Several Improvements to a Recurrent Error
Propagation Network Phone Recognition System

Tony Robinson
ajr@eng.cam.ac.uk

CUED/F-INFENG/TRS&2
30 September 1991

Abstract

Recurrent Error Propagation Networks have been shown to give good performance on the
speaker independent phone recognition task in comparison with other methods (Robinson
and Fallside, 1991). This short report describes several recent improvements made to the
existing recogniser for the TIMIT database.

The improvements are: an addition to the preprocessor to represent voicing informa-
tion; use of histogram normalisation on the input channels of the network; normalisation
of the output channels to enforce unity sum; a change in the cost function to give equal
weighting to each target symbol; a change in the representation of the outputs to re-
duce quantisation errors; retraining on the complete TIMIT training set; and the better
estimation of HMM phone models.

Most of these changes decrease the number of arbitrary parameters used and allow
for the integration of the system with standard HMM techniques. The result of these
changes is a decrease in the number of errors by about 16% (from 36.5% to 30.7% when
all 61 TIMIT phones are used and from 30.2% to 25.0% on a reduced 39 phone set).

1 Introduction

It is beyond the scope of this report to describe the recurrent network phone recognition
system in full detail. Instead a brief outline will be given and more details can be found
in Robinson and Fallside (1991).

A recurrent error propagation network can be considered as a sequence of standard
error propagation networks (Rumelhart et al., 1986) with the addition of feedback. The
input and output vectors are divided into external and internal portions. The internal
output, z(¢), forms the state vector and is fed back to the internal input of the next frame,
as in figure 1. For practical reasons, training the network is performed by unfolding in
time, although other training schemes are possible.

The external input, u(t), to the network consists of 16ms frames of preprocessed speech.
A comparison of preprocessors for this task can be found in Robinson et al. (1990). The
conclusion of this study was that one power channel and 20 power spectral channels were

e

u(t) y(t+1)
X(t) \ X(t+1)

'ﬂ

:: Time ::
: delay :\

Figure 1: The Recurrent Error Propagation Network

preferable considering performance and simplicity. This preprocessor forms the basis of
this report although further discussion is presented later.

The external output, y(t), of the network represents the best estimate of the proba-
bilities that the specified frame belongs to a given symbol. Currently it is assumed that
there is only one “correct” frame, and that the labelling process assigned this label to
the frame. As the ideal output from the network is one unit on and the remainder off
for the duration of the phone, this can be used as a template when doing phone recogni-
tion. Searching for the best sequence of templates can be efficiently accomplished using
dynamic programming;:

DI = min (DY + C +1T,,) (1)
where DU is the minimum total cost incurred to get to state n at time ¢, C'!) is the cost
associated with accepting the frame at time ¢ by state n, and T,,, is a transition cost
incurred when moving from state n to m. Changing the transition cost allows the control
of insertion and deletion errors. By incurring no cost on template boundaries (1., = 0)
the algorithm reduces to picking the largest output unit and (optionally) merging adjacent
frames with the same label. This leads to a large number of insertion errors which can be
reduced by increasing the transition cost. This is very similar to finding the maximum
likelihood state sequence in a HMM using the viterbi algorithm, and the similarity is
discussed further in section 13.

The rest of the report will describe a set of changes from the preprocessor stage through
to the final symbol recognition. In order that the changes may be rapidly evaluated, and
for consistency with earlier work, the number of state units is set to 96 for most of the
evaluations but finally increased to 192. The motivation behind the changes is not only
to increase recognition accuracy, but also to clean up the framework of the connectionist
recogniser so that higher level probabilistic constraints, such as word models, may be
properly incorporated.

The first experiments use the prototype version of the DARPA TIMIT Acoustic Pho-
netic Database (Lamel et al., 1987). This has 420 talkers of American English speaking
a total 4200 sentences recorded in a noise free environment at 16kHz. The concluding
experiments use the complete version (October 1990) with 420 training speakers and 210

test speakers.

2 A more efficient implementation of the baseline

system

The computational cost needed to train the connectionist recogniser is significant in spite
of changes made to the basic error propagation algorithm to decrease the learning time.
In order to train in reasonable time, a processor array of 64 T800 transputers is used with
the training data partitioned over the processors and one copy of the complete network per
processor. It was found that by placing the code for the inner multiply-and-accumulate
loop in on-chip RAM, and overlapping communication and processing, a factor of two
was gained in speed over the previous implementation. Slight algorithm changes were
incurred but these had no significant effect on the performance as can be seen in table 1.

Version | correct | insertion | substitution | deletion | total errors
Original | 65.5% 6.1% 27.5% 7.0% 40.6%
Faster 65.7% 6.3% 27.3% 6.9% 40.6%

Table 1: Effect of implementation change on performance

3 Recognition in noise

Noise was added to the clean speech to get an idea of the tolerance of the recogniser.
Gaussian white noise passed though a low pass first order filter with 3dB point at 600Hz
was used. The recogniser was trained and tested on the same noise levels. Figure 2 and
table 2 show that there is relatively little degradation when the signal to noise ratio is
greater than 30dB, but significant degradation when less than 20dB.

SNR/dB | correct | insertion | substitution | deletion | total errors
0 43.8% | 12.0% 44.5% 11.7% 68.2%
10 55.4% 8.7% 36.0% 8.6% 53.3%
20 61.8% 7.3% 30.8% 7.4% 45.5%
30 64.4% 6.3% 28.3% 7.3% 41.9%
40 65.6% 6.3% 27.1% 7.2% 40.7%
00 66.2% 6.3% 26.8% 7.0% 40.0%

Table 2: Performance degradation in noise

70—)_ A T
insertion <—
60 correct ——
substitution =
50 - deletion X - -
JaN total errors 2\
40 A A -
30 - —
[o=
20 - —
I
10é* o _
0 \ \ ! ! ! |
oo 40 30 20 10 0 -10 -20

Signal to noise ratio/dB

Figure 2: Performance degradation in noise

4 Addition of fundamental frequency and degree of
voicing information

For recordings in a low noise background, unnatural but intelligible speech may be re-
constructed from the power output of a bank of filters (about 20 are required). However,
this requires the estimation of whether the frame is voiced or not, and for voiced frames a
suitable fundamental frequency, f0. Using a voicing decision and an estimate of f0 from
the original speech improves the intelligibility and the naturalness of the resynthesised
speech. Thus an estimation of the power spectra envelope (possibly in LPC form) along
with degree of voicing and f0 frequency can be considered the basics for natural speech
synthesis.

Version correct | insertion | substitution | deletion | total errors
Original 65.5% 6.1% 27.5% 7.0% 40.6%
f0 only 65.6% 6.1% 27.6% 6.9% 40.5%
voicing only | 65.8% 6.3% 27.2% 7.1% 40.6%
/0 and voicing | 65.6% 6.2% 27.2% 7.2% 40.6%

Table 3: Effect of adding f0 and voicing information

However, in speech recognition often only the shape of the power spectra is used, the
other parameters are often regarded as insignificant at best - and introducing a significant
statistical bias at worst. This problem is the result of training on small data sets and
the difficulty of combining differing data types as speech recogniser input. In the earlier
preprocessor search it was found that addition of fundamental frequency and degree of

voicing information makes no difference to the recognition rate. Table 3 repeats this result
by computing voicing parameters from the the peak in the autocorrelation function of a
single frame within in the range of reasonable pitch values (62.5Hz to 400Hz). The degree
of voicing is taken as the relative height of this peak to the value a zero delay, and the
pitch is taken as the position of the peak smoothed by a first order filter whose time
constant was varied in proportion to the degree of voicing. Thus the filter averaged over
a short time period when the speech was voiced and over a long time period for weakly
voiced or unvoiced speech.

5 Input normalisation

In the previous work it was shown that the power to which the input activations are raised
affects the performance. Perviously the output channels of the preprocessor were linearly
scaled to fit into a single byte so that only a few values were thresholded (about one in a
thousand at either end of the range).

An alternative approach is to use a monotonically increasing function which transforms
the output from the preprocessor into a standard distribution. As there are many data
samples (about 400,000), this may be achieved by computing a histogram and dividing
the total range into equi-probable regions. 256 regions were chosen so that the value could
be stored in a single byte. Just before the channels are presented to the network they are
transformed using a look-up table such that the probability density function is a zero-
mean unit-variance Gaussian. The results of doing this are presented in table 4. It is not
clear whether the improvement in performance is due to a reduction in the quantisation
error on the input, or because this transformation results in more easily separable patterns
in the input space of the network.

Version correct | insertion | substitution | deletion | total errors
Original 65.5% 6.1% 27.5% 7.0% 40.6%
i/p normalised | 68.8% 6.2% 25.3% 5.9% 37.4%

Table 4: Effect of input normalisation

6 Output normalisation

Previously the training algorithm assumed that the output units were measures of proba-
bilities of independent events. Thus the range of the output values (activations) was 0.0 to
1.0 independent of the other outputs. However, this is clearly not the case as the output
probabilities are constrained to sum to unity. This property can be enforced by using the
Potts or softmax (Bridle, 1989) function as the activation function on the output units:

L exp(a)
f) = S)

Like the linear activation function for the least-mean-squares distance metric, and the
sigmoidal activation function applied to unnormalised output with the cross-entropy dis-
tance metric, the softmax activation function results in the derivative of the per pattern
cost function, F, with respect to the summed input, z;, is:

OFE
8331'

= T —1;

(3)

where ¢; is the target activation for unit .
normalised output in given in table 5

The result of training with this form of

Version correct | insertion | substitution | deletion | total errors
Original 65.5% 6.1% 27.5% 7.0% 40.6%
o/p normalised | 67.0% 6.8% 26.9% 6.2% 39.9%

Table 5: Effect of output normalisation

7 Weighting the cost function

Previously the cost function assigned equal weight to each frame of speech. However the
objective is to maximise the number of phones recognised correctly - thus it would be
better to weight each phone equally and thus give a relatively higher frame weighting to
shorter phones. This weighting of the cost function does not change the desired output of
the network for a particular frame, but only the modelling power allocated to producing
that output.

In this implementation the length of the phone was calculated as a number of frames
and the gradient signal was weighted by the inverse of the length. Thus the long periods
of silence at the start and end of sentences made an equal contribution to the cost function
as a one-frame stop release. The results are presented in table 6.

Version | correct | insertion | substitution | deletion | total errors
Original | 65.5% 6.1% 27.5% 7.0% 40.6%
Weighted | 66.1% 6.2% 26.5% 7.4% 40.1%

Table 6: Effect of the weighted cost function

It appears that this technique would also be useful for word recognition - if all words
are to be scored equally then they should receive the same weighting in the cost function
during training. Further dividing the cost function by the number of phones in a word
would have the desired effect of weighting words equally, thereby increasing the modelling
power allocated to phones in the context of short words which are the cause of many word
level errors.

8 Combination of changes

Table 7 gives the result of combining all the modifications described above. The reduction
in the total error rate is more that the sum of the reductions when each modification was
applied in isolation. Combinations of the inclusion and removal of the pitch and degree
voicing information were searched. As can be seen in table 7, the incorporation of pitch
information alone made little difference, although the change was much bigger when pitch
was added on top of the degree of voicing information.

Version correct | insertion | substitution | deletion | total errors
Original 65.5% 6.1% 27.5% 7.0% 40.6%
Sections [5-7] 68.8% 6.2% 25.3% 5.9% 37.4%
[5-7] and f0 68.8% 6.1% 25.2% 6.1% 37.3%
[5-7] and voicing 69.2% 6.1% 24.8% 6.0% 36.9%
[5-7], f0 and voicing | 69.3% 5.8% 24.8% 5.9% 36.5%

Table 7: Effect of the combination of changes

9 A larger network

All the previous results were obtained with a network of 96 state units in order to reduce
the training time (about 3.10'? floating point operations). However, as shown previously
the performance increases significantly with more state units. This value is limited by
the quadratic increase in the number of parameters to train with increasing number of
units, which results in slower training time and less space per processor for training data
storage. The results with the maximum practical value, 192, are shown in table 8.

Version correct | insertion | substitution | deletion | total errors
Sections [4-7] | 69.3% 5.8% 24.8% 5.9% 36.5%
192 state units | 72.9% 5.5% 21.8% 5.3% 32.6%

Table 8: From 96 to 192 state units

10 Retraining

Once trained, a forced alignment of the network output with the hand labels may be
made. This results in the redefinition of the phone boundaries, perhaps to more suitable
positions for network training. However, investigation of the new boundary positions
showed that they were very close to the originals. This is reflected in table 9 — after
retraining the network on the new boundaries for two iterations there was no change in
performance. However, this is major advantage when using an unlabelled database in

that the TIMIT trained model can be used to give a first rough segmentation which can
be refined by iteration.

‘ Retrain | correct | insertion | substitution | deletion | total errors
0 72.9% 5.5% 21.8% 5.3% 32.6%
1 72.8% 5.4% 21.9% 5.2% 32.6%
2 72.7% 5.2% 21.8% 5.5% 32.5%

Table 9: Effect of forced alignment and retraining

11 Final prototype TIMIT results

For compatibility with future word recognition results, the cost function used in the recog-
nition phase was changed from minimising the sum of the cross-entropy terms (as used
in training) to maximising the sum of log probabilities. In practice this makes negligible
difference to the recognition score but it does ease interfacing to higher level grammatical
constraints. In addition, the use of the inter-symbol bias was changed from balancing
insertion and deletion errors to minimising the total number of errors. Results are pre-
sented in table 10 for the combinations of including and excluding duration and phoneme
transition probabilities. The duration probabilities were calculated from a histogram of
the lengths of the hand labels in the training set measured to the nearest frame. Similarly,
the transition probabilities were obtained by counting the relative frequencies of transi-
tion from one phone to the next. As adjacent phones are always different, the transition
probability from a phone to itself is zero. These probabilities are incorporated by adding
the log of the value in on a transition. From the table it can be seen that the addition
of bigram statistics reduces the number of errors by 1% but the addition of durational
information makes no difference.

bigram | duration | bias | correct | insertion | substitution | deletion | total errors
no no 4.0 | 70.6% 3.6% 21.0% 8.4% 33.0%
no yes 3.0 | 70.6% 3.6% 21.2% 8.2% 33.0%
yes no 1.0 | 71.4% 3.3% 21.4% 7.2% 32.0%
yes yes 0.0 | 71.3% 3.3% 21.6% 7.1% 32.0%

Table 10: Final prototype TIMIT results

It should be noted that the use of bigram probabilities for phoneme transitions is quite
a weak constraint. Any word recognition system imposes much stronger constraints on
the possible transitions and in this case it is useful to use durational information.

12 Full TIMIT results

All previously reported work used the prototype TIMIT CD-ROM. The full database has
420 speakers for training and 210 speakers for testing. The analysis of section 11 was
repeated using all 420 training speakers, about 1/3 more data than previously. However,
due to memory limitations on the hardware used this meant that the number of state
units had to be reduced to 184. Table 11 shows an improvement of 0.9% in the error rate
over the previous results. This could be the effect of more training data or due to changes
in the labelling between the two versions.

bigram | duration | bias | correct | insertion | substitution | deletion | total errors
no no 4.0 | 71.3% 3.4% 20.5% 8.2% 32.1%
no yes 3.0 | 71.6% 3.6% 20.7% 7.7% 32.0%
yes no 1.0 | 72.2% 3.3% 21.1% 6.7% 31.1%
yes yes 0.0 | 72.4% 3.5% 21.3% 6.3% 31.1%

Table 11: Full TIMIT results

13 A Markov model framework

The systems without durational modelling used in the previous sections can be considered
as simple Markov models with one state per phone and with the emission probabilities of
the states being estimated by the recurrent network. As is conventional, the transition
probability from state 2 to state j will be designated as a;;. As durational information
is not used, the self loop probabilities, a;;, are all equal, and thus may be factored out
of the dynamic programming (viterbi search) used to find the maximum likelihood state
sequence.

In the case when no bigram or durational probabilities are used, a HMM system can
be constructed with the bias, 3, being the difference between the log of the self loop

probabilities and the log state exiting probabilities. In addition we have the constraint
that the sum of the probabilities over all transitions (including the self loop) is unity:

10g A — 10g a;; = /6 7 75 j (4)

da; =1 (5)
¥
For a Markov model of N states these may be solved to give:

P if Q=3

w - { mwr B (6)
FIN_T otherwise

The case where the bigram probabilities, B;;, are incorporated leads to the following

constraints and solution:

10g Ai; — 10g a;; = ﬁ — 10g Bij 2 #] (7)
B e
5 it 1=
w = {1 . ®)
1B otherwise

The original formulation has the advantage that by factoring out the self loop probability,
no cost is incurred on a self loop transition. This avoids one addition per state. Although
this computational saving may be of value when there are very many states, as in large
vocabulary word recognition, parsing the network output to the phoneme level can be
easily accomplished and so speed is not a consideration.

The HMM transition probabilities may also be estimated in the standard way:

Dot 72(;)

; (9)
Dotk %'(k)

a;; =

©
number of transitions from ¢ to 7 and >, >, ’yz-(,:
is occupied.

In the case of hand labelled data, as in the TIMIT task, the identity of the state at
every time frame is known. Thus equation 9 reduces to counting the number of transitions
from ¢ to j and dividing this by the total number of frames labelled as :. This may be
easily accomplished and a comparison of this automatic setting of a;; and the manual
setting via [is given in table 12. Whilst the performance gain is slight, it is important
to be able to automatically estimate these parameters.

is the probability of being in state ¢ at £ and 7 at t 4+ 1, >, ’yg) is the expected
)

where ~

is the expected number of times state 2

Version correct | insertion | substitution | deletion | total errors
manual 72.4% 3.5% 21.3% 6.3% 31.1%
automatic | 72.8% 3.5% 20.9% 6.3% 30.7%

Table 12: Parameter setting using HMM estimation

14 Comparison with other systems

A comparison with other systems may be made if the 61 TIMIT symbols are reduced
to a common set. In this section the mapping is done on the symbolic output of the
recogniser. There may be a small advantage in training the recogniser on fewer symbols
as more training data is available for each one, but this will not be pursued here.

The first HMM results on this task were provided with the phone recognition compo-
nent of the CMU SPHINX recognition system (Lee and Hon, 1989). This used multiple
codebooks and right-context HMMs. The output from this recogniser may be emulated
by first mapping all closures to the silence symbol, sil, then performing the 16 reductions
given in table 13 and finally deleting all instance of the glottal stop symbol, g, from the
output. The comparison is presented as entries “39” and “SPHINX” in table 14.

The latest HMM results are provided by the Bell Laboratories system which uses single
Gaussian continuous density triphone HMMs with durational constraints and trigram
phonotactic constraints (Ljolje, 1991). A comparison with these results is a little more
involved. Firstly any sentence initial or sentence final silence, h#, is deleted. These are
easy to recognise and provide no information. The performance with this modification is
given under the heading “61’” in table 14. Secondly, any closure-release pair is converted

10

‘h# pau | epi | ax-h | hv | em | eng | ux | el | axr | en | nx | zh | ao | ih | dx

‘sil sil |'sil | ax [hh | m | ng luw |1 | er | n | n |sh|aa|ix|sil

Table 13: Mapping to 39 symbols

to a single symbol, so “tcl t” becomes a single phone whereas “dcl b” remains as two.
This was accomplished by mapping {bcl, dcl, gcl, pcl, tcl, kel} to {b, d, g, p, t, k} and
then deleting multiple instances of members of the second set. Thirdly the mappings of
table 13 are performed. Finally “q” was mapped to “dx” to give the comparison under
the headings “39'” and “CVDHMM”.

Version correct insertion substitution deletion total errors
61 72.8%(72.1%) | 3.5%(3.4%) | 20.9%(21.0%) | 6.3%(6.9%) | 30.7%(31.3%)
61’ 71.3%(70.6%) | 3.7%(3.6%) | 22.1%(22.2%) | 6.6%(7.3%) | 32.4%(33.1%)
39 78.6%(77.5%) | 3.6%(3.6%) | 15.0%(15.5%) | 6.4%(6.9%) | 25.0%(26.1%)

SPHINX | 73.8% 7.7% 19.6% 6.6% 33.9%
39’ 74.3%(73.1%) | 3.6%(3.4%) | 18.0%(18.5%) | 7.7%(8.4%) | 29.2%(30.3%)
CVDHMM | 74.8% 5.4% 19.6% 5.6% 30.6%

Table 14: Comparison with other TIMIT phone recognisers: The main percentages are an
evaluation over the whole of the test set, the numbers in parentheses are the evaluation
over the smaller “core test set”.

It is to be expected that better HMM results could be obtained by using tied mixtures
to estimate the emission probabilities, and that better connectionist results could be
obtained by using trigram phonotactic constraints.

15 Conclusion

This report has presented many changes to an existing connectionist system, most of which
have decreased the number of arbitrary parameters used or allowed for the integration of
the system with standard HMM techniques. Altogether the changes have made a modest
decrease in the error rate. The previous reported result was 36.5% errors on 61 phones
and 30.2% on 39 phones so this work represents a decrease in the number of errors by
about 16%.

The resulting system is competitive with the best implemented and published HMM
technology. However, further improvements in HMM systems seem likely with techniques
such as tied mixtures and discriminative training which are well established for HMM word
recognition. The recurrent network remains a comparatively simple system compared with
the mature HMM technology.

11

Acknowledgements

The work described in this paper was carried out as part of an ESPRIT Basic Research
Action project (3207). The author would like to acknowledge NIST for the provision
of the DARPA TIMIT database and the ParSiFal project IKBS/146 which developed
the transputer array. Thanks also to Andrej Ljolje for discussions on a common symbol
set and all members of the Speech, Vision and Robotics group of Cambridge University
Engineering Department for their advice, and in particular Mark Plumbley who inspired
much of this work.

References

Bridle, J. S. (1989). Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition. In Fougelman-Soulie, F.
and Herault, J., editors, Neuro-computing: Algorithms, Architectures and Applicata-
tions, pages 227-236. Springer-Verlag.

Lamel, L. F., Kasel, R. H., and Seneff, S. (1987). Speech database development: Design
and analysis of the acoustic-phonetic corpus. In Proceedings of the DARPA Speech
Recognition Workshop, pages 26-32.

Lee, K.-F. and Hon, H.-W. (1989). Speaker-independent phone recognition using hidden
Markov models. [EEE Transactions on Acoustics, Speech, and Signal Processing,
37(11):1641-1648.

Ljolje, A. (1991). New developments in phone recognition using an ergodic hidden markov
model. Technical memorandum TM-11222-910829-12, A T and T Bell Laboratories.
Submitted to IEEE transactions on Signal Processing as: High Accuracy Phone
Recognition Using Context Clustering and Quasi-triphonic Models.

Robinson, T. and Fallside, F. (1991). A recurrent error propagation network speech
recognition system. Computer Speech and Language, 5(3):259-274.

Robinson, T., Holdsworth, J., Patterson, R., and Fallside, F. (1990). A comparison of
preprocessors for the Cambridge recurrent error propagation network speech recog-
nition system. In Proceedings of the International Conference on Spoken Language
Processing, Kobe, Japan.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal represen-
tations by error propagation. In Rumelhart, D. E. and McClelland, J. L., editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol.
I: Foundations., chapter 8. Bradford Books/MIT Press, Cambridge, MA.

12

