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Abstract

This paper presents an overview of the use of re-
current networks for phone probability estimation in
large vocabulary speech recognition. The current
system is described and recent recognition results
on the TIMIT and Resource Management tasks in
multiple-speaker mode are presented. Results on the
speaker-independent Resource Management task are
presented for the first time.

1 Introduction

1.1 Context in speech recognition

Context is very important in speech recognition at
all levels. On a short time-scale, coarticulation in-
fluences the acoustic realisation of a phoneme. On
longer time scales there are many slowly varying con-
textual variables (e.g. the degree and spectral charac-
teristics of background noise, channel distortion) and
speaker dependent characteristics (e.g. vocal tract
length, speaking rate and dialect). To attempt speech
recognition at the highest possible levels of perfor-
mance means making efficient use of all of the con-
textual information.

Current Hidden Markov Model (HMM) technol-
ogy approaches the problem from two directions: top
down by considering phonetic context; and bottom
up by considering acoustic context. The short-term
contextual influence of coarticulation is handled by
creating a model for all sufficiently distinct phonetic
contexts. This entails a trade off between creating
enough models for adequate coverage and maintain-
ing enough training examples per context so that each
model may be sufficiently trained. Clustering and
smoothing techniques can enable a reasonable trade-
off to be made at the expense of model accuracy and
storage requirements. The problem remains of an ex-
ponentially increasing number of potential models in
the number of contextual variables which limits the
applicability of this technique.

Acoustic context is handled by increasing the di-
mensionality of the observation vector to include
some parameterisation of the neighbouring acoustic
vectors. This changes the problem to one of obtaining
robust probability estimation from high dimensional
spaces.

1.2 Probability estimation in speech
recognition

Increasing the dimensionality of the acoustic vector
increases the amount of contextual information avail-
able. The simplest way to do this is to replace the
single frame of parameterised speech by a vector con-
taining several adjacent frames along with the orig-
inal central frame. However, this dimensionality ex-
pansion quickly results in difficulty in obtaining good
models of the data. For example, Gaussian distri-
butions of acoustic parameters are often assumed for
each class, but for an n parameter set of acoustic vec-
tors, O(n?) parameters in the covariance matrix must
be estimated. This can be reduced by assuming sub-
sets of the acoustics vectors are independent (block
diagonal covariance matrix), or all acoustic param-
eters are independent (diagonal covariance matrix),
however, this clearly limits the modelling power avail-
able.

Careful choice of the method used to increase the
information content of the acoustic vector is clearly
important. Empirically it has been shown that first
(and second) order derivatives taken over a window
length of a few frames are reasonable choice for the
parameterisation of acoustic context and yield sub-
stantial improvements in speech recognition accu-
racy [2]. As a result this parameterisation has been
widely adopted by the speech recognition community.

Difference coefficients are a simple linear function
of the acoustic vectors lying within a rectangular win-
dow. Automatic optimisation of the linear function
may be achieved using linear discriminative analysis
and this has also been shown to yield increased recog-
nition performance [3].

However, long term contextual information such as



the speaker dependence of the acoustic realisation of
phonemes will not be adequately modelled by a lin-
ear transformation to a small subspace. Methods are
needed that can capture high order correlations over
long time periods.

1.3 Hybrid connectionist / Markov
model systems

Use of Multi-Layer Perceptrons (MLPs) allows a large
window of parameterised speech to be used directly
for the estimation of phone class probabilities [5]. In-
deed, it can be seen that any linear transformation
may be built into the first layer of a MLP by modi-
fying the weights before the non-linearity. The use
of multiple layers allows the independence restric-
tions to be relaxed so enabling high order correla-
tions to be exploited. Experiments with phone recog-
nition [8], and word recognition using context inde-
pendent phone models [6] report that connectionist
probability estimators yield better results than the
equivalent HMM based on mixtures of Gaussian like-
lihoods.

There are two extremes in approaches to building
hybrid connectionist/ HMM systems. At one end, a
standard HMM can be considered as a connection-
ist model with as many layers as there are frames of
speech allocated to the model. Performing gradient
ascent in the log likelithood of the model gives stan-
dard Maximum Likelihood trained models (e.g. [1]).
At the other extreme the phone class probability esti-
mators are trained independently of the HMM tran-
sition probabilities. This is similar to Viterbi train-
ing of HMMs in that only the most probable state
sequence 1is used to train the emission probabilities
from a state and has the advantage that discrimina-
tive training can be used (e.g. [5]). There are sev-
eral intermediate positions in which gradient descent
techniques can be used for discriminative training of
HMMs and posterior state occupancy probabilities
can be used as targets for connectionist training.

There are also a variety of architectures worth con-
sidering for the form of connectionist probability es-
timators. The simplest employs a standard three
layer MLP structure. Whilst this has been shown
to give good results [5], at best the number of param-
eters to estimate varies linearly with the temporal
extent of acoustic information considered. Weight
sharing gives better scaling properties at the ex-
pense of imposing restrictions on the diversity of the
computations performed [10]. Along with the non-
connectionist probability estimation methods, these
techniques are restricted to a finite length window on
the acoustic data.

1.4 Recurrent nets for phone proba-
bility estimation

The incorporation of feedback within a MLP gives a
method of efficiently incorporating long term context
in much the same way as an IIR filter can be more
efficient than a FIR filter in terms of storage and com-
putational requirements. Duplication of resources is
avoided by processing one frame of speech at a time
in the context of an internal state as opposed to ap-
plying nearly the same operation to each frame in a
larger window. Feedback also gives a longer context
window, so it is possible that uncertain evidence can
be accumulated over many time frames in order to
build up an accurate representation of the long term
contextual variables.

The rest of this paper will give describe such a re-
current net used to estimate phone class probabilities
for incorporation with a Markov model word recogni-
tion system. Results are presented at both the phone
and word levels, along with a discussion of the work
that still needs to be done.

2 System overview

2.1 Preprocessor

The preprocessor used in this system is fairly conven-
tional. Both databases discussed in this paper are
sampled at 16kHz. A Hamming window of width
256 samples is applied to the speech waveform ev-
ery 16ms. From this window the following features
are extracted: The log power; an estimate of the fun-
damental frequency and degree of voicing from the
position and amplitude of the highest peak in the au-
tocorrelation function; and a normalised power spec-
trum from an FFT grouped into 20 mel scale bins.

After the preprocessor, all channels are normalised
and scaled to fit into a byte using a monotoni-
cally increasing function such that every value is eqi-
probable. On presentation to the network, these val-
ues are expanded into a Gaussian distribution with
zero mean and unit variance. This normalisaton was
done to reduce the storage requirements of the pre-
processed database.

2.2 Recurrent net

The recurrent net is a MLP where part of the output
is fed back to the input after a time delay of one
frame. This feedback forms an internal state in which
context information may be stored. This is illustrated
in figure 1.

There are 23 inputs from the preprocessor, and
about 200 inputs from the state vector. There is



one output for every phone in the lexicon, this trans-
lates to 61 or 49 outputs for the TIMIT and Re-
source Management (RM) tasks, respectively. The
exact number of state units and hence the size of the
network is limited by the storage and computational
power of the computer used to train the network.
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Figure 1: The recurrent network

2.2.1 Recognition

Recognition is performed by presenting the network
with an external input vector from the preprocessor
and an internal input vector from the state vector
computed at the last time frame. These two vec-
tors are concatenated and multiplied by the weight
matrix. The resultant vector is split; the standard
sigmoid squashing function is applied to every state
unit, and the one-from-many softmax activation func-
tion is applied to the output units. This makes the
state units independent of each other, and restricts
the output units to sum to one. There is a four frame
delay between presenting the acoustic evidence at the
input to the net, and obtaining the phone probabil-
ities. This is to allow some forward context and to
allow non-linear processing by the state units. In-
creasing the delay allows more acoustic information
to be used, but requires the information from the cen-
tral frame to stored in the state vector for longer,
resulting in competition for resources that could oth-
erwise be used to compute more accurate non-linear
transforms.

At the very start of the recognition each element
of the state unit is initialised to 0.5. After several
frames of silence the network settles to a steady state.
During the transition period the network typically es-
timates closures, which is reasonable. Stability with

respect to the initial state has never proved to be a
problem, although the time taken for transients to de-
cay does limit the system to training and recognition
in acoustic context.

2.2.2 Training

The network is trained by “Back propagation through
time” (e.g. [7, 11]) which considers the state units
as hidden units of a future output. In this way the
network weights can be optimised without specifying
target values for the state, or even a particular form
of information storage within the state.

A forced alignment with the correct word string
gives a target phone class for every frame. Train-
ing 1s performed by performing a forward pass over
a batch of 32 frames, the state unit being available
from the previous time frame as in the recognition
phase. The contribution to the gradient of the cost
function from the frames in the window can be cal-
culated directly by differentiation. The effect of fu-
ture frames is disregarded, allowing the gradient at
the state units at the end of the buffer to be set to
zero. The derivatives can then be “back-propagated”
through the network, starting at the last frame in the
buffer which the gives derivatives for the state units
used for the penultimate frame and so on back to the
first frame. The assumption of disregarding future
context is reasonable provided that there is sufficient
evidence within the buffer for the context dependent
features to be modelled. The start point of the buffer
is varied on every iteration to average the effect of
the boundary conditions. A local gradient is gener-
ated from the sum of the gradients over 64 buffers, or
about 0.2% of the complete training set.

Parameter adaptation is done by considering a step
size for every weight, and adjusting each weight by
this amount in the direction of the local gradient. The
step size is geometrically increased if the sign of the
local gradient is in agreement with an averaged gra-
dient, otherwise it is geometrically decreased. This
training method was found to be considerably faster
for this task than the others that can be found in the
literature. About 64 passes through the entire train-
ing set is required for a given set of phone boundaries,
and about four forced alignments and retrainings are
required to move from a system trained on one task
to a new task.

2.3 Markov model

The Markov model used was a simple context in-
dependent single pronunciation system with no pro-
vision for function word or cross word modelling.



Scaled emission probabilities for each state are de-
rived from the posterior probabilities computed by
the network by dividing by the prior probability of
the phone occurrence [5].

2.3.1 Time domain pruning

Previously, a variable rate approach to Viterbi recog-
nition has been proposed for this system [9]. A slight
modification of this is to consider the probability that
no phone transition occurs within a group of frames,
or equivalently that the model remains in any one
phone state for the whole segment. The product of
the scaled emission probabilities, y;(¢), and transi-
tion probabilities, a;, for a specific phone, %, gives the
probability of staying in that phone state. Summing
the result over all phones in a segment from ¢ to ¢t + 7T
gives the probability of staying in any phone state for
the duration, P17,

t+T

PAT = Yl [Jue)

This equation can be used to recursively define a se-
ries of boundaries, B(n), such that within any one
segment, no value of P/77 is less than some threshold
value, Pui,. Thresholding is used as for a real-time
system this segmentation should be computed with
minimum delay.

B(0) = 0 (2)
B(n+1) = B(n)+T such that (3)
B(n)+T ) B(n)+T+1
Ppny 2 Fmin > Ppin)

Provided none of the phone boundaries obtained by
the unconstrained Viterbi decoding are deleted, then
replacing the sequence of y;(n) between two bound-
aries by PtH'T leaves the system unchanged. The de-
gree of pruning can be varied by varying the thresh-
Old, Pmin-

Figure 2 presents the percentage error for the no
grammar and word pair grammar cases versus the
degree of pruning. The top solid curve represents pre-
viously presented results [9], and the bottom, dashed
curve those according to equations 1-3. As can be
seen from the plots, this technique allows for a reduc-
tion in the frame rate by a factor of about three with
no extra errors in the word-pair grammar case and a
slight decrease in the number of errors in the case of
no grammar.

2.3.2 Minimum state durations

Along with other researchers, it has been found that
imposing state duration constraints yields a signifi-
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Figure 2: Time domain pruning with no grammar
and with the word-pair grammar

cant reduction in the number of errors [9]. The mini-
mum duration constraints are easily incorporated by
rewriting every state as a sequence of states with tied
emission probabilities, as in figure 3. Only one of the
states has a non-zero self-loop probability, so the com-
putational overhead is minimal. However, when a sys-

Figure 3: Lower bounds on state durations

tem using both time-domain pruning and minimum
state durations was implemented, it was found that



any use of time-domain pruning increased the error
rate. Presumably both schemes are crude methods
for durational modelling, with minimum state dura-
tions being the more effective of the two. Results are
reported without time-domain pruning, although it
remains a convenient way to decrease the time taken
to do Viterbi recognition (e.g for real time recognition
or as a component to a fast match procedure).

3 Results

3.1 Phone recognition from the

TIMIT database

The earliest work with the recurrent net architec-
ture was performed for phone recognition from the
TIMIT acoustic-phonetic continuous speech corpus.
Here the Markov model is ergodic with 61 states, one
per phone label. No minimum state durations have
been investigated as the Markov model imposes only
weak syntactic constraints in the form of a bigram
grammar, and so it is likely that the acoustic evi-
dence is dominant. The recurrent net used 192 state
units and 54648 had adjustable weights.

Minor improvements have been made in the last

year over [8] giving the phone recognition accuracies

of table 1.

‘ task correct sub™ del™ ns" errors‘
‘TIMIT 73.3% | 20.8% | 5.9% | 3.5% 30.2%‘

Table 1: TIMIT phone recognition results

3.2 Multiple speaker RM task

The first word recognition results with this architec-
ture were performed on a multiple speaker task cre-
ated by training on the first five hundred utterances
from each of the twelve speakers in the speaker depen-
dent RM corpus. The remaining one hundred utter-
ances from each of the twelve speaker in the speaker
dependent training set were used for testing. Results
with 160 state units were reported in [9], and im-
proved to 5.4% errors with the word-pair grammar
before presentation.

Increasing the number of state units from 160
(38456 parameters) to 192 (52056 parameters) gave
the results in table 2. The number of errors is reduced
by 13% for a 35% increase in the number of weights.

grammar | correct sub™ | del® | ins" | errors

none 82.3% | 13.4% | 4.3% | 2.5% | 20.2%
word pair | 95.9% | 2.6% | 1.5% | 0.6% | 4.7%

Table 2: RM multiple speaker results

3.3 Speaker independent RM task

The multiple-speaker system was used to bootstrap
the standard 109 speaker training set for the speaker
independent RM task. An increase in the physical
memory on the computer used for training allowed
an increase in the number of state units to 256 which
corresponds to 85400 adjustable weights. Results are
presented in tables 3 and 4.

task | correct sub™ del™ ins" | errors ‘
Feb89 | 81.3% | 15.6% | 3.2% | 3.2% | 22.0%
Oct89 | 79.1% | 17.4% | 3.5% | 3.3% | 24.2%
Feb91l | 82.6% | 14.5% | 2.9% | 3.7% | 21.1%
Sep92 | 75.3% | 20.8% | 3.9% | 4.0% | 28.6%

Table 3: Speaker independent results with no gram-
mar

‘ task | correct | sub® del® ins™ | errors
Feb89 | 94.8% | 4.2% | 1.0% | 0.9% 6.1%
Oct8 | 94.4% | 4.5% | 1.1% | 0.9% 6.4%
Feb91 | 95.5% | 3.5% | 1.1% | 0.7% 5.3%
Sep92 | 90.0% | 7.7% | 2.3% | 1.6% | 11.7%

Table 4: Speaker independent results with the word-
pair grammar

4 Discussion

At the phone level, this system performs well in com-
parison to other systems that have been applied to
this task (e.g. [4]).

However, at the word level there is a significant dif-
ference in performance between the results reported
here and the best systems for this task. There are
probably two main factors: the number of parame-
ters used; and the complexity of the word modelling.

At somewhat under a million parameters, this sys-
tem 1is considerably smaller than most other systems
that are applied to this task. The number of param-
eters is limited due to the computational complex-



ity of the training algorithm. Training time for the
speaker independent task was one week on a 60Mflop
machine, although it is hoped that this will decrease
with new hardware. A better understanding of the
functions computed by the state units is likely to be
beneficial to training time and overall performance.
At the same time, the network is trained to discrim-
inate between classes, so it i1s reasonable to expect
that this modelling of the class boundaries would take
fewer parameters than modelling the full class distri-
butions.

The poor word modelling is conceptually a simpler
problem to address as many techniques are known
which would improve the system (e.g. the use of mul-
tiple pronunciations per word and cross word mod-
elling). Without the use of triphones or function word
dependent phones, the current system is very sensi-
tive to the accuracy of the pronunciation dictionary,
and there is no scope for allowing increased acous-
tic variation in certain contexts, such as in function
words.

The division of the system into a connectionist
probability estimator and a Markov model recogniser
gives additional freedom of design not found in a sin-
gle HMM system. For example, it would be possible
to decompose the phone set into a number of indepen-
dent features which would be recombined at recogni-
tion time. Such a decomposition may allow adequate
training of infrequent phones through training of in-
dividual features in other examples. This and other
issues will be addressed in future work.

5 Conclusion

This paper has presented a relatively simple speech
recognition system with a powerful mechanism for in-
corporating acoustic context. Whilst much work re-
mains to be done at the word level, phone level results
are good, and it is hoped that though increasing the
size of the recurrent network and incorporating estab-
lished advances in word recognition, that the phone
level advantages will also been seen at the word level.
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