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Abstract

In this paper we propose a novel, efficient and geometrically intuitive method to compute
the four components of an affine transformation from the change in simple statistics of im-
ages of texture. In particular we show how the changes in first, second and third moments of
edge orientation and changes in density are directly related to the rotation (curl), scale (di-
vergence) and deformation components of an affine transformation. A simple implementation
is described which does not require point, edge or contour correspondences to be established.
It is tested on a wide range of repetitive and non-repetitive visual textures which are neither
isotropic nor homogeneous. As a demonstration of the power of this technique the estimated
affine transforms are used as the first stage in shape from texture and structure from motion
applications.

1 Introduction

Structure from motion (or stereo) and shape from texture can sometimes be conveniently analysed
in a two stage framework. The first stage involves the estimation of image velocities (disparities)
in structure from motion (stereo) or terture gradients in shape from texture [11]. The second stage
involves their interpretation to infer the viewer motion and/or the distance and shape of the visible
surfaces.

In structure from motion relative motion between the viewer and scene induces distortion in
image detail and apparent shape. In small neighbourhoods and for smooth surfaces this distortion
— the image velocity field or disparity field — can be conveniently described by an image translation
and a four parameter affine transformation [19, 18]. In shape from texture the distortion in a given
direction of an image of a surface with a repeated texture pattern — texture gradients — can also
be modelled by affine transformations [14, 23].

The estimation of an affine transformation is often an integral part in recovering the image
velocity field and distortion map. Better still the affine transformation can be decomposed into
four components (translation, change in scale (divergence), image rotation (curl) and shear (defor-
mation)) [19] which are related to the scene structure and viewer’s motion in a simple geometrically
intuitive way.

Many methods have been proposed in the literature to extract the affine transformations from
an image sequence (structure from motion) or between different parts of a single image (shape
from texture). These can be broadly divided into methods which require the correspondence of
features or tokens and methods which exploit the temporal coherence in an image sequence and
avoid the correspondence problem.

The simplest method is based on the accurate extraction of points or corner features and their
correspondences [16]. The image motion of a minimum of three points (provided they are not
colinear) is sufficient to completely define the affine transformation. Unfortunately many corner
finders produce poorly localised features which are often temporally unstable [9, 17, 25, 12, §]
although clusters of corners can be used [27]. The technology for edge detection is more advanced
than isolated point detection. Reliable, accurate edge detectors which localise surface markings to
sub-pixel accuracy [7] can be used to recover the normal (vernier) component of velocity at edges. A
minimum of six normal velocities can then be used to compute the affine transformation [24, 28].
Both corner and edge detection and tracking required finding correspondences over the image
sequence. This becomes a non-trivial problem when the image motion is large or in densely textured
images. Cipolla and Blake [8] presented a novel method to recover the affine transformation of



a deforming closed contour from the integral of simple functions of the normal image velocities
around image contours. This integration provided some immunity to image measurement noise.
This is equivalent to measuring the temporal changes in the area of a closed contour. Although
this method did not require point or line correspondences the extraction and tracking of closed
contours is also not always possible in richly textured images.

A large number of techniques have been developed which avoid the extraction and explicit
correspondence of tokens or features. For small visual motions or distortions a common method is
to estimate the affine transform from spatiotemporal gradients of image intensity from the motion
constraint equation [22, 1, 3]. The amount of visual motion allowed (especially rotation) is limited
by the smoothing scale factor. For larger image motions brute force search techniques (again not
requiring correspondence) have been used [13].

For estimating the texture distortion map Malik and Rosenholtz [23] and others [2, 29] have
attempted to solve for the affine transformation in the Fourier domain although this involves the
choice of a suitable window and is computationally expensive. A more common approach exploits
the second moment statistics of image edge orientations. Under the assumptions of directional
isotropy [31] in the real texture it is possible to estimate the surface orientation from the second
moment matrix of image element orientations [15, 6, 4]. Modifications of the second moment
matrix which also exploit image intensity gradients have also been used [21, 10]. It is, of course,
impossible to recover the affine transformation (four independent parameters) uniquely from the
second moment matrix (which is symmetric and positive semidefinite). (This is equivalent to
the “aperture problem in the large” [30] when trying to distinguish the rotation (curl) and pure
shear components (deformation) in the distortion of an ellipse under small viewer motions.) In
many existing schemes restrictions on the class of texture — isotropy or homogeneity — or on the
stereo geometry [10] allowed an incomplete solution. As Malik and Rosenholtz [23] all four affine
parameters are needed to completely specify surface position and 3D shape for a general repetitive
texture. All four parameters of the affine transformation are also required for an arbitrary stereo
configuration or in structure from motion.

In this paper we propose a novel, efficient and geometrically intuitive method to compute the
four components of an affine transformation from the change in simple statistics of the images
of texture. In particular we show how the changes in first, second and third moments of edge
orientation and changes in density are directly related to the rotation (curl), deformation and scale
(divergence) components of an affine transformation. A simple implementation is described which
does not require correspondences to be established. It is tested on a wide range of repetitive and
non-repetitive visual textures which are neither isotropic nor homogeneous. As a demonstration
of the power of this technique the estimated affine transforms are used as the first stage in shape
from texture and structure from motion applications.

2 Theoretical Framework

2.1 Decomposition of the Affine Transformation

Generally, an affine transformation, A, can be described by the product of an isotropic scale, .S,
and matrix, U, whose determinant is equal to one.

A=SU (1)

Furthermore, the matrix, U, can be decomposed into a symmetric matrix, D, which we will call
the geometric deformation and an asymmetric 2D rotation matrix, R. An affine matrix can thus
be described with these three fundamental transformations:

A= 5(s)R(0) D(a, p) (2)

where the isotropic scale, S, is specified by a scale parameter, s, and the rotation, R, is specified
by an angle, 6:

so =[5 0] ®)



(4)

sinff  cos@

R(0) = [0059 —s1n0]

The deformation, D, is specified by an axis of deformation, u, and a magnitude of deformation,
a, and can be described using a rotation, R(u), and symmetric matrix, M(«), whose eigenvalues
are o and %

D(a,p) = R(p)M(a)R" ()
_ |cosp —sinp||a O cosp  sinp
o [sin,u cos p ] [0 é] [—sin,u cos,u]
Lsin®p+acos?py (a—L)sinpcosp 5
[(a—%)sinucos,u asin2p+§cos2u:| (5)

Deformation is equivalent to a pure shear which preserves area, i.e. an expansion by a factor, «,
in the direction, p, with a contraction by the same amount in a perpendicular direction.

2.2 Relationship between Changes in Image Orientation and the Affine
Transformation

We now investigate the effect of these components of the affine transformation on the orientation
of image detail.
Consider an element of texture represented by an unit vector, v, with orientation, ¢.

v = [cos p, sin ¢]

The affine transformation, A, transforms the vector, v, into v/ and changes its orientation by A,
so that the transformed vector, v/, has new orientation ¢’ = ¢ + Ap.

The change in orientation, A, caused by the affine transformation can be computed from the
vector product (A) of v and v’ (note that in general the transformed vector v/ will no longer be a
unit vector).

|[v AV/|

vIlv’|

sin(Ayp) (6)

Let us consider the effects of each component of the affine transformation on orientation. Let
the deformation, D, change v into v” such that:

v = D(a, p)v (7)

Then this vector, v/, is transformed by S and R to v’ such that:

vl = S(s)R(O)V" (8)
Substituting (8) into (6):
. (v .v'"y . |[v Av"|
A = -— 0+ ——— 0
sin(Ag) VIV sin 6 + Vv cos

cos(Apgq) sin 6 + sin(Apg) cos 0
sin(0 + Aypy) (9)

where (-) means inner product. Equation (9) trivially shows us that the change in orientation, Ay,
can be written as the sum of two components: one due to rotation, ¢, and one due to deformation,
A(pd.

Ag =0+ Ap, (10)



Note that the isotropic scale, .S, does not affect orientation, while the change in orientation due to
the deformation term (described below) depends on the initial orientation, ¢, the axis of deforma-
tion, u, and magnitude of deformation, o.

. |[v AV
B

Ve sin®(¢ — 1) + a2 cos?(p — 1)

If the magnitude of deformation is small, the change in orientation can be described as follows

from (10) and(11).

Ap~0+ (= —a)sin2(p — u) (12)

Q|

N | —

If we consider the change in the relative orientation between two oriented elements, Ap; — Aps:

Afpr — pa) ~ (i - a) sin(p1 — ¢2) cos(p1 + 2 — 2p) (13)

We notice that rotation, R(f), changes the orientation of all the elements equally, and does
not affect relative orientation between two elements. Relative orientation (13) are only affected
by deformation. Koenderink and Van Doorn [20] derived a similar approximate equation for small
displacements.

2.3 Change in Area and Density

We will now consider the effect on the area and density of a texture under an affine transformation.

By definition, area will only be affected by the scale, S(s). Consider an area, a, described by
two vectors, vq,va, which is transformed into area, a’, composed by transformed vectors, v’l,v’%,
by the affine transformation. Then, the transformed area, a’, computed by vector product of vy
and v’2 can be described using the original area, a, as follows:

a = |v]Avy (14)
= s”(sin® p + cos® /1)2 (cos g1 sin g — sin @1 cos @s) (15)
= Pl Aval (16)
= s’a (17)

where, ¢1, @2 are the orientation of the vector vq and v respectively. Then, the scaling factor,
s, 1s:

st = — (18)

For homogeneous texture, the density of texture elements will be scaled inversely by the same
amount:

(19)

where, p and p’ are the densities of texture elements in the original and transformed image respec-
tively.



3 Texture Moments under Affine Transformation

In this section, we propose a novel method to calculate the four parameters of the affine transfor-
mation reliably without any correspondence of spatial image features (i.e. corners, edges or closed
contours) using moments of the orientation and density of the texture. In previous work on shape
from texture, the texture was often assumed either to be spatially homogeneous or isotropic in
orientation, though such kind of texture are limited in the real world. Here, we consider any visual
pattern in the real world as a texture, and consider the change in the statistics of the visual texture
under an affine transformation.

Consider the texture to have oriented elements with distribution, f(¢), which will be changed
to f'(¢) by an affine transformation. From (12), the rotation term, R, changes the orientations of
the texture elements equally. This means that rotation is related to a shift in the mean value of
f(y) (the first moment of f(y)), and does not affect higher moments. The deformation term, on
the other hand, depends on the original orientation of the element and hence affects the variance
of f(¢) (the second moment). Furthermore, because there is a term p in the deformation term, we
can infer that the changes in the distribution of orientation will not generally be symmetric about
the mean of the orientations, (except for the case when 4 = 0) and hence the skewness of f(¢) (the
third moment) will be affected. Fig.1 shows the changes in distribution due to the deformation,
and we can find out the effect of the deformation mentioned above. Thus changes in first moment
of orientation are related to the rotation, R, and the deformation, D. Changes to the second and
third moments are only affected by D. As above scale, S, affects the area of texture elements and
their density, leaving orientations unaffected.
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Figure 1: Distribution of the orientation of the original and deformed texture elements. Original
symmetric distribution (dashed line) is changed to asymmetric distribution (solid line) by defor-
mation whose axis is not 0 or 90 degree. The axes of deformation are 0, 10, 20, ..., 90 (deg) from
the lowest distribution respectively.

We show below how these simple geometrically intuitive relations can be used to directly recover
the parameters of the affine transformation from changes in the density and orientation statistics
of image textures. Better still this can be done without making explicit point, edge or contour
correspondences. The derivation follows.

From (12), an element with orientation ¢ is transformed into ¢’ such that:

¢ = p+0+Asin2(p—p)
= @40+ A(sin 2 cos 2u — cos 2 sin 2) (20)



where, A is related to the magnitude term of the deformation by:

A:%G—a) (21)

The change, Al,, in the first moment of f(¢), in terms of the rotation, ¢, axis, yu, and magni-
tude, A, of the deformation is given by summing equation (20) for all elements.

Al, = AIsn2pc082p — Leogapsin2u) + 6 (22)

where, Iin 2, and o2, are the mean values of sin 2¢ and cos 2¢ respectively.

If we assume that the deformation is small, that is A < 1, then we can derive the relationships
between the changes in second and third moments, Al,,, Al,,,, and the rotation and deformation
in closed form (Appendix A). They are given by:

Al,, = 2X{ypsin2p €08 24 — Iy cos 2, SIN 241) (23)
Al = 3A(Ipzgin 2, OS2 — L2 cos 20 SN 241) (24)

where I, sin 2 and I, cos 2 are the covariances between ¢ and sin 2¢, and ¢ and cos 2¢ respectively.
I, 6in 2, and I,z cos9, are third moments. Note that the first moment is related to the deformation
and the rotation. The second and third moments are related to the deformation only, and the
change in scale does not affect any of the moments of orientation.

The rotation, @, the axis of deformation, pu, and the magnitude of deformation, «, can be
computed from:

1 M,
= Ztan ! (= 2
wo= e (o) (25)
1
° = <\/M12 + M3 +4M3 — /M7 + M22> (26)
1
0 = ALp - m (Isin QLpMz - IcosZLle) (27)
where:
My = 3Algplu2ginap — 21001 sin 20 (28)
My = 3AIgplu2 0520 — 2A100010 cos 2y (29)
M; = 3 (Lpz cos2<p-[£p sin 2 — LpZ sin Z@Lp cos Zap) (30)

The special case where M3 = 0 does not occur in practice. The change in scale, s, of the affine
transformation can be obtained from the first moment of density or area of the texture elements
using (18) and (19). Having computed the rotation, 6, the axis of deformation, y, the magnitude
of deformation, «, and the change in scale, s, we have recovered all four independent parameters
of the affine transformation.

The properties of the proposed method are:

1. It does not require correspondence of individual image features.
2. It allows much greater interframe motions than spatio-temporal techniques.

3. The method relies on the comparison of statistics of the image patches. This will only be
meaningful if the two patches are projections of “world” textures with similar properties.
This therefore requires that corresponding areas of interest are identified.

4. The recovery of scale from the texture density assumes that the texture is homogeneous.
If, instead, we can determine the changes in area of the texture elements [21], this
assumption is no longer required.

For efficiency we have chosen to use a combination of linear and circular moments. In fact
linear moments suffer from an aliasing problem, i.e. linear moments have singular points at angles
of 0 and w. This is avoided by using circular moments, generating a symmetric distribution by
representing each orientation twice (¢, and ¢ + ) or shifting the origin of the distribution.
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4 Implementation

4.1 Detection of Local Direction

The proposed method first detects the edge points and their orientations [7] (Samples should in
principle be random though this was not implemented for simplification). The accuracy of the
orientation estimates is important and a typical corner finder — in fact the Noble’s corner detec-
tor [26] — was used to reject high curvature points and corners. This is because the orientations
at these points cannot be accurately determined due to lack of local image support [12].

4.2 Calculation of The Affine Transformation

Once the orientations of edges in both the original and transformed images have been estimated
the directional moments of equation (22) - (24) can be computed. Equation (25) - (27) allow the
estimation of the rotation and deformation components of the affine transformation.

The change in the scale can be obtained from the ratio of the numerical density of the texture or
the ratio of the area of the subjects [8] between the original image and the deformation image. In
this preliminary implementation we have used a simple estimation method using the edge density.
If the deformation is small and the sampling is random, the ratio of the number of the edge
points is equal to the ratio of the numerical density of the texture. Unfortunately this requires
spatial homogeneity. An alternative method to compute the scale is presented by Lindeberg and

Garding [21].

5 Experiments

5.1 Preliminary Results

In this section, we will present several results which show that this method does not need any
assumptions like directional isotropy or spatial homogeneity to estimate the rotation and the
deformation, though we need homogeneity of the texture to compute the scale component properly.
Fig.2 shows the results from this method tested on a wide range of images. To demonstrate the
accuracy of the extracted affine transform we have chosen to assume that the original images (left
most images in Fig.2) are of textures on a fronto-parallel plane and we use the affine transformation
to estimate the new orientation of the plane assuming it is viewed under weak perspective (second
column of images in Fig.2). The two ellipses in Fig.2 show that the estimated orientations are
qualitatively good even with non-uniform textures. Table 3.1 compares the accuracy of this method
quantitatively for each sample image with the known fiducial orientation. The accuracy is seen to
degrade when the texture in the image does not have preferred orientations. This was caused by
filtering of orientation to avoid aliasing problem of linear moments.



Figure 2: Results of preliminary experiments. Examples of the images distorted by arbitrary
affine transformations were processed by our affine transform from texture moments algorithm.
Images in the first and second column are fronto-parallel and transformed images respectively after
changing the position and orientation of the plane viewed under weak perspective. The estimated
orientations (left ellipses) and true orientations (right ellipses) of the transformed images are shown
using normal vectors and oriented circles whose size and shape correspond to the scale change and
distortion. Examples include (a) single triangle, (b) randomly oriented lines, (c) oriented grass,
(d) leaves, (e) a cloth with texture and (f) stained glass as an example of a non-uniform texture.



(See previous page for the caption.)

Table 3.1 Accuracy of the surface parameters, scale, s, rotation, 8, tilt, 7, and slant, o.

True Estimated
Images s | 0C) | )| o) s| 0C) | )| o)
(a) triangle 1.0 0.0 30.0 15.0 1.0 0.0 30.0 15.0
(b) lines 1.0 5.0 | 135.0 20.0 0.98 3.8 | 133.0 25.1
(c) grass 0.95 5.0 60.0 25.0 0.95 5.1 60.3 24.8
(d) leaves 1.0 0.0 | 120.0 25.0 0.99 2.7 | 117.0 25.8
() cloth 0.95 5.0 60.0 25.0 0.92 5.4 56.6 34.0
(f) stained glass | 0.95 0.0 | 100.0 25.0 1.02 2.3 | 1123 26.9




5.2 Exploiting the Affine Transformation

A second method for testing the accuracy of this method is to apply the results to real applications
which can exploit this visually derived information. We consider two examples: a simple application
of shape from texture [23] and then an example in which the divergence, curl and deformation
components are used in qualitative visual navigation [§].

5.2.1 Shape from Texture

For a repetitive texture on a curved surface the texture distortion in different directions is well
modelled by an affine transform and the scale and deformation components of this affine transform
can be used to recover the relative orientations and positions of the surface patches [23].

As a simple example consider the affine transform relating the distortion between a patch
which is fronto-parallel and another which has an orientation specified by tilt, 7, and slant, o. The
orientation can be recovered directly from the deformation component of the affine transform:

5 (31)

o = cos? (;) (32)

A similar relationship can be derived between two image patches with arbitrary orientations [10].

Fig.3 shows the result of using affine transforms by the method presented in this paper to
recover the shape of a curved surface. Fig.3 (b) shows the estimated surface orientation of (a). The
proposed method derives qualitatively good results, though there are some errors in the estimated
orientations. These errors arise from:

T = p+

1. the difference of the sampling areas;
2. errors caused in the sampling of orientation;

3. small deformation approximation used in the proposed method.

10



Figure 3: Shape from texture using the affine transform. Surface orientation of patches on a
cylindrical object are estimated using the affine transform from texture moments. Estimated local
orientations at each point are shown in (b) using oriented circles and their normal vectors.
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5.2.2 Qualitative Visual Navigation

In the next application, we will show how a moving observer can determine the object surface
orientation and time to contact from the affine transformation estimated from texture moments.
The relations between the motion parameters and the surface position and orientation are given

by [18, 8]:

curlv. = -2 -Q+|FAA] (33)
20 -

divw = )\Q+F-A (34)

defv = |F|[A] (35)

where, curl v, div v and def v are the curl (rotation), divergence (scale) and deformation compo-
nents of the image velocity field respectively. U is the translational velocity, €2 is the rotational
velocity, Q is the viewing direction, A is the component of the translational velocity parallel to
the image plane scaled by distance and F represents the surface orientation as a depth gradient.
The axis of deformation, p, bisects A and F,

/A4 (F

: (36)

The geometric significance of these equations is easily seen with a few examples. For example
a translation towards the surface patch leads to a uniform expansion in the image encoded as
a change in the scale. This determines the distance to the object which due to the speed—scale
ambiguity is more conveniently expressed as a time to contact, %.:

A

te=
U-Q

(37)

A translational motion perpendicular to the visual direction and parallel to the horizontal axis
of the image plane results in image deformation with a magnitude determined by the slant of the
surface and an axis determine by the tilt. In this case the axis of deformation bisects the tilt angle
and direction of translation in the image. Changes in scale and rotation will also occur.

Fig.4 and 5 shows the images taken from the moving observer, motion and optical direction are
parallel in Fig.4 and perpendicular in 5. Table 3.2 shows the results of estimation of tilt angle of the
surface and time to contact computed from Fig.4 and 5. Good accuracy of estimated divergence
and magnitude of deformation exploit the good result of time to contact. The systematic error
shown in the result of tilt angle was caused by the computation error in the axis of deformation
which is related to the error in rotation.

12
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Figure 4: Two images used in the experiments for visual navigation.
Two images are taken from a moving observer. The observer moves towards the object along the
optical axis. The time to contact, estimated from the change in scale, is shown in table 3.2.
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Figure 5: Two images used in the experiments for visual navigation.

Two images are taken from a moving observer. The observer moves in the direction perpendicular
to the optical axis from left to right. The axis of deformation recovered from the texture moments
can be used to compute the tilt angle of the surface (shown in table 3.2).

Table 3.2 Tilt angle and time to contact. Scale, s, rotation, #, axis and magnitude of the

deformation, p, a, recovered from the texture moments were used to compute the time to

contact, t., in (a) and tilt angle of the surface, 7, in (b). Mean values and variances were
estimated by changing the area of interest in each image.

[ Images ‘ s | 6(°) | a | w® | ()] te ||
True 1.20 0.0 1.0 - - 10.0
‘ (a) parallel | Estimated | 1.19£0.07 | 0.1 £0.1 1.01 £0.01 - - | 104£3.2
perpen- | True 1.04 3.2 1.07 28 56 o0
‘ (b) dicular Estimated | 1.03 & 0.01 1.34+0.1 1.074+0.001 | 33+2 | 66+4 882 + 496

13



5.3 Theoretical Comparison with Other Methods

In this section we compare the theoretical error and sensitivity to noise of this method with those
of the second moment method proposed by Kanatani [15].

5.3.1 Review of Kanatani’s Method

It has long been known as the Buffon transform from a stereological point of view, that the
probability function, f(6), of the orientation of the image features, #, can be described using
the expected number of intersections, N(¢p), of sampling lines whose orientation is ¢ with image
features as follows:

2w
Nig)= [ lsin(o=0)l(0)as (39)
Kanatani showed the inverse formula of this Buffon transform using Fourier series.
lcv 00 y
Fo) = o 1-— nz_;(n — 1)(Ap cosnf + By, sinnd) (39)
2w
¢ = N(p)de (40)
0
2 2
A, = —/ N(p) cos npdyp (41)
CJo
2 2T
B, = —/ N(p) sin npde (42)
¢ Jo

Comparing each coefficient of this inverse Buffon transform with Fourier coefficients of the dis-
tribution of orientation of the image features, he derived the next relations between slant, o, tile
angle, 7, of the surface and the second Fourier coefficients, Az, Bs, of the inverse Buffon transform
as follows:

2

A = (g—(BZ)Z)(A'z—A2)+A232(B§—32) (43)

B = MBy(A = A)+ (& — (42))(Bs ~ By) (44)

7 o= A4 BN — ()~ (Bl (15)
1. B .

T = §tan 1 (ifA<0) (46)
1. B 1 .

§tan 1Z+§ﬂ' (ifA>0) (47)
m—1 Ik m—1

Ay = 2ZNkcos(W)/ Ny (48)
k=0 k=0
m—1 . Ik m—1

By, = 22Nksm(7)/ Ny (49)
k=0 k=0

(50)

where, Ni is the number of intersections in the £th sampling of total m samplings. As and Bs are
the second Fourier coefficients of the inverse Buffon transform in the original image, and A, and
By are those in the deformed image respectively.

5.3.2 Comparison of the Theoretical Error

Both methods use approximations to solve the problem in closed form, and these approximations
cause theoretical errors in the estimated orientation of the surface. Fig.6 and Fig.7 shows compar-
ison of the error caused by approximations of proposed method with that of Kanatani’s method.

14



The proposed method has good accuracy in slant and tilt angles in both isotropic and anisotropic
textures, although accuracy of Kanatani’s method degrades rapidly with slant and tilt angles, es-
pecially in anisotropic texture.

5.3.3 Comparison of the Noise Sensitivity

Noise sensitivities of these two methods are shown in Fig.8 and Fig.9. The random gaussian
noises whose standard deviations are 0.5 degree are added to the orientation data. The slant
estimated by the proposed method is less affected by noise than that of Kanatani’s method in
isotropic textures, although both methods are weak to noise in the case of small slant, especially
in anisotropic textures. The tilt angle estimated by the proposed method is less affected by noise
than that of Kanatani’s method especially in anisotropic textures. Generally, both methods are
more sensitive to noise in anisotropic textures than in isotropic textures. This is because the noise
makes it difficult to distinguish the axis of deformation and rotation, if the texture pattern has
less variety in orientation.

15
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Figure 6: Results of the theoretical error analysis in the case of isotropic texture. (a) and (b)
show errors in slant and tilt angle of the surface respectively. The solid line shows the error of the
proposed method, and dashed line shows that of Kanatani’s method.
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Figure 7: Results of the theoretical error analysis in the case of anisotropic texture. The anisotropic
texture used in this experiment has gaussian distribution whose mean value is 0 degrees and
standard deviation is 20 degrees. (a) and (b) show errors in slant and tilt angle of the surface
respectively. The solid line shows the error of the proposed method, and dashed line shows that
of Kanatani’s method.
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Figure 8: Results of the noise sensitivity analysis in the case of isotropic texture. (a) and (b) show
errors in slant and tilt angle of the surface respectively. These errors were caused by the gaussian

noise whose standard deviation is 0.5 degrees. The solid line shows the error of the proposed
method, and dashed line shows that of Kanatani’s method.
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Figure 9: Results of the noise sensitivity analysis in the case of anisotropic texture. The anisotropic

orientation data used in this experiment has gaussian distribution whose mean value is 0 degrees
and standard deviation is 20 degrees. (a) and (b) show errors in slant and tilt angle of the surface
respectively. The solid line shows the error of the proposed method, and dashed line shows that
of Kanatani’s method. These errors were caused by the gaussian noise whose standard deviation
is 0.5 degrees.
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6 Conclusions

In this paper we proposed a novel, efficient and geometrically intuitive method to compute the
four components of an affine transformation (i.e. rotation, axis of deformation, magnitude of
deformation and scale) from the changes in first, second and third moments of edge orientation
and changes in density. This method does not require point, edge or contour correspondences to
be established. It is extremely simple and efficient and the four parameters are linked to changes
in orientation and texture density in a geometrically intuitive way.

Preliminary results have been presented and tested in simple applications exploiting the derived
affine transformation. The estimated affine transformation has been of useful accuracy. The
remaining problems of this method are:

e Selection of the Area of Interest: In this method it was assumed that the sampling area
of the original image and that of the transformed image correspond to the same region of
texture. In the above implementation we have simply sampled equal areas in both images.
In practice the affine transform will distort the position, size and shape of the sample and
thus an error in the computed affine transformation will result for textures which are not
homogeneous.

It is of course possible to make these two sampling areas equivalent by using the estimate
of the affine transform to define the new region and improve the accuracy of the estimates,
using iterative schemes.

e Aliasing Problem: Generally linear moments suffer from an aliasing problem, i.e. linear
moments have singular points at angles of 0 and 7. This is avoided by using circular moments,
generating a symmetric distribution by representing each orientation twice (¢, and ¢ + ) or
shifting the origin of the distribution.
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Appendix A

As shown in equation (12), the absolute orientation of the transformed vector ¢ is:

/

¥

o+ 0+ Asin2(p — p)
= @40+ A(sin2¢p cos 2u — cos2p sin 2u) (51)

where,

Summing equation (51) for all elements in the sample:

¥

= I, 4+ AMJsin 20 €08 24 — Loog 2SI 21) + 6 (53)

Iy

where, I, and I, are the mean value (first moment) of the original orientation, ¢, and the deformed
orientation, ¢', respectively. Isn 2, and I.os2, are the mean values of sin2¢ and cos2¢p. Taking
the difference, Al,, between I, and I,:

Al, = AIsn2pc082p — Ieogapsin2u) + 6 (54)

The second moment, I+, of the deformed orientations is:

bl

1
]LPILPI = NZ(QOI—[QI)Z
= Toe + 2X(cos 2ul, sin 20 — SN 2Ty cos 25
+2%(cos? 2ul 2 2p — 28in 241 c08 20t Lin 2 cos 20 + sin? 2pl o 2) (55)

where I, is the variance of original orientations, I, sin2, and I, cos2, are covariances between ¢
and sin 2, and ¢ and cos2¢p respectively, Igy29, and I, 5, are variances of sin 2¢p and cos 2¢
respectively, Isinapcos2p 15 a covariance between sin 2¢ and cos 2. If the deformation is small,
a ~ 1 and A < 1. Then, to a first order approximation, the second moment of the deformed
orientations is given by:

Ipigr = Tpp 4 2X(cos 20, 6in 2 — SIN 241 cos200) (56)
Then, the change in the second moment, Al,,, between I, and I, is,
Aly, = 2A(Iysin2p c0s 20 — I cos2¢ 51D 211) (57)

The third moment, I, of the deformed orientations is (with subscripts explained as above):

1 3
lover = g, 08 1)
= Iypp + 3A(cos 2l p2 6in 2y — SIN 2pd 52 g 2)

+3X2%(cos? 2411, gin2 2 — 2810 21 €08 20115 6in 2 cos 20 + sin? 241 cos2 25

+23(cos® 2ul,s 2 — 3 cos? 2 sin 2ul, 2 20 cos 2

+3sin? 2p cos 2 eog2 20 sin 2 — sin® 2p I 2%) (58)
For small deformations:

Tprgrer = Ippp 4 3A(c0o8 20142 gin 2 — SIN 20152 cos 2 (59)
and a change in the third moment, Al,,,, between I,/ and I, is given by:

Aoy = 3MIp2sin 25 €08 2 — L2 cog 20 SN 241) (60)
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