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Abstract

3-D freehand ultrasound imaging produces a set of irregularly spaced B-scans, which
are typically reconstructed on a regular grid for visualisation and data analysis. Most
standard reconstruction algorithms are designed to minimise computational require-
ments and do not exploit the underlying shape of the data. We investigate whether
approximation with splines holds any promise as a better reconstruction method. A
radial basis function (RBF) approximation method is implemented and compared with
three standard methods. The RBF’s are shown to accommodate both dense, overlap-
ping data and sparse data, without introducing the kind of reconstruction artifacts
common with the standard methods. The other potential advantages of RBF’s, such
as the direct computation of derivatives, make further investigation worthwhile.

1 Introduction

Ultrasound is a widely used imaging modality that has a large variety of clinical applica-
tions. Conventional 2-D diagnostic imaging is performed with a hand-held probe which
transmits ultrasound pulses into the body and receives the echoes. The magnitude and
timing of the echoes are used to create a 2-D grey-level image (B-scan) of a cross-section
of the body in the scan plane. 3-D ultrasound imaging extends this concept, so that a
volume of intensity data is created from pulse-echo information.

There are several methods of performing 3-D ultrasound imaging [4]. One method,
freehand imaging, makes use of conventional ultrasound technology to build up a 3-D
data set from a number of 2-D B-scans acquired in rapid succession. This is achieved
by attaching a 3-D position sensor to the probe, so that each B-scan can be labelled
with the position and orientation of the scan plane. The physician then moves the probe
slowly and steadily over a particular anatomical region, so that the set of acquired B-scans
encompasses the volume of interest with few gaps. Figure 1 shows the elements of a 3-D
freehand system.

While the set of B-scans can be reviewed individually, reconstructing them into a reg-
ular array makes it possible to use conventional 3-D visualisation and data analysis tools.
These tools include any-plane re-slicing, volume rendering, surface rendering, segmenta-
tion, and registration procedures. The reconstruction step is important because any loss
of image quality or the introduction of artifacts must be avoided. For example, a small loss
in image quality during reconstruction can make a barely detectable pathology in a B-scan
become undetectable in the reconstructed data. This may result in a misdiagnosis. In this
paper, we propose a new reconstruction technique to improve on existing techniques.

The paper is organised as follows. In Section 2, the existing reconstruction methods
are reviewed and the new reconstruction method is described. In Section 3, the acqui-
sition system, two in-vivo examinations, and a series of comparative tests are described.
The results, followed by a discussion on the potential of the new technique, are given in
Section 4. Finally, conclusions and suggestions for future work are given in Section 5.

2 Reconstruction Methods

2.1 Overview

Since the motion of the probe in freehand imaging is controlled by the physician, the
B-scans can be at any relative position and orientation. This means the pixels (B-scan
elements) lie at irregular locations in the array of voxels (volume elements). Therefore,



receiver move probe by hand

magnetic field :
—| probe
- =
transmitter organ

Figure 1: 3-D freehand ultrasound imaging. Freechand imaging allows the physician
to move the probe freely so the B-scans can have arbitrary relative locations and may
overlap each other. As the probe moves, the B-scans are captured and stored in computer
memory. A magnetic position sensor measures the position of a receiver (mounted on the
probe) relative to a transmitter (fixed with respect to the patient’s body). The relative
location of each scan plane is then calculated and the B-scans combined into a single
volume of data.

the reconstruction problem can be classified as unstructured, or scattered, data interpo-
lation ! [14].

A survey of the literature reveals a number of different methods for reconstruction
of 3-D freehand ultrasound data sets. Most of these methods are very simple because
they are designed to minimise the time and memory required for reconstruction. This is
because physicians want to visualise the 3-D data sets immediately after acquisition, so
the reconstruction should take ideally only a few seconds. Although almost all freehand
systems perform reconstruction at some stage, details of the reconstruction method are
often unpublished since the method is considered ad hoc. Nevertheless, the methods that
have been published can be classified into the following categories: voxel nearest neighbour
interpolation, pixel nearest neighbour interpolation, and distance-weighted interpolation.

2.2 Voxel Nearest Neighbour Interpolation

The concept of voxel nearest neighbour (VNN) interpolation is easy to understand: each
voxel is assigned the value of the nearest pixel. There are no parameters to set. A naive
implementation would traverse the array one voxel at a time and calculate the value of the
nearest pixel, but this would be computationally inefficient . Using the fact that the nearest
pixel lies along a line normal to the nearest B-scan greatly speeds up the reconstruction,
making it one of the fastest of all methods. Moreover, a new 3-D ultrasound imaging
system, developed at the University of Cambridge [16], can rapidly produce slices of the
set of B-scans without reconstructing an entire voxel array. By cleverly using the voxel
nearest neighbour interpolation method with dedicated graphics hardware, slices can be
generated interactively.

While this reconstruction method has the advantage of avoiding gaps in the voxel array,
reconstruction artifacts can be observed in slices through the voxel array. When a slice

!Since the pixels all lie on planes, the data is actually best described as semi-structured.
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Figure 2: Reconstruction artifacts. In (a) a voxel nearest neighbour interpolation is
used to reconstruct an examination of the neck. A small slice of the voxel array is shown.
The slight misalignment between the projections of the two nearest B-scans arises from
registration errors. In (b) a pixel nearest neighbour interpolation is used to reconstruct
an examination of the thyroid. The boundary between the voxels filled by the first “bin-
filling” stage and voxels filled by the second “hole-filling” stage is evident. In (c) a distance-
weighted interpolation is used to reconstruct an examination of the bladder. The slice is
truncated because the neighbourhood for selecting points is set too small, leaving some
voxels unfilled.

plane intersects several of the original B-scans, we can consider the interpolated image as
a collage of projections from the intersected B-scans. Registration errors, including tissue
motion and sensor errors, contribute to slight misalignment of the B-scans. This results
in a piece of the collage slightly mismatching its neighbours. The lines of intersection
between the pieces then become visible — see Figure 2(a).

2.3 Pixel Nearest Neighbour Interpolation

Pixel nearest neighbour interpolation (PNN) is one of the most popular reconstruction
methods [5, 8, 9, 13, 18]. The basic algorithm consists of two stages. In the first stage, the
algorithm simply runs through each pixel in every B-scan and fills the nearest voxel with
the value of that pixel. Multiple contributions to the same voxel are usually averaged,
although the maximum value has also been suggested [13]. The parameters to set at this
stage are therefore the weights on the multiple contributions.

If the voxel size is small compared to the distance between the acquired B-scans, gaps
can occur in the voxel array. In practice, this situation is inevitable with voxel arrays
of similar resolution to the B-scans. The second stage fills these remaining gaps in the
voxel array. A variety of methods have been used, including averaging of filled voxels in
a local neighbourhood [9, 13] and interpolating between the two closest non-empty voxels
in the transverse direction to the B-scans [8]. Other publications [5, 18] do not describe
the method for filling gaps, so we assume that they adopt similar approaches. or choose



the voxel size sufficiently large to avoid gaps. The parameters to set at this stage are the
weights of the nearby voxels used to fill the gaps.

In summary, this method can be considered as a two stage process: the first stage of
“bin-filling” the voxel array with pixels is very fast, but the “hole-filling” second stage may
take longer, depending on the particular method chosen. Unfortunately, artifacts can be
generated by this two stage process. For example, a slice plane passing though regions of
both first stage and second stage filled voxels may show the boundary between the highly
detailed “bin-filled” voxels and the smoothed “hole-filled” voxels — see Figure 2(b).

2.4 Distance-Weighted Interpolation

Like the voxel nearest neighbour interpolation method, distance-weighted (DW) interpola-
tion proceeds voxel by voxel but assigns a value to each voxel based on a weighed average of
some set of pixels from nearby B-scans. The parameters to choose are the weight function
and the size and shape of the neighbourhood.

The simplest approach is to consider a fixed spherical neighbourhood of radius R,
centred about each voxel [2]. All pixels is this neighbourhood are weighted by the in-
verse distance to the voxel and then averaged. This is similar to Shepard’s method [19].
Unfortunately, it has the disadvantage of not reproducing any of the local shape prop-
erties implied by the data because the resulting interpolant typically has local extrema
at the data sites [14]. It also requires R to be set prior to reconstruction. If R is set
too small, gaps may result — see Figure 2(c). Yet if R is set too large, the voxel array
will appear highly smoothed, since the effect of inverse distance weighting can be quickly
overwhelmed by the much larger number of data points falling into the larger local neigh-
bourhood. Nevertheless, with dense B-scans and a small value of R, excellent results are
claimed [2].

Another distance-weighted interpolation method uses a non-uniformly shaped neigh-
bourhood to account for the asymmetric shape of the point spread function of the ul-
trasound beam [15]. Essentially, the resolution is much higher within the B-scan than
between the B-scans, so the authors create a “thick” B-scan by convolving the 2-D B-scan
image with a truncated 3-D Gaussian kernel. The 3-D Gaussian kernel is chosen to be
wide perpendicular to the B-scan and narrow within the B-scan plane. A similar “thick”
slab of weight values of the truncated 3-D Gaussian kernel is computed. The voxel ar-
ray accumulates both weight and intensity values separately, at those voxels intersected
by the “thick” B-scans 2. The final voxel intensity values are calculated by dividing the
accumulated pixel intensity values by the accumulated weight values stored at that voxel.
In summary, each voxel value represents a weighted average of nearby B-scans, with an
asymmetric Gaussian weight function attached to each B-scan. While this method has the
advantage of being incremental, gaps may still remain if the truncated Gaussian weight
function is smaller than the gaps between B-scans.

Another distance-weighed method which uses a non-uniform neighbourhood is based
on pair-wise B-scan grouping [21]. In this method, each voxel is filled only by the nearest
two B-scans which fall on either side of it. For each of the two B-scans, lines are drawn
perpendicular to the B-scan plane, passing though the voxel. Bi-linear interpolation within
each B-scan determines the contributing pixel value from that B-scan. The voxel is then
set to the inverse distance-weighted average of the two contributing pixel values. This

2The authors also include a third value related to the “age” of the intensity value, so that new overlap-
ping B-scans will overwrite old B-scan values.



method has the advantage of retaining the resolution of each B-scan in the voxel array
and avoiding gaps. Although it is clear which pairs of B-scans to use with simple motions,
such as linear sweeps, it is not clear which pairs to use with more arbitrarily located B-
scans. It has been suggested that the pairs be chosen time sequentially [3], but this may
not be optimal for all types of scanning motions.

2.5 Radial Basis Function Interpolation

It is perhaps intuitively obvious to attempt a traditional functional interpolation method
for the reconstruction problem. In other words, choose a particular function (such as
a polynomial), determine the polynomial coefficients to make it pass through the pixel
values, then evaluate at regular intervals to produce a voxel array. There have been
no previously published attempts at functional interpolation of 3-D freehand ultrasound
data, since there are severe computational demands to overcome. For example, simple
volume splines [14] require solving a set of N linear equations, where N is the number of
pixels summed over all B-scans. This requires O(N?) calculations. For modern computer
workstations, IV can not be much larger than 500 before this becomes prohibitively slow
and numerical inaccuracies arise [14]. This makes a typical ultrasound reconstruction
problem of several million pixels infeasible.

There is a great deal of literature on interpolation, spanning a variety of disciplines,
and progress has recently been made in the area of tackling very large data sets. Two
good review papers are [6, 14]. In order to select an appropriate method for solving the
3-D ultrasound reconstruction problem, a list of requirements is listed below:

e the method must interpolate scattered trivariate data

the method must be fast, i.e. O(N) complexity and non-iterative

the interpolating function must be smooth

both interpolation and approximation must be possible

large overshoots must be avoided

The smoothness requirement arises from an assumption that the input data (the set
of B-scans) is smooth itself. This assumption arises from knowledge of the acquisition
process. While the underlying anatomy is not smooth, it is measured by a finite width
ultrasound beam with a smooth intensity profile. This is tantamount to convolution of
the anatomical function with the beam profile, creating a smoothed image. Further signal
processing, such as filtering of the pulse-echo signals, gives even more confidence that the
image data to be interpolated is smooth.

The approximation requirement arises from the existence of measurement errors. These
errors include tissue motion (such as breathing, pulsative and whole body motions), po-
sition sensor errors and calibration errors. This means we want to be able to change the
interpolating function into an approximating function that passes close to, but not exactly
through, the data points.

The final requirement of eliminating overshoots relates to the desire to have the range
of interpolated voxel values in the same [0,255] grey-level range as the B-scans. This
requirement is related to the approximation requirement, since an approximating function
can often reduce overshoots compared to interpolating functions.



After surveying the recent advancements in trivariate interpolation of large data sets,
we discovered a method ideally suited to our requirements. This method was recently
developed by researchers at the University of Illinois for interpolation of multivariate
geographical data sets 3 [12]. They dubbed the method “completely regularized splines
with tension”. The Illinois method is summarised as follows:

Consider a set of pixel values pj,j = 1,...,N that are located at the positions x;,
where x; = (z;,y;,%;) is expressed with respect to the voxel array. The basic idea is to
find a spline S(x) that passes as closely as possible to the data points and is as smooth
as possible. These two requirements can be combined together such that we find the S(x)
that fulfils

N
Z pj — S(Xj)|2 + wl(s) = minimum. (1)
j=1

The first component is the deviation of the spline from the data points, and the second
is a smoothness function I(s). The weight w determines the relative cost of the two
components.

The solution can be expressed as

N
S(x) =T(x)+ Z a;R(x, x;) (2)

=1

where T'(x) is the trend function and R(x,x;) is a radial basis function (RBF) whose form
depends on the choice of I(s) [20].

For the 2-D case, if I(s) is chosen to minimise the cost of the second (partial) derivatives
only, then the familiar thin plate spline results. If the same I(s) is used for the 3-D case,
the first derivatives of the RBF are divergent at the data points [10]. By carefully choosing
a more general I(s), it is possible to obtain a simple analytic expression for the RBF with
regular derivatives of all orders everywhere [11]. This choice results in T(x) = ag, a
constant, and

where 7 = |x — x| is the distance from x to x;, and erf is the error function [1]. The
parameter ¢ is a generalised tension parameter, and it controls the distance over which
the point influences the resulting hypersurface. The multiplicative constant ¢®/4m can be
omitted, since it can be combined with the coefficients a;. A plot of the RBF is shown in
Figure 3.

The spline coefficients can then be found by solving the set of linear equations

3see also http://www.cecer.army.mil/grass/viz/VIZ.html



Figure 3: Radial basis function. Increasing the tension reduces the range of influence
of the radial basis function.

N
Zaj =0 (5)

where §;; is the Kronecker delta function.

There are therefore two parameters which can be adjusted to tune the nature of the
interpolant: ¢ controls the tension, and w controls the level of approximation. The goal
of tuning the interpolant is to find the optimal balance between the requirements of ob-
taining small deviations from the data points and avoiding overshoots. As Figure 4(a)
shows, a high level of tension limits the distance at which each point influences the overall
interpolant. Yet the RBF appears spiky and does not replicate the overall shape of the
data. Low tension results in overshoot. Figure 4(b) shows that the overshoot from low
tension interpolation may be effectively controlled by allowing a small amount of approx-
imation. In fact, it will be shown that the combination of low tension and a small level of
approximation works well with ultrasound data.

As previously mentioned, the RBF interpolant cannot be calculated using all the data
points of an ultrasound examination at once. In order to localise the volume splines,
the scattered input data must be divided into manageable segments. The basic idea
is that the interpolating function in a local region is not influenced by data at some
sufficiently distant point. The voxel array is therefore divided into many small, non-
overlapping rectangular segments. Individual interpolating functions are then calculated
for each segment until all of the voxel array is covered.
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Figure 4: 1-D radial basis function interpolation and approximation. 10 sample
data points obtained from an impulse function are shown as diamonds. In (a) w is set to
zero so the RBF exactly passes through the data points. The average of the data points
sets the trend part of the interpolant to a value of 37. With high tension, the interpolation
quickly returns to the trend between data points. With low tension, overshoots appear.
Increasing the tension can be thought of as changing the nature of the interpolant from a
stiff plate to a membrane. In (b) the tension level ¢ was set to a value of 20. Increasing the
level of approximation reduces the amount of overshoot but can result is large deviations
from the data points. A small level of approximation produces a reasonable trade-off.

In order to get smooth connections among the RBF’s of neighbouring segments, over-
lapping windows are used. This means that a window is established around each segment
under consideration such that it encompasses not only all the data points in the segment
but also a sufficient number of neighbouring data points. All data points in the window are
then used to calculate the RBF for that segment. Since the windows overlap each other,
the RBF for each segment will closely (but not necessarily exactly) match its neighbours’
RBF’s. With a reasonable amount of overlap, the differences will be negligible compared
to the quantisation of the grey levels in the 8-bit voxel array.

Segments of fixed size, each containing fewer than a maximum set number of data
points (Kqz ), were proposed in [11]. Windows were expanded from 3 x 3 x 3 surrounding
segments to 5 X 5 x 5 and so on, until a sufficient number (K,,;,) of neighbouring points
were included. In later work, the segmentation method was developed using an oct-
tree representation of the voxel array to improve the ability to interpolate data with
a heterogeneous spatial distribution [12]. This means the segments were continuously
divided into eight subsegments until each contained no more than K,,,, points. In this
way, segments of variable size were created to account for the clustering of data points.
The window around each segment expanded equally in all directions until it encompassed
at least Ky, points.

If the data is only mildly heterogeneous, this windowing method works well. However,
the problem of 3-D ultrasound reconstruction involves highly clustered data; all of the
input data lie within the planes of the B-scans. For this reason, we have developed a more



flexible windowing method.

The basic problem with expanding a window until a fixed number of data points is
encompassed, is that all the data points may lie on only one side of the segment. This
can create problems with continuity of the interpolating function between segments. We
propose to expand the window around the segment until data points are found in all
directions around the segment. Examples of the conventional and improved windowing
methods are shown in Figure 5.

In the 3-D case, the window is expanded in all directions at first, but each of the six
faces of the window stops expanding only when a sufficient number of data points fall
within the region defined by that direction — see Figure 6. In practice, expansion of the
window in a given direction also stops when it reaches the extents of the voxel array.

The Ilinois software was designed to work with 1000 to 10000 data points, so a number
of practical changes were made. In order to accommodate several million data points from
an ultrasound examination, points in the oct-tree are stored using recursive dynamic
memory allocation. We also designed the oct-tree segmentation to allow segments to be
divided into four (quad-tree) or two (binary-tree) subsegments when one dimension of
the segment is only one voxel wide. This improves the ability to divide the volume into
manageable segments. However, some very large segments can remain. For example, a
single empty segment between two nearly parallel B-scans can extend occasionally the full
length and width of the B-scans. The window around this segment, expanding one voxel
at a time, will suddenly encompass an entire neighbouring B-scan in a single step. This
produces an intractable number of data points, so we choose to chop these large, empty
segments into smaller segments too.

In summary, we have a localised trivariate spline with O(N) complexity. The method
is efficient enough to handle very large data sets and flexible enough to handle highly
heterogeneous data. The smooth interpolating function has regular derivatives of all or-
ders, and has good accuracy compared to other interpolation methods [11]. It also has a
variable tension and can be tuned between interpolation and approximation.

3 Comparisons

3.1 Apparatus

The freehand acquisition system comprises an ultrasound scanner, a position sensor and
a computer for data acquisition. A Toshiba Powervision 7000 scanner (Toshiba America
Medical Systems, Tustin, California) was used with a Polhemus FASTRAK magnetic
position sensor (Polhemus Incorporated, Colchester, Vermont) mounted on the probe.
Calibration to determine the location of the position sensor with respect to the probe was
performed using the Cambridge phantom [17]. The Stradx acquisition software [16] was
used in conjunction with an 8-bit frame grabber and a Silicon Graphics Indy workstation
(Silicon Graphics Incorporated, Mountain View, California). The images were matched
to the position sensor readings and recorded at a rate of 25 frames/s.

3.2 In-vivo Examinations

Two in-vivo examinations were performed on a healthy human subject. First, an exami-
nation of a thyroid gland was performed with a 7 MHz linear array probe. A depth setting
of 40 mm was used giving a resolution of 0.087 mm/pixel. Each B-scan was cropped to
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Figure 5: Example of improved windowing method. This contrived 1-D example
illustrates the potential problem of the standard windowing method. Segments are created
by subdividing the length of interest in a binary-tree so that each segment contains no
more than 5 (Kj4;) data points. The RBF’s are calculated (with tension ¢ = 3, and
smoothing w = 0.01) for each segment using the data that falls in the surrounding window.
The standard windowing method expands in both directions from the segment in single
increments until 10 (K,i,) data points in total are obtained. The standard windows 3 and
4 only contain data on one side of the segment. This creates a large discontinuity in the
interpolating function between segments 3 and 4. The new windowing method expands in
both directions until at least 4 points are found on each side of the segment, or the limits
of the data set are encountered. This way, the interpolants for segments 3 and 4 contain
data from both sides of the segments and therefore meet much closer together.

10



region 1

/ /

segment window
Figure 6: Segment and surrounding window. The segment is the shaded volume
surrounded by the window. The window must encompass data points in each of the six
regions around the segment, one of which is highlighted. This is done by expanding each of
the six faces of the window until each region contains a minimum number of data points.
Determination of which region a point falls into is calculated efficiently using the cross
products of the vectors to the corners of the planes separating the regions.

328 x 409 pixels. A single sweep of the organ with a slow and steady motion resulted in a
dense set of 219 nearly parallel B-scans. Figure 7 shows the outlines of the set of B-scans
and a typical B-scan.

The second examination was performed with a fan shaped sweep over the extents of
the bladder. A 3.75 MHz convex curvilinear array probe was used with a depth setting of
140 mm, giving a resolution of 0.34 mm/pixel. Because the probe produces sector shaped
B-scans, the acquired 480 x 413 pixel images were masked so that only the ultrasound
intensity data was used in each of the interpolation methods. Figure 8 shows the outlines
of the set of B-scans and a typical B-scan.

These two examinations were chosen because they allow tests of the reconstruction
methods with different organs, probes, depth settings, ultrasound machine settings and
types of probe motion.

3.3 Tests

The tests are designed to evaluate the ability of the reconstruction methods to interpolate
the ultrasound data and fill in gaps. Since the true underlying anatomical function is
unknown, we have decided to test the different methods by artificially removing data from
the two examinations. The four different reconstruction methods are then evaluated on
their ability to predict the intensity values at the locations where the data was removed.
In other words, a good reconstruction method will interpolate the removed data points
with values very near to the data that was originally there.

First, a B-scan near the middle of the sweep is selected. The voxel array (with voxels
equal in size to the pixels) is aligned exactly with this B-scan such that pixels fall exactly
onto voxels. A percentage of the pixels are then removed randomly from the B-scan, creat-
ing gaps of various sizes. The rest of the pixels and all other B-scans in the reconstruction
are used in the interpolation to fill in all voxels in the voxel array. The values of the
removed (original) pixels can now be compared to the values of the voxels aligned with
them. The voxel array stores the interpolation results as floating point numbers to avoid

11



(a) Outlines (b) B-scan

Figure 7: Thyroid examination. The outlines of the B-scans are shown in (a) with a
typical B-scan shown in (b).

(a) Outlines (b) B-scan

Figure 8: Bladder examination. The outlines of the B-scans are shown in (a) with a
typical B-scan shown in (b).
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the influence of quantisation. The average of the difference between the interpolated and
the original data over all missing data points is calculated by

1 M
VZM;MH—M (6)

where p; is the original pixel that was removed from the reconstruction, v; is the interpo-
lated value of the voxel aligned with p; and M is the number of removed pixels. A low
value of V indicates a good ability to interpolate over the gaps.

The tests are performed with eight different percentages of removed data: 0%, 25%,
50%, 75%, 100%, 300%, 500% and 700%. For the 25%, 50%, 75% and 100% tests, pixels
are removed only from the selected B-scan n. The 300% test refers to removing all of
the pixels of B-scan n and all of B-scans n — 1 and n + 1. The 500% and 700% tests
further remove B-scans n + 2 and n + 3 respectively. The 0% test is also included, since
a reconstruction method may not exactly replicate the original data points. For example,
a functional approximation method will miss the data points. For the 0% test alone, V is
calculated over all pixels of the selected B-scan.

Each of the eight tests are repeated for ten different B-scans to give mean and variance
estimates of V. In this way, 80 voxel arrays are created for each of the four reconstruction
methods, producing 320 voxel arrays in total. A further 320 voxel arrays are created in
the same way for the bladder examination.

3.4 Reconstruction Methods

The voxel nearest neighbour interpolation method is implemented by traversing the voxel
array and filling each voxel with the value of the nearest pixel. The pixel nearest neighbour
interpolation method is implemented in two steps. The first step assigns each pixel to the
nearest voxel in the array. Multiple contributions to a single voxel are averaged together.
The second step fills the remaining gaps. Empty voxels are filled by taking the average
of the filled voxels in a 3 x 3 x 3 neighbourhood. The remaining unfilled voxels are then
filled by averaging originally filled voxels in a 5 x 5 x 5 neighbourhood and so on, until all
voxels are filled. This is similar to the method described in [13].

The reported high quality reconstructions described in [2] led us to choose the inverse
distance-weighted method with a spherically shaped local neighbourhood. The one pa-
rameter to choose in this method is the radius, R, of the neighbourhood. If R is set to
cover the largest gaps in the 700% tests, it would be much too large for the tests with
smaller gaps and excessive smoothing would occur. R must be set to reasonable but not
arbitrary values for each of the tests.

In [2], a 7 MHz linear array probe was used to examine the carotid artery, a similar
examination to the thyroid gland. Two R values were suggested: 0.25 mm and 0.5 mm.
In our examination of the thyroid gland, the distances between the centres of the B-scans
range from 0.09 mm to 0.52 mm, with a mean of 0.32 mm. Using a neighbourhood of
radius R equal to 0.25 mm is therefore not large enough to fill in all gaps, so 0.5 mm is
used in the 0%, 25%, 50%, 75% and 100% tests 4. For the 300%, 500% and 700% tests,

It appears that setting R to half of the maximum centre distance between B-scans would fill the entire
volume without gaps. But because the scan planes are not exactly parallel, larger gaps than 0.52 mm
exist. In fact, the value of 0.5 mm is just sufficient to cover all gaps.
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R must be increased to cover all gaps. We choose to increase R by the mean (0.32 mm)
of the B-scan spacing. This means R was set to 0.82 mm (0.5 mm + 0.32 mm), 1.14 mm
(0.5 mm + 2 x 0.32 mm), and 1.46 mm (0.5mm + 3 x 0.32 mm) for the 300%, 500% and
700% tests respectively.

To be consistent, the values of R for the bladder reconstruction are set in a similar
fashion. R is set to the maximum distance between B-scans for the 0%, 25%, 50%, 75%
and 100% tests, then increased by the mean distance between B-scans for the 300%, 500%
and 700% tests. Since the examination used a fan-shaped sweep, the B-scan spacing is
measured at the bottom centre of the B-scan, where the gaps are larger. The B-scan
spacing ranges from 0.41 mm to 0.80 mm, with a mean of 0.60 mm. The value of R
is therefore set to 0.80 mm for the 0%, 25%, 50%, 75% and 100% tests, and 1.40 mm
(0.80 mm + 0.60 mm), 2.00 mm (0.80 mm + 2 x 0.60 mm) and 2.60 mm (0.80 mm +
3 x 0.60 mm) for the 300%, 500% and 700% tests respectively.

The RBF method is implemented using the oct-tree segmentation and improved win-
dowing technique described in Section 2.5. K, is set to 30 data points, and each region
of the window is required to contain at least 5 data points.

For the 300%, 500% and 700% tests of the thyroid examination, large gaps and ex-
tremely long computation times result. The window is therefore expanded faster in the
two directions perpendicular to the selected B-scan (towards the neighbouring B-scans)
than in the four directions in the plane of the B-scan. This avoids making the window too
large and enveloping an intractable number of data points. We do this simply to speed
up the calculations, since such a large overlap is not required to get smooth transitions
among the segments. As a reassurance, at least 20 points per region are required for these
300%, 500% and 700% tests, compared to the minimum of 5 points per region for all other
tests.

The tension and approximation parameters are tuned manually by testing V for a
randomly selected B-scan. A fairly low tension ¢ combined with a small amount of data
smoothing w results in a good trade-off between minimising overshoot and passing very
near the data points. This, in turn, produces a small value of V. For the thyroid ex-
amination, we set ¢ = 17 and w = 0.01. The bladder examination uses ¢ = 25 and w
= 0.1. These values fall within the range of values typically used for geographic data
interpolation [12].

4 Results

The overall trends of the test results are illustrated in Figure 9 and tabulated in Tables 1
and 2. To give an indication of the distributions of V' over the 10 trials, box-and-whisker
plots are shown in Figures 10 and 11. A small but representative set of images of the
interpolated data are shown in Figures 12, 13, 14 and 15.

4.1 Voxel Nearest Neighbour Interpolation

For both examinations, V is zero at 0% data removal, since the voxels are set to their
nearest neighbours: the original pixels of the B-scan. At 25%, 50% and 75%, the nearest
neighbours of the voxels are mainly the remaining pixels of the selected B-scan. Therefore,
the resulting interpolated images appear as a patchwork of irregularly shaped pieces and
relatively large values of V' result.
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Test VNN PNN DW RBF

7’ o 7’ o i o 7! o
0% 0.00r 0.00 0.00 0.00 0.00 0.00 0.64 0.03
25%  6.651 0.12 7.05t 0.12 773t 0.27 482 025
50% 6.957 0.14 7.31t 0.13 7.82f 030 6.14 0.33
% 7.867 0.16 7.82t 0.13 7.84' 0.35 6.89 0.39
100% 884 260 7.78"7 0.64 790 042 751 0.78
300% 11.667 2.00 9.85 0.75 9.48 047 956 0.34
500% 12.90f 1.65 11.27t 0.73 1043 053 10.67 0.29
700% 13.99" 1.32 13.03t 1.00 10.95* 0.52 11.32 0.23

Table 1: Interpolation error V for the thyroid examination. y is the mean of V
and o is the standard deviation. { means that the assertion y > prpr is statistically sig-
nificant for a confidence level of 0.05. x means that the assertion u < urpr is statistically
significant for a confidence level of 0.05. The assertions are tested with the paired-sample

t-test statistical method [7].

Test

VNN

7

g

PNN

7

g

Dw

7

g

RBF

7

g

0%
25%
50%
75%

100%
300%
500%
700%

0.00*
5.60t
5.50f
5.27%
4.13

6.92

8.50f
9.37t

0.00
0.39
0.40
0.50
0.38
0.40
0.23
0.26

0.00*
5.011
5.08t
5.19%
5.251
7.03t
7.801
8.36

0.00
0.22
0.25
0.35
0.40
0.15
0.14
0.18

0.00*
5.37t
5.32f
5.241
5.111
6.85f
7.62*
8.07*

0.00
0.09
0.09
0.10
0.14
0.12
0.11
0.09

0.96
3.57
3.85
4.13
4.29
6.69
7.73
8.37

0.03
0.25
0.31
0.40
0.37
0.19
0.16
0.16

Table 2: Interpolation error V for the bladder examination.

Table 1 for an explanation of the tabulated terms and symbols.
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Figure 9: Average grey level error for the thyroid and bladder data sets. For
each of the four reconstruction methods, V is calculated for various percentages of removed
data.

For the 100% to 700% tests, the interpolated image is made from the projection of the
pixels from the nearest B-scan, so the patchwork appearance disappears. For the thyroid
examination, the variance of V' is large because some of the projections of neighbouring B-
scans closely match the original B-scan, but others do not. This depends on both the level
of registration error and the similarity of the pixel values. The values of V are generally
greater than the other three reconstruction methods.

For the bladder examination, the 100% to 700% tests show a smaller variance of V' than
the thyroid examination, but the variance is still large compared to the other methods.
The mean, however, is lowest at 100%, and increases again for the higher percentage tests.
This may be explained by comparing the level of registration errors to the voxel size. If
registration errors, such as position sensor error, are of similar absolute magnitudes for
the two examinations, the errors will have a smaller effect on the bladder tests. This
is because the voxel size is larger in the bladder tests than in the thyroid tests, so the
effect of the errors is reduced. Yet, as more and more B-scans are removed, the relative
registration errors increase, thereby making V increase again.

In general, however, the results look sharp and detailed for the 100% to 700% tests,
since the projected data exhibits no blurring. Moreover, the boundaries between the
portions of the projected data are not discernible for any tests of either examination. This
suggests that the registration errors are mainly small and the images vary slowly from one
B-scan to the next.

4.2 Pixel Nearest Neighbour Interpolation

For both examinations, V is zero at 0% data removal, since the nearest neighbours to the
voxels are the original pixels. At 256%, 50% and 75%, the gaps are filled mainly with an
average of the remaining pixels in the original B-scan. The interpolated image appears as
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Figure 10: Interpolation error V for the thyroid examination. The box-and-
whisker plots show the three quartiles and the extremes of V calculated over the 10 trials
at each percentage of removed data. The median (50th percentile) is the line inside the
box of the 25th and 75th percentiles of V. The whiskers show the minimum and maximum
values.

a patchwork again, and relatively large values of V result.

For the thyroid examination, the mean of V increases progressively for the 500% and
700% tests compared to the relatively good performance in the bladder examination. This
can be explained by noticing that the gaps in the bladder data set are much smaller at
the top than the bottom, which limits the blurring effect of the “hole-filling” stage to the
large gaps at the bottom of the bladder images. With lower amounts of blurring in the
bladder tests, lower values of V result.

Unfortunately, the images exhibit significant reconstruction artifacts for both exami-
nations, especially for the 500% and 700% tests — see especially Figures 13(d) and (h).
A visible boundary exists between portions which are filled, for example, by averages of
a 7 x 7 x 7 neighbourhood, and portions filled by a neighbourhood of 9 x 9 x 9, because
they involve different amounts of smoothing. The boundaries between the voxels filled by
the first “bin-fill” stage and second “hole-fill” stage are also visible.

4.3 Distance-Weighted Interpolation

For both examinations, V is zero for the 0% tests, since the weights on the original pixels
that fall exactly on the voxels approach infinity. At 25%, 50% and 75%, the images can
be considered as the superposition of two effects. The first effect arises from the voxels
filled by the original data weighted by infinity. The second effect arises from the voxels in
the gaps that are calculated from a weighted average of many neighbouring pixels. The
resulting interpolated data is therefore a combination of the remaining pixels from the
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Figure 11: Interpolation error V for the bladder examination. See the caption of
Figure 10 for an explanation of the box-and-whisker plots.

original B-scan and smoothed data in the gaps.

Since the radius R of the neighbourhood is tailored for each test of 100% and above (as
explained in Section 3.4), the values of V for the thyroid examination are relatively small.
However, for the 100% test on the bladder examination, the mean of V is considerably
higher than the RBF method. This is because R is too large at the top of the image
where the data is dense (but just large enough to fill the gaps at the bottom), resulting
in excessive smoothing at the top. For 300% to 700%, the values of V' improve, since the
removal of data offsets the increase in R.

The images show progressive blurring as the percentage of removed data increases,
but no reconstruction artifacts are generated. For the thyroid examination, the level of
blurring is uniform. For the bladder examination, blurring is greater near the top of the
images.

4.4 Radial Basis Function Interpolation

For both examinations, V is greater than zero for the 0% test, since the approximating
function does not pass exactly through the original pixel values. For both examinations,
however, the mean of V at 0% is less than one.

At 25%, 50% and 75%, the mean of V is considerably lower than the other methods
and the resulting interpolated data appears the most detailed and least artificial. This is
because the interpolation utilises both the remaining pixel data of the original B-scan and
the neighbouring B-scans. The low values of V' demonstrate the ability of a functional
method to use the general shape of the underlying anatomical data to interpolate across
the gaps.
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(a) 0% (b) 50% (c) 100% (d) 500%

(e) 0% (f) 50% (g) 100% (h) 500%

(i) 0% () 50%

(m) (n) (0) (p) (a) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 12: Typical B-scans interpolated by the voxel nearest neighbour method.
All images are shown for a particular B-scan with various percentages of data removed.
Images (a) to (d) are from the thyroid examination, with expanded views of the area
indicated in image (a) shown in images (e) to (h). Images (i) to (1) are from the bladder
examination, with expanded images of the top and bottom areas indicated in image (i)
shown in images (m) to (t).
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(a) 0% (b) 50% (c) 100% (d) 500%

(e) 0% (f) 50% (g) 100% (h) 500%

(i) 0% () 50% (k) 100% (1) 500%

(m) (n) (0) (p) (a) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 13: Typical B-scans interpolated by the pixel nearest neighbour method.
See the caption of Figure 12 for an explanation of the images.
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(a) 0% (b) 50% (c) 100% (d) 500%

(e) 0% (f) 50% (g) 100% (h) 500%

(i) 0% () 50%

(m) (n) (0) (p) (a) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 14: Typical B-scans interpolated by the distance-weighted method. See
the caption of Figure 12 for an explanation of the images.
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(m) (n) (0) (p) (a) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 15: Typical B-scans interpolated by the radial basis function method.
See the caption of Figure 12 for an explanation of the images.
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Yet at percentages of 100% and greater, the RBF is not always significantly better
than the other methods. In particular, the VNN method matches it at 100% in the
thyroid examination and at 100% and 300% in the bladder examination. The PNN method
matches it at 300% in the thyroid examination and at 700% in the bladder examination.
The DW method is even closer, matching the RBF method at 100%, 300% and 500% for
the thyroid examination, and even slightly betters it at 700%. It also slightly betters the
RBF method at 500% and 700% in the bladder examination.

One of the reasons the RBF loses some of its advantage is that the underlying shape
of the anatomical data is lost when the gaps become too large. Another problem is that
the RBF approaches the trend in the largest gaps. This is because the tension needs to
be high enough so that no overshoots appear within the B-scan. Yet in the gaps, a higher
tension results in a faster approach of the interpolating function towards the trend.

In general, however, the RBF method produces natural-looking images with no appar-
ent artifacts. The boundaries between segments are not visible, since they are generally
less significant than the grey level quantisation. No overshoots are generated either: the
range of the interpolated data matches the range of grey levels in the original B-scans.

For the thyroid examination, the interpolated images become progressively blurred as
the percentage of removed data increases. The level of blurring is uniform throughout
the image. For the bladder examination, however, the denser data at the top of the
images allows the RBF to retain a high level of detail. The blurring then progressively
and smoothly increases toward the bottom of the images where the gaps are larger. The
level of blurring therefore reflects the level of uncertainty in estimation of the underlying
function. In comparison, the DW method shows, counter-intuitively, the greatest blurring
near the top of the bladder images.

4.5 Discussion

The RBF method appears to work very well: low values of V' are produced and no re-
construction artifacts are generated. It must be noted, however, that the computational
demands are much greater than for the other three methods. The thyroid and bladder
data sets can be reconstructed by the VNN, PNN and DW methods in a few minutes, but
the RBF method requires a few hours. Yet because of segmentation, the RBF method
is amenable to parallel processing. The segments can be interpolated in parallel because
the memory storing the pixel values does not change (eliminating read errors). Each pro-
cess also writes to a different segment in the voxel array (eliminating write errors). Since
many modern ultrasound machines already have the capacity for parallel processing (the
Toshiba Powervision 7000 we used for these examinations contains more than 60 Pentium
processors), a practical implementation of the RBF method is not infeasible.

The greatest advantage of the RBF method occurs with small percentages of removed
data. This is because the underlying shape of the data can be used to interpolate across
small gaps and reduce the effects of outliers (caused by registration errors, for instance).
This is particularly evident in the bladder examination, where the data is very dense and
the shape of the data readily deducible from the remaining data points. The sub-100% data
removal experiments are important in the context of one of the most popular visualisation
techniques, any-plane slicing. Typically, the user wishes to view slices orthogonal or nearly
orthogonal to the original B-scans. Thus, the slice plane is intersected by many of the B-
scans and contains many true data points, as well as many gaps which need interpolating
across. It appears that the RBF method performs especially well in this sort of situation.
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The higher percentage tests are representative of what would happen with faster hand
motion during the examination or a slower rate of acquisition by the computer. When
the gaps become larger, the RBF method loses some of its advantage. The shape of
the underlying data is eventually lost when the gaps become too large. Nevertheless,
with few exceptions, the RBF method performs at least as well as the other methods. It is
possible that the performance of the RBF method can be improved by choosing a different
combination of tension ¢ and smoothing w. But any advantage at low percentages of data
removal results in a trade-off at high percentages. Moreover, the improvements are small.
The results are mainly unchanged as long as the tension ¢ is in the range of [10, 25] and
the smoothing w is in the range [0.01, 0.1].

A much greater potential improvement of the RBF lies with the introduction of
anisotropic tension. It is possible for the tension to be different in different directions.
This is because the RBF functions are invariant to translations and rotations, but are not
scale invariant [11]. This means a change in the scale of the dimensions is equivalent to a
change in the tension parameter. By changing the scale of the three axes individually, the
tension is changed for these three directions. The tension should ideally be high within the
individual B-scans to avoid overshoots, and low in the direction orthogonal to the B-scans
to fill the gaps between them. This will reduce the blurring in the gaps between B-scans
that is evident in these tests.

Although the RBF method produces the lowest values of V', it must be admitted that
the VNN method produces very detailed images at high percentages of removed data. Since
the registration errors are small, the nearest neighbour projections appear to be seamless.
Both examinations of the thyroid and bladder are of organs with a slowly varying shape,
so the projections from different B-scans are similar. But if more complex shapes such
as foetuses are scanned, or the registration errors increase, the boundaries will become
more visible. Moreover, images interpolated across large gaps (which depict projections
of distant B-scans) appear sharp, but are strictly incorrect since the anatomy is featured
in the wrong place.

In summary, however, all four methods perform well on both examinations, and pro-
duce reasonable images when the gaps are kept at realistic levels. It is also true that all of
the methods could be improved or tailored to a particular type of examination. Yet the
point of this paper is not to declare a winner among the different reconstruction methods.
Rather, it is to investigate typical reconstruction techniques on typical examinations and
determine whether a functional interpolation method offers any advantages.

5 Conclusions and future work

The RBF reconstruction method is shown to perform at least as well as traditional re-
construction methods. The RBF method performs particularly well with small gaps, but
loses some of its advantage when larger gaps are present. This is because the RBF method
alone makes use of the underlying shape of the data to interpolate across the gaps. Yet
with large gaps, this shape can no longer be followed and the RBF produces smoothed
averages of the nearby B-scans.

The RBF method can reconstruct simultaneously areas with densely overlapping B-
scans and areas with large gaps, while making a smooth transition between them. The
resulting quality of the interpolated data is good, with no visible reconstruction artifacts
produced in any of the tests. Unfortunately, the RBF method is currently the slowest re-
construction method and is not yet practical in its current form. Yet it is easily parallelised
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and, given more efficient coding techniques, a practical implementation is feasible.

There is considerable scope for future development of the RBF method. First, the
tension should be adjusted to accommodate the nature of the freehand ultrasound data.
Since the pixel data all lie in planes, and are usually separated by gaps larger than the
pixel size, the tension should be higher within the B-scan and lower perpendicular to
the B-scan. It is also possible to introduce weights on the pixels [12] when, for example,
estimates of registration error or signal fall-out are available. Finally, it is possible to
find the optimal combination of tension and smoothing by statistical techniques such as
cross-validation [12].

Since the RBF method alone uses a functional approach, it also offers a number of
unique opportunities. For example, derivatives of any order can be computed directly
from the interpolating function. This may be useful for visualisation, registration and
segmentation. The functional representation may also be useful for data compression. For
lower resolution voxel arrays, the functions can also be passed directly through low-pass
filters for proper anti-aliasing. Since the function usually passes further away from outliers
(when a non-zero smoothing parameter is used), the regions with high predictive error can
be determined. This may be useful, for example, for investigations into registration errors.

In summary, this paper demonstrates that the RBF interpolation method holds con-
siderable promise for reconstructing 3-D freehand ultrasound data. The RBF method is
shown to be at least as good as the traditional reconstruction methods for two represen-
tative examinations. Many opportunities also exist to exploit the unique properties of the
RBF method.
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