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Abstract

This report describes a speaker independent phoneme recognition system based
on the recurrent error propagation network recogniser described in [1, 2].

This recogniser employs a preprocessor which generates a range of types of output
including bark scaled spectrum, energy and estimates of formant positions. The
preprocessor feeds a fully recurrent error propagation network whose outputs are
estimates of the probability that the given frame is part of a particular phonetic
segment. The network is trained with a new variation on the stochastic gradient
descent procedure which updates the weights by an adaptive step size in the direction
given by the sign of the gradient. Once trained, a dynamic programming match is
made to find the most probable symbol string of phonetic segments. The recognition
rate is improved considerably when duration and bigram probabilities are used to
constrain the symbol string.

A set of recognition results is presented for the trade off between insertion and
deletion errors. When these two errors balance, the recognition rate for all 61 TIMIT
symbols is 68.6% £ 0.3% correct (62.5% £ 0.4% including insertion errors) and on
a reduced 39 symbol set the recognition rate is 75.1% £ 0.2% correct (68.9% +
0.4%). This compares favourably with the results of other methods on the same
database [3, 4, 5, 6, 7].

1 Introduction

The most promising approach to the problem of large vocabulary automatic speech recognition
is to build a recogniser which works at the phoneme level and then map the resulting string of
phonemes onto a string of words. Phonemes are the smallest linguistic unit that can be used
to distinguish meaning [8, p 23]. By their symbolic nature they provide a natural boundary
for speech recognition systems between the lower level distributed representations such as the
acoustic waveform and its transformations, and the higher level symbolic representations such
as words and the representation of syntactic and semantic knowledge. The phoneme recognition
approach is practical because the number of phonemes is small (about 45) compared with the
number of words in a large vocabulary task (over 1000). Thus speaker independent phoneme
models may be trained with a much smaller speech corpus than would be required to train
speaker independent word models.

The DARPA TIMIT Acoustic Phonetic Continuous Speech Database [9] (hereafter referred
to as the TIMIT database) has been designed to be used for training phoneme recognisers.
It is becoming the most widely available database of its size and type. This report uses the



December 1988 Prototype CD-ROM which contains 420 talkers uttering 4200 sentences sampled
at 16kHz and constitutes the training set of the complete TIMIT database. Accurate comparison
of different phoneme recognition systems using different databases is difficult, it is therefore
important to evaluate recognisers on a standard database.

Currently the best established technique for large scale automatic speech recognition uses
Hidden Markov Models (HMMs) [10, 11, 12]. Recently, connectionist models [13, 14] and
more particularly, error propagation networks [15] have been used with some success in this
field [16, 17, 18]. The main differences between the HMM and connectionist approach using
error propagation networks are:

e Error propagation networks provide a discriminant decision, i.e. the training minimises
the distance to the target class and maximises the distance to the other classes. Stan-
dard HMMs lack this ability although work is now being done to develop discriminant
HMMs [19, 20].

¢ Recurrent nets have an inherent mechanism for adapting to speaker variability in that
information relating to the type of speaker (e.g. female/male) can be propagated in time
through the state vector. There is no such mechanism in word HMMs which consist of
concatenated independent phoneme models, although this can be done through an external
mechanism such as the remapping of codebooks.

e Error propagation networks are trained by a gradient descent procedure which is consid-
erably slower than HMM Baum-Welch parameter reestimation.

e Explicit target values are needed at each frame to train error propagation networks (e.g. a
time aligned phonetic transcription). The HMM approach needs only the correct sequence
of models.

e The sequential nature of the speech signal is more naturally expressed by the state transi-
tions in a HMM than by the development of the state vector in recurrent nets. As a result,
the state sequence of phoneme HMMSs can be concatenated to yield the state sequence for
word models but no equivalent operation has been applied to recurrent nets.

The first two points may yield a higher recognition accuracy for recurrent nets and the last two
points may be overcome with sufficient computational resources, an adequately labelled database
and suitable postprocessing. This suggests that recurrent error propagation networks are worth
investigating as an alternative to HMMs. Previous connectionist work has been limited to a
subset of the English phonemes or has been speaker dependent.

The strategy adopted here is to pass frames of windowed speech through a preprocessor which
are then fed to a recurrent net. This net is trained to model the frame-by-frame classification
of the TIMIT database. A postprocessor is then used to convert this distributed representation
into a string of phoneme symbols representing the sentence.

The results reported here are the results of improvements made upon two previous versions.
The first version [1, 21] was limited to a set of 28 symbols which covered the 7 speaker database
of four utterances of 31 sentences. This was multiple speaker, not speaker independent work and
no results from other established methods were available for comparison. The second version of
this system is described briefly in [2] and provided true speaker independent phoneme recognition
from an established database (TIMIT). The aim of this report is to provide an overview of the
system, to present the details that were missing from the second report and to describe the
latest improvements.

2 Preprocessor

The preprocessor was designed as a synthesis of several established techniques. More specifically,
for each 16ms frame there are:



e 1 channel for the number of zero crossings;

4 channels for the cube root of the energy in quarter frames;

20 channels for cube roots of the energies in bark scale bins of the short time Fourier
transform;

1 channel for the pitch as determined by a peak in the cepstrum;

¢ 1 channel for the height of the pitch peak to measure the degree of voicing;

4 channels for the position of the first four peaks in the homomorphically smoothed power
spectra.

The bark scaling and cube roots were derived by simplifying the auditory model presented by
Bladon and Lindblom [22]. The preprocessor used in the first version had only the energies
and bark scale power spectra and a noticeable improvement was found with the inclusion of the
extra features.

The second version had the above features and an additional 12 channels for lpc derived
log area ratios. By examination of the resulting weight matrix, the weight connected to these
channels were found to be near zero, and subsequent removal without degradation in performance
confirmed that these channels were redundant. In the latest version the training data was
preprocessed with four different offsets to better cover the variability in the windowed speech.
This improved the frame-by-frame recognition rate by about 5%, as can be seen in table 1,
although it should be noted that part of the increase is as a result of increasing the time
constant for smoothing the weight changes used in training (the “momentum” term [15]).

no. of | frame-by-frame
offsets | recognition rate

1 61.1%
2 64.2%
4 66.0%

Table 1: Effect of multiple offsets on recognition rate

The preprocessor also truncated initial and final silences longer than 160ms. This was done
to reduce size of the training data and provide a more even distribution of symbols amongst
frames.

3 Recurrent Net

A recurrent net can be considered as a sequence of error propagation networks [15] where the
input and output vectors are divided into external and internal portions. The external input
vector, ug.. -1, consists of the 31 channels from the preprocessor; and the external output
vector, yo.. . ar—1 has 61 dimensions and is fed to the postprocessor. The internal output forms a
state vector, zg.. n—_1, of 128 dimensions and is fed to the same network in the next time period
as shown in figure 1. This network operates by concatenating the input and output vectors:

1 fore=0
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Figure 1: Recurrent network

which is then passed forwards through the network by performing a matrix multiplication fol-
lowed by the application of a non-linear squashing function:

(t+1) _ 1 .

= for0<:< N -1 (2)
1+ exp <Ef:oN wijoﬁt))

D = 1 for N<i<N+M-—1 (3)

1+ exp (Zf:ON wijogt))

The resulting output is compared with the desired output vector, do. ar—1, according to a cost
function. Following Hinton [23], Baum and Wilczek [24] and Stolla, Levin and Fleisher [25] the
cross-entropy cost function is used:

M-1
log(p) = 3 dPlog(y) + (1 - dP)log(1 — ") (4)

=0

The first version of this system used the standard least mean squares cost function. The max-
imum likelihood metric has two advantages: firstly that faster convergence was observed and
secondly that it results in a statistically more rigorous interface to probabilistic grammatical
constraints which is important for higher level processing.

Training is performed on a 64-processor array of T800 transputers with the training data
distributed evenly over the processors. FEach processor has a copy of all the weights which
are used to make a forward and backward pass for 32 consecutive frames on each processor.
The resulting partial derivatives are summed to give an estimate of the gradient based on 2048
frames. There is a trade off in the number of frames processed before updating the weights; a
large number gives a more accurate gradient signal, and a small number allows for more frequent
weight updates. Typical training time was two days (about 10'® floating point operations).

This version of the model used a new algorithm for updating the weights. A step size for each
weight is used, and the weight is changed by the magnitude of the step size multiplied by the
sign of the local gradient. Initially all steps were equal, and the step is adapted by multiplying
(or dividing) by a scaling factor if the local gradient agrees (or disagrees) in sign with the
smoothed gradient. The scaling factor used was 1.1 and the momentum term started at 0.5 and



increased over the first few passes through the training set until it was sufficient to smooth the
local gradient over the whole of the training set. The step sizes were hard limited to be not
greater that a factor of 16 above or below the mean step size. This method has the disadvantage
that changes in the magnitude of the step size can occur more rapidly than the changes in the
smoothed gradient. Thus it is possible to have a large smoothed gradient which consistently
disagrees with the sign of the local gradient which results in a rapid reduction of the step size to
the lower threshold, so inhibiting further motion of that weight. In spite of this disadvantage,
this method was found to converge faster for this problem than the technique of Chan and
Fallside [26] used in the first version, and the similar technique developed by Jacobs [27].

h#  dhix v ug o opel op ay n au ¥oaxr 1 uh kclk dh iy o zh i®x n

TUhE T dhiix v us  pcl o op oy n au voasr 1 uh kclk dh iy oy zh ix n

Figure 2: Example output from the recurrent net.

Example output of the model from the test set is given in figure 2 plotted against time as a
variable width line. The hand labels are indicated on the horizontal axis of the diagram and the
recogniser labels on the vertical axis. The shaded rectangles represent the target outputs. The
sentence is “The viewpoint overlooked the ocean” (TIMIT file: train/dr7/flas0/sx228/sx228.adc)
which is of 2 seconds duration.



4 Postprocessor

The distributed output is converted to a symbolic form by finding the most likely sequence of
phonetic segments which match the observed output. This may be efficiently achieved using
the technique of dynamic programming [28, p 311]. In addition to the distance measure used
for training (equation 4), two additional probabilities, duration and bigram, were used. The
duration probability for a symbol was calculated from a histogram of the duration in frames
of all the occurrences of that symbol in the training set. Similarly the bigram probability was
calculated from a matrix of the number of co-occurrences of the two symbols in the training set.

To avoid zero probabilities, a small constant (0.5) was added to each frequency count before
normalisation.

TIMIT | REDUCED | IPA || TIMIT | REDUCED | IPA
P P p b b b
t t t d d d
k k k g g g

pcl sil p° bcl sil b°
tcl sil t° dcl sil d°
kcl sil k° gcl sil g°
dx dx r q ?
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n n n en n n
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z Z zh sh Z
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er er 3 ux uw u
ay ay Y oy oy Y
ey ey ey iy iy iy
aw aw a%V ow ow oV
ax ah ] axr er >
ix ih 1 ax-h ah 2

Table 2: The TIMIT symbol set with the CMU/MIT reduction and IPA symbols

In order to compare with other techniques, the 61 TIMIT symbols were grouped into 39
symbols according to a CMU/MIT mapping taken from [6]. The TIMIT symbols, the reduced
set of symbols and the IPA symbols are given in table 2 which is an adaptation of a similar
table by Seneff and Zue [29]. A full explanation of the IPA symbols can be found in [30]. All



occurrences of the the glottal stop, q, were discounted in the reduced set.

5 Results

The TIMIT “sa” sentences were considered unsuitable for training or testing as they consist of
only two phrases and would introduce an unnatural bias in the distribution of phonemes and
their contexts. Of the other two types of sentence, “si” and “sx”, three out of every four speakers
were used for training, and the remainder retained for testing.

Table 3 gives the number and percentage of insertion, substitution and deletion errors in
the 32638 symbol test set after a filter which merges duplicate instances of repeating symbols
was applied. This table also shows the recognition accuracy which is defined to be 100% minus
the percentage of insertion, substitution and deletion errors. The table shows that either the
duration or the bigram probabilities are needed to achieve reasonable recognition rate. When
both duration and bigrams are used, it is unnecessary to merge adjacent identical symbols and
so this filter is not used in subsequent processing.

‘ context | correct | insertion | substitution | deletion | accuracy ‘
none 76.0% | 39.2% 21.3% 2.7% 36.8%
duration | 68.6% 7.1% 24.3% 7.1% 61.5%
bigram 66.7% 3.4% 24.2% 9.1% 63.3%
combined | 65.8% 2.6% 23.7% 10.5% 63.2%

Table 3: Recognition rates for variations in context

Longer symbol sequences that span the same sentence involve a larger number of duration
and bigram probabilities. As these probabilities are less than one, extra symbols are penalised
and there is a tendency towards short sequences and a greater number of deletion errors than
insertion errors. This may be compensated for by adding a bias to every transition; the effect
of this bias is shown in table 4. Tt is assumed that insertion and deletion errors are equally
detrimental to the performance of the recogniser, so from the table it is found that a bias of 3.0
is appropriate and this value is used in all future analysis.

bias | correct | insertion | substitution | deletion | accuracy
0.0 | 65.8% 2.7% 23.8% 10.4% 63.1%
1.0 | 66.7% 3.5% 24.3% 9.0% 63.3%
20 | 67.7% 4.6% 24.7% 7.7% 63.0%
3.0 | 68.6% 6.1% 25.1% 6.3% 62.5%
4.0 | 69.3% | 8.3% 25.5% 5.2% 61.0%
5.0 | 70.2% 11.4% 25.8% 4.1% 58.8%
6.0 | 71.1% 16.6% 25.9% 3.0% 54.5%
7.0 | 721% 27.0% 25.7% 2.2% 45.2%

Table 4: Recognition rates for variations in transition bias

A confusion matrix for these results is given in figure 3. The hand labels are on the vertical
axis and the recogniser labels are on the horizontal axis. The null symbol, -, is added so that
insertion and deletion errors may be shown. The area of the square at the intersection of two
symbols is proportional to the number of such points in the test set. The resolution is three
phonemes per pixel rounded up (about 0.01% of the total). The strong diagonal represents the
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62.5% of symbols recognised correctly, and the remainder are errors. The top ten errors from
this matrix are given in table 5. As expected, the most common errors are between symbols
belonging to the same broad class.

hand | recogniser | percentage
label label of all errors
ix ax 1.67%
ix ih 1.61%
ix - 1.27%
T - 0.94%
- del 0.91%
n - 0.91%
z 0.91%
tel dcl 0.91%
| - 0.89%
ih ix 0.88%

Table 5: The ten most common errors

Two methods for reducing the recogniser symbol set were tried. The first involved a simple
rewrite of the symbolic outputs of the full symbol set to the reduced set. This yielded 75.1%
correct, 6.2% insertion, 18.6% substitution and 6.3% deletion errors (68.9% accuracy). The
second method was to merge the distributed representations of the symbols by summing the
probabilities of the relevant classes and reestimating the duration and bigram probabilities.
This yielded 75.2% correct, 7.1% insertion, 18.4% substitution and 6.4% deletion errors (68.1%
accuracy). The main difference is the higher percentage of insertion errors with the second
method which may be attributed to poorer duration and bigram modelling resulting from the
merging of different types of symbol (e.g. the closures and silence).

In order to establish the reliability of these recognition rates, the test database was divided
into sixteen parts and the recognition rates computed for each part. As the total test database
contained 840 sentences each part contained 52 sentences. Table 6 gives the mean and the
variance in the mean for each type of error.

no of symbols correct insertion substitution deletion accuracy
61 68.6% £ 0.3% | 6.1% £ 0.2% | 25.1% + 0.3% | 6.3% £ 0.1% | 62.5% £+ 0.4%
39 75.1% £ 0.2% | 6.2% + 0.2% | 18.6% £+ 0.3% | 6.3% £ 0.2% | 68.9% £ 0.4%

Table 6: Recognition rates with variances

6 Discussion

The results presented in the previous section compare favourably with other TIMIT results. For
the classification task of labelling segmented speech, Zue, Glass, Phillips and Seneff [3] report a
70% classification rate on the full TIMIT symbol set and Digalakis, Ostendorf and Rohlicek [4]
report 73%. There are no previous connectionist techniques for the full range of phonemes
though Hataoka and Waibel [5] reported 60.5% on the 16 English vowels. For the segmentation
and labelling task, Lee and Hon [6] reported 73.80% with 7.72% insertions for a covering set of
39 phonemes and Levinson, Liberman, Ljolje and Miller [7] report 52% with 12% insertions on
a 51 symbol set.



The most serious limitation of the current approach is the time taken to train the network.
Whilst the algorithm described in section 3 was faster than previous gradient descent based
techniques for this task, it is still slower than training an equivalent HMM recogniser. As
the performance is only slightly better than the HMM approach it suggests that future work
should be aimed towards improving the efficiency of the training algorithm and/or increasing
the performance of the network.

The network had 30240 free parameters (weights) arranged as a simple rectangular matrix.
Whilst this structure is simple, restricted connectivity, fixed or replicated weights may give a
better trade-off between the number of state units and the number of weights, whilst retaining
sufficient information processing capacity and so result in faster learning and recognition.

The network performance was poor when no additional information was used in the produc-
tion of the symbol string. The use of the log likelihood distance metric allows other probabilistic
constraints to be applied, such as the duration and bigram probabilities described in this report.
It is expected that further work extending this approach to large vocabulary speech recognition
would discard the bigram models in favour of transitional constraints imposed by word models
built from a pronunciation dictionary.

Use of the dynamic programming match allows a known string of phonemes to be time
aligned with the output of the net. This has possibilities for resegmenting the training set, and
for creating segment boundaries in speech where only the transcription is known.

Future work will also investigate semi-automatic techniques for selecting which channels in
the preprocessor carry information useful to the recognition process, and will also compare the
existing preprocessor to a full auditory model [31].

In conclusion, the method presented in this report has made a small but significant improve-
ment in recognition accuracy over the best existing HMM techniques on the TIMIT database.
This demonstrates that recurrent error propagation networks are a suitable method for perform-
ing low level automatic speech recognition and suggests their use in the task of large vocabulary
automatic speech recognition.
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