoothing spline algorithm and the computation of distances in the projected space.
This trajectory comparison method is motivated from the observation that the speech signal tends
to follow certain paths corresponding to the underlying phonemic units. This was utilised by Sun
[41] who modelled the target positions for phonetic units. He found that it is less important to model
accurately the path of the intermediate positions that are results of the coarticulation process.

4.1 Smoothing Splines

This section introduces the idea of fitting a smoothing spline to find an optimal trade-off between
accuracy and smoothness. Smoothing out a speech transition follows our motivation that diphones
consist of larger contextual variability at the center of the speech unit whereas the extremities
represent acoustically steady states.

Suppose we have N observations t1,---,ty of N distinct knots a =z; < 2 < --- < zy = b and we
assume that the data can be represented by the following model

where S(-) is a deterministic function characterising the relationship between x’s and t’s and the ¢;’s
are independent random variables assumed to have Gaussian distributions.

The objective is to estimate the function S(-) which is as close to the data path and as smooth as
possible. This idea can be formulated through the following objective function:

N
L(8) = / ’ [5" <x)]2 dz + zwi (t: — S(z:))? (19)

where the w;’s are the weights associated with ¢;’s representing the relative contributions of the iy,
observation to the model estimation.

It is well known that the problem of minimising the objective function in (19) has a unique explicit
solution [29], which is the natural cubic spline function. The estimation procedure is briefly described
as follows. Let

(T)nx1 = (t, - ,tw)T
F)nxr = (fr,- 5 fn)T = (S(z1),---, S(zn))T
(A)n-2yx1 = (A2, Anv_1)T = (8 (22),-+, S (2n-1))T

denote the sequence of data points, function values of S(-) and the second derivatives. Let h; =
x; — z;—1 denote the spacing of the z variable. The estimate of S(-) is obtained through the esti-
mation of f;’s and A;’s. Hence fitting a smoothing spline to the given data points, one compensates
for the high variance and makes a comparison to a given generalised trajectory model (see Section
3) more reliable [29].
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Here B is an (N — 2) x (N — 2) matrix and D is an (N — 2) x N matrix. The solution to the
minimisation problem is:

A = (DQ'DT+B)'DT (20)
F = T-Q'DA (21)
By defining a regularisation factor {2 one controls the smoothness of the fitted spline. We observe

at this point that if Q is chosen large, then roughly speaking Q7! is close to zero and the solution
is close to interpolating with a natural cubic spline using all given points as knots.

(a) Smoothing spline with @ = 10 (b) Smoothing spline with Q@ =1

Figure 4: Influence of smoothness control parameter 2 during generation of smoothing spline.

For a subspace solution one can now define the smoothing spline for all coordinates in each
dimension. In the case of our trajectory T = (t1,---,tn) with t; € RP we can compute for each
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dimension k our smoothed coordinates f; € RP of the N trajectory points assuming that the temporal
ordering forms the abscissa:

St = (fi,--,f)T

N T o (22)

4.2 Distance Measure for Classification

Our next step is to define a distance measure for our parametric approach of measuring the similarity
of test trajectories to our found trajectory models. In our subspace representation we have to
find a measurement which takes time evolution as well as geometrical position of the sequence of
observations into account. We therefore define a distance measure which compares individual frames
geometrically, normalising its overall distance by its arc length [31].

The initial operation on a subspace is a projection of a vector. This is performed by tp = (t)7P,,
where the projection matrix P, is the matrix defined by the training data and a certain time
constrained factor 7 (see Section 2). Using our individual trajectory models M we can compute a
normed squared orthogonal distance d;(t,t) from our trajectory model tp = (t)7P,:

N -
x S I — EIF°
dou(b,Ep) = Y (b, ) = S v
sub(tp,tp) ; sub(tp, tp) arclength(tp) )

The distance score can then be used to decide the model preferences. The distance measure
classification picks the model with a minimum distance of the test trajectory to the templates.
Normalisation of the distance score is made taking into account the possibly different lengths of
the test trajectory. That implies that longer trajectory contribute more to a distance score without
necessarily being the incorrect model hypothesis, hence by normalising using the arc-length of the
trajectory one computes a distance score which is relative to the size of the trajectory. Further
improvements suggest a probabilistic approach leading to a more objective similarity measure for
trajectories.
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5 Experimental Illustrations

5.1 Databases
ISOLET Database

We use a subset of the ISOLET [9] database to illustrate the idea, using the isolated spoken char-
acters /B/, /D/ and /G/ to obtain the diphone /bee/, /dee/ and /gee/. The complete database
is an isolated speech, alphabet database and consists of two tokens of each letter produced by 150
American English speaker 75 female and 75 male. Hence there were in total 240 training tokens and
60 test tokens for each diphone, which can be split into 120 training tokens and 30 test tokens per
gender and diphone. Because ISOLET is not phonetically transcribed and time aligned, we hand-
labelled the start of the spoken character and extracted a fixed number of frames for each diphone to
capture the acoustic transition. We used this sub-optimal approach to obtain initial results. Using
the TIMIT database (see later) we were able to compensate the fixed frame assumption using time
alignment and dynamic time warping. The available data was split into a training and test set. We
used 80% of the data for training (ISOLET1-4) and 20% for tests (ISOLETS5), as recommended by
the originators of the dataset.

TIMIT Database

The DARPA (Defence Advanced Research Project Agency) TIMIT database [15, 18] is an acoustic-
phonetic database consisting of data, that is phonetically transcribed and time aligned. TIMIT
contains a total of 6300 sentences, 10 sentences spoken by each of 630 speakers from 8 major dialect
regions of the United States of America. Each speaker utters 2 calibration sentences (prefix sa) ,
5 phonetically compact sentences (prefix sx) and 3 phonetically diverse sentences (prefix si). The
data is split into train and test subsets. The test set contains 1.344 utterances from 168 speakers.
The data from the remaining 462 speakers forms the training set. No sentence or speaker appears
in both the training and test set.

TIMIT is a convenient database to demonstrate our approach of using diphones as speech seg-
ments because of TIMITSs phonetic labelling which makes it possible to extract all occurring diphones.
In our test scenario we extracted the diphones /bee/, /dee/ and /gee/, for which the number of oc-
currences and its corresponding phones are listed in Table 2.

TIMIT being a phonetically balanced database which doesn’t imply that it is balanced with respect

Diphone | TIMIT phones Training Testing Total
Male | Female | Male | Female
/bee/ b-iy, b-ih 367 172 149 87 775
/dee/ d-iy, d-ih 498 227 162 103 990
/gee/ jh-iy, jh-ih 203 107 41 23 374

Table 2: Occurrences of example diphones within TIMIT and its corresponding phones.
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to our speech segments diphones, as well. To get as many training/test examples of diphones within
TIMIT, we merged the 61 TIMIT symbols onto a set of 39 symbols, which was also done in experi-
ments by other researchers [36]. The TIMIT symbols and its reduction to the set of 39 symbols is
given in Table 7 and Table 8 in the appendix. Furthermore for our experimental tests we merged
the phones /iy/ and /ih/ to get sufficient training and testing data for reliable results. This was
done under the assumption that the acoustic transitions of the diphones /b-iy/ and /b-ih/ are very
similar, as well as for the diphones having as their initial phone /d/ and /g/.

Using TIMIT we calculated our diphone from the phonetic labelling, using the start sample and
end sample information for the different phones. Schwartz et al. [40] proposed that the transition
within the diphone is very important. Hence one has to treat the inner region of a diphone as
an inelastic region so that for expansion or shrinkage this area has to be preserved. Beside the
standard time warping scheme to adjust different length of test trajectories to the length of the
template trajectory, we also warped the test trajectory into a trajectory template using Schwartz
elastic/inelastic idea. For trajectory model generation we treat the training data identical and
warped each training example using Schwartz et al. [40] into a transition representation of equal
length. This was necessary to perform the calculation of the transition matrix which makes use of
both male and female training data. For test purposes we used two different approaches. Firstly
we warped the test trajectory into the corresponding diphone specific trajectory model size for
comparison reasons. Secondly Schwartz et al. [40] idea was applied preserving the inelastic regions
of the diphone (see Figure 5) to show performances for non-time-aligned speech segments.

diphone from test data

1/2|3|4|5|6|7|8|9|10/1112|1314/15 with phone boundary

diphonetemplate
with phone boundary

diphone from test data

3/4/5/6/7/8|9/10111213114/15 151515 13 e mapped

Figure 5: Extension and shrinkage algorithm for diphones having different length in the process of
template generation using Schwartz elastic/inelastic region theory.

5.2 Transformation Optimisation

The training process can be described by finding an appropriate transformation matrix for each
diphone which enables the classification process to be optimal. We have to search through all
possible combinations of planes per diphone which leads to an exhaustive search. If k is the number
of available planes which is equal to the time constrained eigenvectors of our TC-PCA approach using
k different time constraints and ! the number of diphones we have to evaluate O(k') combinations.
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In each combination the gender specific test data for all different diphones must be evaluated on
how good a specific model discriminates among all given models. Each plane is characterised by the
diphone used and the specific time constraints 7. In Figure 6 we illustrate the behaviour of different
temporal constraints towards accuracy results.

®
o

~
o N

~
ISIPN

———o [bee/
/dee/
——= [gee/
&——2 average

Discriminational Accuracy [%]

|

60

0 0.5 1 1.5 2 2.5 3 35 4
Temporal constraints T for diphone /bee/

Figure 6: Discrimination monitor for the feature representation REP1 within TIMIT database. We
used the Modelay1 (see section 5.4.1) to illustrate the trend of accuracy figures by changing the
time constraints 7 for the diphone /bee/ plane only.

5.3 Parameter Requirements

The subspace approach we describe requires a very small number of parameters. These parameters
are determined by the size of the transformation matrix P, and the number of points for the trajec-
tory. If one uses a speech representation of p MFCCs, which leads to an p-dimensional speech vector
per frame, one needs 2 x (p + 1) parameters to describe the transformation matrix. Including the
extra time constrained parameter, this transformation matrix performs a dimensionality reduction
from p + 1 to 2 dimensional space.

Furthermore we need a sequence of N points in 2-dimensional space to describe our model
trajectory, requiring additional 2 x N parameters. The number N is found in the training process.
For ISOLET we choose a fixed number of frames because of the missing phone labels (see Table
3) whereas for the TIMIT database the length of the individual trajectories is determined by the
average length of the training examples (see Table 4). Obviously, gender independent models used

require a smaller number of parameters because the gender dependent ones have the transformation
matrix in common.
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ISOLET /bee/ /dee/ /gee/
male | female | total | male | female | total | male | female | total
REP1 48 48 84 48 48 84 48 48 84
REP2 30 30 48 30 30 48 30 30 48
REP3 58 58 94 58 58 94 58 58 94
REP4 40 40 58 40 40 58 40 40 58
| BEMM | - | - [300] - | - [300] - [ - [300]

Table 3: Parameter requirements for the diphone models depending on the used representation
and the number of needed data points per trajectory. For ISOLET we choose a fixed number of
frames per diphone representing 90ms of speech transitions. For comparison reasons we added the
parameter requirements for the baseline HMM mentioned in section 5.4.1.

TIMIT /bee/ /dee/ /gee/

male | female | total | male | female | total | male | female | total
REP1 34 34 56 32 30 50 38 38 64
REP2 24 24 36 22 22 32 26 28 42
REP3 44 44 66 42 40 60 48 48 74
REP4 34 34 46 32 32 44 36 38 52

Table 4: Parameter requirements for the diphone models depending on the used representation and
the number of needed data points per trajectory. In case of TIMIT the number of data points per
trajectory is determined by the training data and its given phone labels.
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5.4 Performance Evaluation

We present the experimental results in this section There are two key issues which need to be
experimentally proved. One is the inter-model discriminational accuracy showing how well one
can distinguish between diphone trajectory models. We want to show that, despite a significant
information loss during the dimensionality reduction, we preserve important dynamic information.
This information is useful to distinguish categories of acoustic transitions, in our case diphones.
Furthermore will we show that diphone transitions are very characteristic and can be located in an
unknown sentence without time alignment using matched filters.

5.4.1 Discriminational Accuracy

For the discriminational accuracy evaluation task we run an exhaustive search with different time
constrained factors 7 to find a combination of time constrained planes which is most discriminant
for individual trajectory models. A further parameter in the optimisation task was the smoothness
of the test trajectory defined by Q. We used different Q to show the influence of the smoothing
operation to the accuracy in the following tables. The plane index PI indicates the time constraints
used for the planes /bee/-/dee/-/gee/ which was found most discriminant and can be transformed
to 7 using 7 = [PI — 1] % 0.2, hence in the case of PI =1 ordinary PCA is used to determine the
dimensionality reduction transformation.

ISOLET

The tables in appendix B (see Tables 9-11) show the recognition accuracy results for the ISOLET
database using the proposed models from section 3. ISOLET is not phone labelled hence we marked
the start of the acoustic event and took a sequence of frame vectors corresponding to 90 ms of speech
to capture the characteristic transition. Depending on the used representation the speech trajectories
consist of 9 (REP2, REP4) or 18 (REP1, REP3) frames. In the following table we give the best results
for each model and representation whereas a more accurate performance figures can be found in the
tables mentioned above. Qur smoothing scheme to compensate noise influence to test trajectories

|| ISOLET | ModelAV | Modelpc | ModelGTM ||

REP1 78.33% 80.56% 77.78%
REP2 78.89% 81.11% 78.89%
REP3 74.44% 78.89% 74.44%
REP4 75.56% 76.11% 69.44%

Table 5: Optimal performances for each model and representation using the ISOLET database.

was monitored using different smoothing parameter 2. We show the dependencies by plotting the
average accuracy over the used Q to get trends in choosing an optimal . In Figures 7,8 we show
for all trajectory models the evolution of the average accuracy using different 2 for our different
representations. The results showed no significant difference in the resulting error rate. These
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findings follow the results obtained for different representation. Focusing on the different temporal
resolutions, there was also no significant accuracy difference between representations using a 5ms
shift or a 10ms shift to get a more accurate transitional representation. We furthermore monitored
performance differences using different speech representations. Lower order MFCCs (REP1 + REP2)
translated into substantial better results than representations including higher order MFCCs (REP3
+ REP4).

With the best results reaching an average accuracy of 81.11%, using our principal curve model
M pc with an appropriate smoothing factor Q (see Table 10) , we obtain similar results to a baseline
HMM system using one mixture and a diagonal covariance matrix on a BTL E-SET giving 84.5%
accuracy for this task. The difference translates into 6 test examples less correctly classified which is
not substantial. However, what is important is to note that the representation here is very simplistic,
namely, a projection onto two dimensions. In comparison to 300 parameters per model of the HMM
system, the subspace trajectory approach uses only 2 % (6 + 9 + 9) = 48 parameters for a gender
independent diphone model because the trajectory is built by 9 anchor points.
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Figure 7: Evaluation of the influence of smoothing parameter to the obtained average accuracy for
our average trajectory models defined in section 3. The accuracy trend for different smoothing factors
is displayed using the ISOLET database. The dependencies are plotted for all used representations
and for a number of different Qs.
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Figure 8: Evaluation of the influence of smoothing parameter to the obtained average accuracy for
our trajectory models defined in section 3. The accuracy trend for different smoothing factors is
displayed using the ISOLET database. The dependencies are plotted for all used representations
and for a number of different Qs.
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TIMIT

The tables in the appendix C (Tables 12-15) show the obtained accuracy results for the TIMIT
database using the proposed models from section 3. For TIMIT database we consider a special case
of model, where the average points are calculated in two distinct ways. The problem originates from
the different diphone template lengths according to the labelled phone data. Here one has to adjust
every test trajectory to the length of the stored template trajectory during performance tests. This
can be done in two different ways.

Firstly our meanframe model is computed by warping the training examples into the average length
of the diphone. This model will be addressed as M4y in the following tables and discussion. The
second method considers the Schwartz et al. [40] inelastic regions as important and cut the average
length from the natural occurrence of our diphone from our training sentences. A calculation of the
averages per frame is performed afterwards in the same way for both approaches. This model will
be addressed as M4y 2 in the following tables and discussion.

During the experiments the first algorithm uses test data which is warped into a template before
comparing it to our average frame model. The second approach is using Schwartz’s idea to preserve
in particular the transition and adjusts the test trajectory according to the inelastic region theory.
The latter method doesn’t warp the data into a given template by minimising its difference. It
is considering only the length of the two involved phones to construct the test trajectory of equal
length from the given sequence of data preserving the natural occurrence in the test sentence. Hence
time alignment is not performed during tests which makes the knowledge of diphone boundaries un-
necessary. A frame-wise comparison using our distance score is performed afterwards. Classification
is done by finding the minimum score within each model. In Table 6 we give the best results for
each model and representation whereas a more accurate performance figures can be found in the
tables mentioned above. We furthermore considered also for TIMIT a smoothing scheme which we

|| TIMIT | MOdelAV1 | Modelsz | MOdelpc | ModelGTM ||

REP1 78.89% 77.29% 76.84% 77.10%
REP2 73.57% 74.58% 73.67% 72.81%
REP3 64.06% 55.30% 63.27% 62.43%
REP4 64.84% 62.23% 65.03% 64.55%

Table 6: Optimal performances for each model and representation using the TIMIT database.

monitored for all models. Its influence of the test results is shown in Figures 9,10. Although an
influence is present there is no substantial improvement using smoothing splines to compensate noise
influence on the acoustic trajectory.

For the choice of speech representation used, the results using the TIMIT database showed even
stronger significants than for ISOLET. Choosing a speech representation based on higher order
MFCCs translates to upto 30% performance degradation having at least an absolute average per-
formance loss of 10%. This can be observed for all models. Additionally are the performance values
increased for lower order MFCC representations when a higher temporal resolution is used as well.
Contradictionary a better time resolution for higher order MFCC representations translates into
worse results.
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Figure 9: Evaluation of the influence of smoothing parameter to the obtained average accuracy
for our trajectory models M4y1 and M4y defined in section 3. The accuracy trend for different
smoothing factors is displayed using the TIMIT database. The dependencies are plotted for all used
representations and for a number of different (2s.
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Figure 10: Evaluation of the influence of smoothing parameter to the obtained average accuracy
for our trajectory models Mpc and Mgrys defined in section 3. The accuracy trend for different
smoothing factors is displayed using the TIMIT database. The dependencies are plotted for all used
representations and for a number of different (2s.
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5.4.2 Matched Filters

We now look at the problem of spotting a particular diphone in continuous speech, using the projec-
tive representations as matched filters. Our diphone models are used as “matched filters” sweeping
over an unknown utterance, where each model should peak at the location of its appearance (see
Figure 11). This approach in particular gives some insight how important time alignment is for
diphone recognition. This is obtained by a sweep over each sentence which is done without warping
phone aligned segments into the length of the diphone model but is done just by shifting over the
sentence frame by frame. Hence time alignment during recognition is not necessary if one can detect
the diphones adequately within this framework.

A measurement of how reliable the models match the correct diphone location, we use ROC (Re-
ceiver Operating Characteristic) curves for each diphone model over all test sentences. ROC curves
plot the true-positive rate over false-positive rate giving an estimate how discriminant the diphone
model is over all other possible acoustic transitions (see Figure 12). The curve is parameterised
by a threshold which in our case is the used distance score. Each point, which represents a used
threshold, is shown in Figure 12. It is increased for each step along the curve. For each unknown
utterance all test sentences which include an occurence of the questioned transition were considered.

This information source can be used to determine how reliable one can locate typical transitions
for incorporation into existing systems using techniques like N-best rescoring mechanisms. Hence
diphone model information could be used as compensational models to complement existing systems
which are not modeling the inter-phone dependencies.

Beside a location matching scheme used for the matching filter experiments one can also obtain
a discriminational accuracy measure using inelastic region theory. Here we are interested in the
discriminant abilities between our diphone models rather than the location traceability of single
models. In the accuracy approach we do not warp our test trajectories into the length of our
individual diphone model lengths but are using the real sequence of frames within an unknown
sentence which is mapped onto the length of the model. This is equivalent to sweeping over the
unknown utterances using our matching filter approach running all diphone models in parallel to
obtain comparable results. Discriminational accuracy rates for this approach is given in Table 13
which indicates that detection and recognition of transitional regions modeled as diphones can be
done without warping time-aligned segments into our templates.
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Figure 11: Distance monitor for male diphone model /bee/ along a sentence from the TIMIT
database. Small distances result in good matches between model and test trajectory. As model
parameter we used the transforamtion found for the best accuracy percentage, setting Q = 0.5 and
using representation REP1. The model is moved over the sentence shifting one frame each time
step.
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Figure 12: ROC curves obtained for female and male diphone models. Upper distance threshold was
100 which leads to a more pessimistic curve because all other false-positive examples with a distance
score higher than 100 will not appear in this curve. We used the settings for 2, plane index and the
representation according to the found optimal accuracy measurement.
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6 Discussion

ISOLET

These experiments demonstrate that the very simple representation adopted retains a reasonable
amount of discrimination. The most accurate model is the principal curve model with its most
flexible interpretation. It represents the underlying data distribution most adequately because of its
number of latent points which allows principal curve to adjust accurately and results in superior error
rates in comparison to our other methods. The slowly moving kernel along our principal curve allows
precise adaptation to the local data distribution maintaining good generalisation using a sufficient
wide kernel. The required temporal distance of consecutive points is maintained by the related
ordering of our initial guess. Temporal ordering in our subspace can translate to non-equidistant
ordering of anchor points of the trajectory model depending how strong the temporal influence is
used for our subspace projection.

Our second latent point model GTM, in contrast, considers only a fixed number of latent points
which is much smaller than the number of data points existing in the training data. It uses spherical
Gaussians with a fixed variance to model the probability distribution function (pdf) of the data. This
puts a considerable number of constraints on the resulting Gaussian distributions. A further limit is
the equidistant assumption of Gaussian centers along the curve which does not reflect the temporal
occurrence within the plane, which leads clearly to worse performance. Here possible adjustments
are needed using different variances for the translated latent points resulting in Gaussian centers
in data space. The standard GTM algorithm has to be tailored to count more for the temporal
dependencies than just using the temporal constrained subspace.

The average frame model represents an intermediate model which takes the temporal ordering
into account but assumes that all test data belongs to fixed frames which is not true. In particular
for ISOLET where we dealt with a fixed number of frames per speech unit, where there are diphones
with different temporal lengths, we are summarising most likely frames which doesn’t match. Hence
the average frame model cannot represent the real underlying frame sequence of our transition.
Here most likely data points are averaged which do not belong to the same trajectory anchor point
because of the lack of phonetic labelling.

Although arguing that noise disrupted speech transitions would not match accurately the tra-
jectory model without smoothing out the path, the results indicate that there is no difference in the
resulting error rates. Hence smoothing out our test trajectories in case of the normalised frame-wise
distance measure seems not to affect the results for ISOLET data. We showed in our experiments
that the use of Q2 doesn’t influence the obtained results significantly. This might be due to the simple
approach using ) as a scalar rather than as a vector. Here we can focus our smoothing efforts to the
region we believe is important to smooth out which might result in better performances. Further
tests are necessary to rule out a necessity of a smoothing factor in our trajectory framework. In
comparison to a baseline HMM, obtaining 84.5% accuracy, our best model with 81.1% classifies only
6 examples less correctly. By using just a 1/6 of the parameters which are used for each model in
a baseline HMM approach, using one mixture and a diagonal covariance matrix, we obtained most
of the discriminant information within our subspace. Clearly a more complex task is needed to
evaluate the use of our transitional models. We applied our method for the TIMIT database which
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will be discussed in the next paragraph.

TIMIT

The results obtained in diphone accuracy were far better from what we had expected because of the
influences of realistic continuous speech to the acoustic transitions in comparison to isolated spoken
letters. Nevertheless could we show that the accuracy trends using TIMIT follow similar patterns.
With an optimal accuracy of approximately 79% for our meanframe trajectory model M 4y using
warped test data we obtained no substantial worse results in comparison to the ISOLET results
performing this particular task.

It is interesting to note the fact that using our meanframe trajectory model with the test data
generated using Schwartz inelastic region theory, we obtained best results of 77.3% accuracy. This
reflects the fact that transitions are very characteristic within continuous speech because our test
data was not warped into the trajectory template. Here the sequence of frames in the unknown
sentence was preserved, suggesting that the time alignment in a diphone framework doesn’t perhaps
contribute so much.

The difference in accuracy between the different models used was quite small. This is perhaps
due to the modest size of the experiments. They suggest that more complex experiments are needed
to determine the most suitable model, knowing their individual drawbacks discussed above. Here
principal curves or GTM might be more suitable to introduce a probabilistic trajectory similarity
measurement to compensate the subjective distance measure. The TIMIT results show that tra-
jectories in continuous speech are more disturbed. A more accurate trajectory model counting for
the real data distribution does not necessarily translate into better results which is due to the high
variance in the test trajectories. As for ISOLET the results show that the use of a smoothing scheme
doesn’t translate into superior results although the influence can be measured giving a fluctuation of
+2% in the accuracy figures where more smoothing provides better results. As one can see in Figures
9,10 the monitor for all trajectory models over €2 doesn’t peak sharply, suggesting an optimal choice
of Q. Further investigations have to be performed to exclude the possibility of an useful Q which
leads to better results. The smoothing spline scheme allows Q to be vectorial which enables one to
emphasize smoothing on individual trajectory points or regions. That might be more appropriate
because we are dealing with highly dynamic transitions with less variance at the boundaries.

The TIMIT results support the hypothesis that it is very important which speech representation
one chooses when using trajectory models. The figures clearly reflect the fact that higher order
MFCCs leads to worse recognition results. With its oscillating character higher order MFCCs seem
not to be suitable for trajectory modeling. The expected difference between representations using
higher order MFCCs and those representations using more suitable MFCCs for transitional modeling

were confirmed. Our results showed a significant error rate increase when using the representation
including higher order MFCCs.

33



7 Conclusions

In this study, we have proposed a new method of modeling speech transitions with a subspace model.
We show that temporal transitions in speech can be visualised and modeled in a low dimensional
space. This approach has the advantages of reduced memory requirements in comparison with models
involving context-dependent speech units. In addition, the subspace models require relatively little
data compared to HMMs.

The results show that discriminant information is preserved in our subspace focusing on the
temporal ordering. In particular for TIMIT we could show the characteristics of transitions which is
available through our subspace modeling without any forced alignment. The results are encouraging
to further investigate the use of subspace models for speech transitions, which could be used as
compensational models in respect to the inter-segment independent assumption used in state-of-the-
art recognition systems.

Our future work concentrates on the usefulness of the trajectoral information whether modeling
transitions provides one with orthogonal knowledge in comparison with the information obtained by
standard HMM systems. It includes also research into the distance score or similarity measurement
used to compare trajectories. One needs to define a more objective function. Because of the
projection of different trajectory onto different time constrained planes for each model, one needs
to have a trajectory size independent measure of how likely the sequence of test points is generated
by the underlying sequence of model points. Here a probabilistic approach would help to find a
suitable objective function which is independent on the size and could incorporate also the particular
variances within the optimal planes which would increase the accuracy of finding the correct model.
Further interest will focus on the exploration of the dimensionality used for our subspace projection
and if it is possible to establish a link between the used subspace dimensionality and accuracy results
obtained for different speech representations.

We therefore have to extend our experimental work using a larger set of models and compare
results with standard systems using the same speech units. Alternatively we propose a N-best
rescoring scheme [38, 39, 33] to incorporate the subspace mode into a phone-based system. The
rescoring mechanism can be used to emphasize paths in the lattice of hypothesis using our transitional
models which might avoid pruning out the correct sequence of phones. The modelled inter-phone
characteristics, which are captured by diphones, should complement baseline systems and should
lead to better performances.
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A TIMIT phone description

Vowels Semi-vowels Nasals
eh bet | lat m mom
ih bit el bottle | em bottom
ao bought | r ray n noon
ae bat w way en button
aa bott y yacht | ng sing
ah but hh hay eng washington
uw boot hv ahead | nx winner
uh book
er bird Fricatives Stops
ux toot S sea P pea
ay bite sh she b bee
oy boy v/ zone t tea
ey bait zh azure | d day
iy beet th thin k key
aw bout dh then g gay
ow boat f fin dx muddy
ax about v van q
axr butter
ix debit Affricates Closures
ax-h suspect | ch choke | pcl pea

jh Jjoke bcl bee
Silence tcl tea
h# dcl day
pau kcl key
epi gcl gay

Table 7: 61 Phones of the TIMIT Database
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1. |p 14. | t 27. | k
2. | pcltcl kel bel del || 15. | dx 28. | b

gcl q epi h# pau
3. |d 16. | g 29. | dh
4. m em 17. | nen nx || 30. | ng eng
5. | s 18. | z 31. | ch
6. | th 19. | f 32. | shzh
7. | jh 20. | v 33. | lel
8. |r 21. |y 34. | hh hv
9. | w 22. | eh 35. | ow
10. | ao aa 23. | uw ux 36. | er axr
11. | ay 24. | ey 37. | aw
12. | ax ah ax-h 25. | ix ih 38. | ae
13. | uh 26. | oy 39. | iy

Table 8: 39 Phones of the merged TIMIT Database
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B ISOLET recognition results

0 Model ay | /bee/ | /dee/ | /gee/ | Average | PI |
Q=05 | 71.67% | 75.00% | 88.33% | 78.33% 6-10-8
Q=1 71.67% | 75.00% | 88.33% | 78.33% 6-10-8
Q=2 71.67% | 70.00% | 93.33% | 78.33% 1-1-5
REP1 | Q=4 71.67% | 68.33% | 95.00% | 78.33% 1-1-8
Q=6 71.67% | 68.33% | 95.00% | 78.33% 1-1-8
Q=8 71.67% | 68.33% | 95.00% | 78.33% 1-1-8
Q=10 | 71.67% | 68.33% | 95.00% | 78.33% 1-1-8
N2=05|6833% | 81.67% | 83.33% | 77.78% | 20-15-8
Q=1 68.33% | 76.67% | 91.67% | 78.89% | 13-2-10
Q=2 70.00% | 81.67% | 85.00% | 78.89% | 11-16-7
REP2 | Q=14 70.00% | 80.00% | 85.00% | 78.33% 7-11-1
Q=6 70.00% | 75.00% | 90.00% | 78.33% | 13-11-14
Q=28 70.00% | 75.00% | 90.00% | 78.33% | 16-13-16
Q=10 | 70.00% | 75.00% | 90.00% | 78.33% | 16-13-16
Q=0.5|61.67% | 70.00% | 91.67% | 74.44% 1-7-10
Q=1 63.33% | 68.33% | 91.67% | 74.44% 1-5-9
Q=2 63.33% | 71.67% | 86.67% | 73.89% 2-7-8
REP3 | Q=14 63.33% | 71.67% | 86.67% | 73.89% 4-8-9
Q=6 63.33% | 66.67% | 91.67% | 73.89% 1-7-12
Q=28 63.33% | 65.00% | 91.67% | 73.33% 1-6-11
Q=10 | 63.33% | 70.00% | 86.67% | 73.33% 1-7-8
Q=0.5| 60.00% | 75.00% | 90.00% | 75.00% | 11-2-15
Q=1 61.67% | 75.00% | 88.33% | 75.00% 3-2-11
Q=2 61.67% | 75.00% | 88.33% | 75.00% 1-3-9
REP4 | Q=4 61.67% | 73.33% | 91.67% | 75.56% 1-4-18
Q=6 60.00% | 78.33% | 88.33% | 75.56% | 1-15-19
2=28 61.67% | 73.33% | 91.67% | 75.56% 1-3-17
Q=10 | 63.33% | 71.67% | 91.67% | 75.56% 1-1-16

Table 9: Resulting discriminant accuracy using M4y and different smoothing parameters 2. The
mapping scheme for the ISOLET database is based on the assumption that all diphones consists
of the same number of frames because of the missing phone labels. The used plane index for the
optimal accuracy is given for each representation which translates to a certain time constraints 7.
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I Modelpc | /bee/ | [dee/ | /gee/ | Average | PI |

Q=05 71.67% | 78.33% | 88.33% | 79.44% 1-8-1
Q=1 71.67% | 76.67% | 93.33% | 80.56% | 6-1-11
Q=2 71.67% | 75.00% | 93.33% | 80.00% 1-8-4
REP1 | Q=4 71.67% | 75.00% | 93.33% | 80.00% 1-8-3
Q=6 71.67% | 75.00% | 93.33% | 80.00% 1-8-3
Q=8 71.67% | 75.00% | 93.33% | 80.00% 1-8-3
Q=10 | 71.67% | 75.00% | 93.33% | 80.00% 1-8-3
0=0.5 | 68.33% | 81.67% | 91.67% | 80.56% | 3-8-10
=1 71.67% | 80.00% | 91.67% | 81.11% 3-7-8
Q=2 73.33% | 80.00% | 90.00% | 81.11% 3-7-8
REP2 | Q=4 73.33% | 80.00% | 90.00% | 81.11% 3-7-8
Q=6 73.33% | 81.67% | 88.33% | 81.11% 1-9-5
Q=28 73.33% | 81.67% | 86.67% | 80.56% 3-7-1
Q=10 | 73.33% | 81.67% | 86.67% | 80.56% 3-7-1
Q=05 | 73.33% | 78.33% | 83.33% | 78.33% 1-4-6
Q=1 73.33% | 81.67% | 80.00% | 78.33% 1-4-3
Q=2 73.33% | 81.67% | 81.67% | 78.89% 1-4-3
REP3 | Q=4 73.33% | 81.67% | 81.67% | 78.89% 1-4-3
Q=6 73.33% | 81.67% | 81.67% | 78.89% 1-4-3
Q=28 73.33% | 81.67% | 81.67% | 78.89% 1-4-3
Q=10 | 73.33% | 81.67% | 81.67% | 78.89% 1-4-3
Q=05 ]|61.67% | 76.67% | 86.67% | 75.00% | 1-4-15
Q=1 60.00% | 76.67% | 90.00% | 75.56% | 1-9-17
Q=2 58.33% | 76.67% | 93.33% | 76.11% | 8-19-15
REP4 | Q=4 60.00% | 76.67% | 91.67% | 76.11% | 3-15-16
Q=6 60.00% | 76.67% | 90.00% | 75.56% | 1-10-19
Q=8 60.00% | 76.67% | 91.67% | 76.11% | 5-17-16
Q=10 | 61.67% | 76.67% | 88.33% | 75.56% | 1-10-19

Table 10: Resulting discriminant accuracy using the Principal Curve model Mpe and different
smoothing parameters (2. The mapping scheme for the ISOLET database is based on the assumption
that all diphones consists of the same number of frames because of the missing phone labels. The
used plane index for the optimal accuracy is given for each representation which translates to a
certain time constraints 7.
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[ Modelgrme | /bee/ | /dee/ | /gee/ | Average | PI |
Q=0.5|71.67% | 65.00% | 96.67% | 77.78% 6-1-11
Q=1 71.67% | 65.00% | 96.67% | 77.78% | 10-5-12
Q=2 71.67% | 65.00% | 96.67% | 77.78% | 10-5-12
REP1 | Q=4 71.67% | 65.00% | 96.67% | 77.78% | 10-5-12
Q=6 71.67% | 65.00% | 96.67% | 77.78% | 10-5-12
Q=28 70.00% | 65.00% | 96.67% | 77.22% 7-1-11
Q=10 | 70.00% | 65.00% | 96.67% | 77.22% 7-1-11
Q=0.5|70.00% | 73.33% | 93.33% | 78.89% 1-1-20
Q=1 70.00% | 83.33% | 80.00% | 77.78% | 1-19-12
Q=2 70.00% | 83.33% | 78.33% | 77.22% | 1-20-10
REP2 | Q=4 70.00% | 83.33% | 78.33% | 77.22% 1-20-9
Q=6 70.00% | 83.33% | 78.33% | 77.22% | 1-20-10
Q=8 70.00% | 83.33% | 78.33% | 77.22% | 1-20-10
Q=10 | 70.00% | 85.00% | 75.00% | 76.67% 1-20-6
Q=05 | 75.00% | 60.00% | 88.33% | 74.44% | 13-2-12
Q=1 |7L.67% | 66.67% | 80.00% | 72.78% | 1-1-7
0 =2 | 75.00% | 56.67% | 86.67% | 72.78% | 13-1-12
REP3 [ =4 | 75.00% | 60.00% | 83.33% | 72.78% | 14-4-14
=6 | 75.00% | 60.00% | 83.33% | 72.78% | 14-3-14
=8 | 75.00% | 60.00% | 83.33% | 72.78% | 15-3-14
Q=10 | 75.00% | 60.00% | 83.33% | 72.78% | 15-3-15
Q=0.5|60.00% | 61.67% | 86.67% | 69.44% | 17-1-19
Q=1 55.00% | 60.00% | 86.67% | 67.22% 1-1-19
Q=2 58.33% | 63.33% | 83.33% | 68.33% | 20-10-18
REP4 | Q=14 58.33% | 60.00% | 83.33% | 67.22% 7-1-14
Q=6 58.33% | 60.00% | 83.33% | 67.22% 7-1-16
Q=8 58.33% | 60.00% | 83.33% | 67.22% 8-1-17
Q=10 | 60.00% | 55.00% | 86.67% | 67.22% | 15-1-19

Table 11: Resulting discriminant accuracy using the Generative Topographic Mapping model Mg
and different smoothing parameters 2. The mapping scheme for the ISOLET database is based on
the assumption that all diphones consists of the same number of frames because of the missing
phone labels. The used plane index for the optimal accuracy is given for each representation which

translates to a certain time constraints 7.
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C TIMIT recognition results

| Modelayy | /bee/ | /dee/ | /gee/ | Average | PI |
Q=0.5|76.23% | 75.01% | 85.63% | 78.98% 7-3-5
Q=1 74.98% | 74.59% | 85.63% | 78.40% 6-3-6
Q=2 74.32% | 72.70% | 85.63% | 77.55% 7-3-9
REP1 | Q=4 74.89% | 77.94% | 78.84% | 77.23% | 12-10-6
Q=6 75.56% | 75.56% | 80.06% | 77.06% 9-2-5
Q=8 73.98% | 74.28% | 82.23% | 76.83% | 11-9-10
Q=10 | 73.98% | 74.28% | 82.23% | 76.83% | 11-9-10
Q=0.5|73.50% | 63.74% | 82.24% | 73.16% 5-2-7
Q=1 77.71% | 60.74% | 82.24% | 73.57% | 16-1-9
Q=2 78.05% | 60.74% | 81.02% | 73.27% | 20-8-15
REP2 | Q=14 78.39% | 60.12% | 79.80% | 72.77% | 20-1-15
Q2=6 78.96% | 60.74% | 78.58% | 72.76% | 20-2-14
Q=28 78.05% | 61.85% | 78.58% | 72.83% | 18-6-15
Q=10 | 78.96% | 60.61% | 78.58% | 72.72% | 20-1-14
Q=0.5|41.78% | 60.39% | 89.02% | 63.73% | 6-3-15
Q=1 39.63% | 63.25% | 89.02% | 63.97% | 1-2-15
Q=2 39.87% | 63.30% | 89.02% | 64.06% | 1-2-16
REP3 | Q=14 39.63% | 64.53% | 84.41% | 62.86% 2-1-8
Q=6 39.29% | 64.22% | 84.41% | 62.64% 2-1-8
Q=28 37.711% | 61.84% | 87.80% | 62.45% | 1-2-16
Q=10 | 37.47% | 65.94% | 83.19% | 62.20% 1-3-9
Q=05 |5247% | 67.14% | 74.92% | 64.84% | 4-15-20
Q=1 53.38% | 65.11% | 73.70% | 64.06% | 5-12-20
Q=2 53.71% | 62.60% | 73.70% | 63.34% | 3-3-17
REP4 | Q=4 53.38% | 61.14% | 71.26% | 61.93% | 3-3-17
Q=6 54.86% | 60.34% | 74.92% | 63.38% | 10-1-20
Q=38 56.01% | 58.27% | 74.92% | 63.07% | 19-8-20
Q=10 | 56.01% | 58.27% | 73.70% | 62.66% | 20-7-20

Table 12: Resulting discriminant accuracy using M 4y and different used smoothing parameters 2
and mapping schemes with the TIMIT database. The used plane index for the optimal accuracy is
given for each representation which translates to a certain time constraints 7. In this experiment
we warped the test data into the template before comparison.
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|| Modelay: | /bee/ | /dee/ | /gee/ | Average | PI |

Q=0.5]80.78% | 66.92% | 81.02% | 76.24% 7-1-8
Q=1 80.54% | 70.58% | 78.84% | 76.66% 7-2-6
Q=2 80.88% | 69.96% | 81.02% | 77.29% | 8-2-7
REP1 | Q=4 80.54% | 71.37% | 79.80% | 77.24% 7-1-6
Q=6 80.21% | 71.07% | 79.80% | 77.02% 7-1-6
Q=8 79.54% | 70.89% | 79.80% | 76.74% | 6-1-7
Q=10 | 79.54% | 72.00% | 78.56% | 76.70% | 6-1-6
Q=05 | 74.22% | 62.02% | 84.41% | 73.55% | 3-1-10
Q=1 74.79% | 62.82% | 83.19% | 73.60% 1-1-9
Q=2 74.79% | 62.82% | 84.41% | 74.01% | 5-14-15
REP2 | Q=4 80.02% | 60.48% | 83.19% | 74.56% | 20-5-13
Q=6 77.62% | 61.71% | 84.41% | 74.58% | 15-1-12
Q=8 79.78% | 61.54% | 81.97% | 74.43% | 19-3-6
Q=10 | 79.78% | 61.85% | 81.97% | 74.53% | 19-1-4
Q=05 |47.10% | 61.31% | 56.04% | 54.82% | 3-7-11
Q=1 49.64% | 53.59% | 61.61% | 54.95% | 9-3-17
Q=2 50.80% | 52.63% | 61.61% | 55.04% | 10-2-17
REP3 | Q=4 49.88% | 53.90% | 61.61% | 55.13% | 10-3-17
Q=6 50.22% | 54.08% | 61.61% | 55.30% | 9-1-6
0=28 46.53% | 59.90% | 56.04% | 54.98% | 9-1-16
Q=10 | 51.89% | 55.18% | 58.22% | 55.10% | 9-1-12
Q=0.5| 56.68% | 58.54% | 59.44% | 58.22% | 1-7-11
Q=1 58.84% | 56.77% | 65.00% | 60.21% | 3-1-12
Q=2 58.60% | 57.57% | 65.00% | 60.39% | 2-3-6
REP4 | Q=4 58.27% | 56.90% | 71.53% | 62.23% | 2-1-11
N=6 58.94% | 56.11% | 71.53% | 62.19% | b5-1-9
Q=18 58.70% | 55.80% | 70.31% | 61.60% | 4-1-5
Q=10 | 58.70% | 56.77% | 70.31% | 61.93% | 2-1-5

Tablel3: Resulting discriminant accuracy using M av2 and different used smoothing parameters 2
and mapping schemes with the TIMIT database. The used plane index for the optimal accuracy is
given for each representation which translates to a certain time constraints 7. In this experiment
we adjusted the test trajectory to the template using Schwartz inelastic region idea.
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I Modelpc | /bee/ | [dee/ | /gee/ | Average | PI |

Q=05 |7249% | 72.39% | 85.63% | 76.84% 9-3-9
Q=1 74.99% | 71.28% | 83.46% | 76.58% | 12-1-9
Q=2 72.49% | 76.04% | 80.06% | 76.20% | 12-7-7
REP1 | Q=4 71.82% | 76.53% | 80.06% | 76.14% | 10-1-6
Q=6 74.41% | 76.05% | 76.67% | 75.71% | 13-34
Q=8 73.41% | 70.80% | 82.24% | 75.48% | 12-2-10
Q=10 | 70.82% | 76.84% | 78.84% | 75.50% | 10-2-6
Q=0.5|72.93% | 63.43% | 83.46% | 73.27% 5-2-7
=1 76.81% | 60.74% | 83.46% | 73.67% | 16-1-9
Q=2 77.72% | 60.74% | 81.02% | 73.16% | 20-8-15
REP2 | Q=4 76.23% | 62.15% | 79.80% | 72.73% | 13-2-15
Q=6 78.63% | 59.02% | 79.80% | 72.48% | 20-2-17
Q=28 78.63% | 60.30% | 78.58% | 72.50% | 20-2-16
Q=10 | 77.38% | 61.71% | 77.36% | 72.15% | 17-1-16
Q=05 | 38.72% | 65.20% | 85.63% | 63.18% 1-3-6
Q=1 39.29% | 63.65% | 86.85% | 63.27% | 1-2-13
Q=2 38.72% | 65.68% | 84.41% | 62.94% 1-1-7
REP3 | Q=4 36.90% | 66.30% | 84.41% | 62.54% 1-4-8
Q=6 36.56% | 66.17% | 84.41% | 62.38% 1-4-9
Q=28 36.90% | 64.75% | 84.41% | 62.02% | 1-1-10
Q=10 | 36.56% | 66.17% | 83.19% | 61.97% 1-4-9
Q=0.5|53.04% | 67.14% | 74.92% | 65.03% | 4-15-20
Q=1 55.77% | 63.87% | 73.70% | 64.45% | 10-5-14
Q=2 54.62% | 62.77% | 73.70% | 63.70% | 7-6-17
REP4 | Q=4 56.01% | 60.83% | 73.70% | 63.51% | 10-1-20
Q=6 56.59% | 59.55% | 74.92% | 63.69% | 13-1-20
Q=8 56.92% | 58.14% | 74.92% | 63.33% | 17-2-20
Q=10 | 53.71% | 60.96% | 73.70% | 62.79% | 2-8-20

Table 14: Resulting discriminant accuracy using the Principal Curve model M p¢c and different used
smoothing parameters 2 and mapping schemes with the TIMIT database. The used plane index for
the optimal accuracy is given for each representation which translates to a certain time constraints
7. In this experiment we adjusted the test trajectory to the size of the template using time warping.
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[ Modelgrme | /bee/ | /dee/ | /gee/ | Average | PI |
Q=0.5|75.90% | 74.10% | 81.28% | 77.10% 9-8-7
Q=1 73.41% | 71.59% | 84.68% | 76.56% 3-1-7
Q=2 72.40% | 71.59% | 83.46% | 75.82% 1-1-8
REP1 | Q=4 73.31% | 75.39% | 77.26% | 75.44% | 11-11-8
Q=6 74.65% | 71.42% | 80.06% | 75.38% 8-3-6
Q=28 74.65% | 71.42% | 80.06% | 75.38% 8-2-6
Q=10 | 74.65% | 71.42% | 80.06% | 75.38% 8-2-6
Q=0.5|7542% | 61.40% | 81.28% | 72.70% 15-2-6
Q=1 76.57% | 60.57% | 81.28% | 72.81% 16-1-7
Q=2 78.05% | 61.67% | 77.62% | 72.45% | 20-10-13
REP2 | Q=4 78.39% | 60.61% | 77.62% | 72.21% | 20-1-15
Q=6 78.29% | 60.92% | 76.41% | 71.87% | 20-1-13
Q=8 78.29% | 61.85% | 76.41% | 72.18% | 20-6-16
Q=10 | 77.96% | 63.43% | 74.23% | 71.87% 18-3-7
Q=05 | 53.95% | 46.40% | 86.85% | 62.43% | 13-1-11
Q=1 54.10% | 42.26% | 90.24% | 62.20% | 15-2-18
Q=2 53.19% | 40.62% | 90.24% | 61.35% | 14-1-19
REP3 | Q=14 42.60% | 55.71% | 84.41% | 60.91% 1-2-5
Q=6 42.60% | 54.74% | 84.41% | 60.58% 1-1-5
Q=28 49.54% | 41.46% | 89.02% | 60.01% | 14-1-19
Q=10 | 44.75% | 50.46% | 83.19% | 59.47% 6-1-9
N=0.5 | 53.86% | 64.89% | 74.92% | 64.55% | 3-15-20
Q=1 55.68% | 62.55% | 73.70% | 63.98% 1-2-12
Q=2 55.68% | 61.14% | 74.92% | 63.91% | 10-10-20
REP4 | Q=14 57.74% | 59.37% | 73.70% | 63.60% | 17-12-20
Q=6 58.89% | 56.81% | 74.92% | 63.54% | 14-1-19
Q=8 54.53% | 60.30% | 74.92% | 63.24% | 1-10-20
Q=10 | 55.10% | 59.68% | 72.48% | 62.42% | 2-12-20

Table 15: Resulting discriminant accuracy using the Generative Topographic Mapping model Mg
and different used smoothing parameters {2 and mapping schemes with the TIMIT database. The
used plane index for the optimal accuracy is given for each representation which translates to a
certain time constraints 7. In this experiment we adjusted the test trajectory to the size of the

template using time warping.
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