Off-line Handwriting Recognition:
A Review and Experiments

A.W.Senior
CUED/F-INFENG/TR 105
December 1992

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

Email: aws@eng.cam.ac.uk

Off-line Handwriting Recognition:
A Review and Experiments

Technical Report CUED/F-INFENG/TR 105

A.W . Senior
Cambridge University Engineering Department
Cambridge, England.

December 1992

Abstract

Computer handwriting recognition offers a new way of improving the human-computer
interface and of integrating computers better into human society. A review of computer hand-
writing recognition aims and applications is presented, followed by a description of relevant
psychological research. Previous researchers’ approaches to the problems of on-line, off-line
and isolated character handwriting recognition are described.

A complete system for automatic, off-line recognition of handwriting is detailed, which
takes word images scanned from a handwritten page and produces word-level output. Normal-
isation and preprocessing methods are described and details of the recurrent error propagation
network, Viterbi decoder and durational modelling used for recognition are given. Results are
reported for experiments on a single-author cursive script database.

1 Introduction

1.1 General review

One of the wider aspirations of the field of artificial intelligence, if one forgets for the time being
the longer-term goals of analysing and emulating human intelligence, is simply to enable computers
to accomplish tasks which are natural to people. Thus computers should be better able to interact
with people and act within the world in a less constrained manner than has previously been possible.
These aims are reflected in the more modest attempt by the computer industry to make computers
increasingly ‘user friendly’. In this vein, computers have come out of laboratories and into homes
and offices; we communicate with them using mice and keyboards rather than punched cards and
toggle switches. Handwriting is a natural means of communication which nearly everyone learns
at an early age. Thus it would provide an easy way of interacting with a computer requiring no
training to use effectively, and a computer able to read handwriting would be able to process a
host of data which at the moment is not accessible to computer manipulation.

After this argument, it seems surprising how little research has been carried out in recognition of
handwriting by computer. One argument advanced is that the optimism in the speech recognition
community about the abilities of machines which were about to arrive made people feel that other
approaches were unnecessary. While some of the promises of speech recognition by machine have
already been fulfilled, and researchers are still optimistic, some of the benefits have been slow
to come, and people have thought again about what is required of human-computer interfaces.
Though speech is a very convenient form of communication, it is not always the most practical. In
noisy environments, those where silence is important, or where a large number of people must work
with computers, it is clear that voice input is not the best solution. While computer professionals
and secretaries would be loth to give up the convenience and speed of a keyboard, for computer

HANDWRITING

ONLINE OFFLINE
TEXT SIGNATURE
RECOGNITION IDENTIF|CATION VERIFICATION

Figure 1: Subdivisions of machine handwriting recognition (after Plamondon & Lorette)

illiterates, portable or small-scale use, handwriting entry is clearly of practical value, leading to
the growth in the last year or two of ‘pen computing’ [19]. As the Economist recently suggested,
“Today’s biggest prize in computer vision, however is text and handwriting.... A market probably
worth billions for ‘pen-based computers’ awaits a solution.” [9]

1.2 Classifications of the field

Having established the importance of automatic handwriting recognition in general, it is useful
to examine the field more closely and to identify several areas of handwriting recognition with
different applications and requiring different approaches.

On-line versus off-line

The major division of the field is between on-line and off-line systems. While there are a number
of intermediate stages which could be distinguished, handwriting recognition systems are generally
polarised between those receiving their data directly from some sort of pen device attached to
the computer [15,22,78], and those which recognise handwriting already present on a piece of
paper [69,70] — a handwriting equivalent of the Optical Character Recognition (OCR) already
widely used for reading printed matter. So far, the majority of systems have tackled the easier,
on-line, problem where the time ordering of strokes is available as well as pen up/down information;
overlapping strokes can easily be distinguished and stroke positions are accurately known. On the
other hand, off-line systems have to cope with the vagaries of different pen types, wide strokes
which frequently overlap and a complete lack of ordering information (though this is not strictly
true as some stroke-ordering information can be determined off-line [75]). The growth of pen
computing has seen much investment in on-line systems, but the difficulty of off-line recognition
has so far deterred research. Although applications and techniques vary considerably, the general
taxonomy of both off- and on-line handwriting analysis is similar as shown in figure 1 and described
in the following section.

Author i1dentification versus content determination

A second dichotomy in the field, orthogonal to the on-/off-line division is according to the infor-
mation to be extracted from the handwriting. In both approaches, we may wish to determine the
author of the writing, the words and meaning of what has been written, or both. However, these
two requirements result in very different approaches, which diverge, and the processing involved
may not overlap. Techniques also differ depending on whether the author is to be recognised from
a signature or from a piece of text.

If we wish to determine the author of a piece of text or signature, the distinction is made between
verifying that the author is the claimed author (for instance in security or banking applications) or
merely deciding between a pool of known authors, for instance in an elementary writer-adaptation
system. The former is the more useful, but of course the harder problem. Plamondon & Lorette [57]
give an overview of handwriting systems, and a thorough review of signature verification systems.

Writer independence

The whole field of handwriting recognition is similar to the already well-developed subject of auto-

matic speech recognition, which is often classified along the lines of speaker dependence, vocabulary

size and isolated /continuous word. We find analogues to each of these in handwriting recognition.

Writer Dependence: Because of the enormous diversity of handwriting styles (as with spoken
accents and idiolects) it is much more difficult to devise a system to recognise many peoples’
handwriting than one which need only recognise that of a single author. Ways of overcoming
the problem of multiple writers include a general recognition system which is able to adapt
to the current writer, or having many systems, each recognising one style of handwriting
(or one individual’s handwriting) and a global system to select which should be used in any
particular circumstance.

Vocabulary Size: The task of recognising words from a small lexicon is much easier than from a
large lexicon (where words are more likely to be similar to each other). Thus an important
criterion in assessing system performance is the size of the lexicon used. For most practical
purposes a lexicon of 60,000 words is adequate, and for specific domains (such as reading
cheque values in words or postal towns from envelopes) the vocabulary can be much smaller.

Isolated Characters: Segmentation of continuous speech into its component words has been
found to be very difficult since in natural speech words run together with no silence between.
For simpler tasks the recognition is made easier by forcing the speaker to pause between
words. Similarly for handwriting it is hard to distinguish the boundaries between letters —
the difference between ‘ui’ and ‘iu’ or ‘vv’ and ‘w’ is very slight. The task can be simplified
by forcing the writer to separate letters, to write in capitals or to write clearly separated
capitals in pre-printed boxes. For high accuracy data this may always be unavoidable since
we already require these constraints to enable human readers to decipher official forms. We
can place a similar constraint on cursive words, forcing the author to write each word in a
separate box, but the word segmentation problem should prove less difficult, and less strict
constraints could still ensure high accuracy segmentation of a page into its component words.

1.3 Applications

This section reviews some of the more important applications that may be envisaged for off-line
handwriting recognition. Perhaps the largest immediate application is in using off-line techniques
for on-line handwriting recognition. Since this involves throwing away the time information, at
first this seems to be a poor method. However, by not relying on this, we free ourselves from a
source of mis-information. For instance, in current on-line systems, an ‘o’ written clockwise must
be recognised differently from an ‘o’ written anticlockwise, for in the time sequence information,
they appear different. Someone who writes ‘ana’ may subsequently return to extend the final
a’s stroke to make the word read ‘and’, but this change would be lost on a machine relying on
the time-ordering of strokes. On the other hand, an off-line approach ignores these factors and
simply looks at the final position of the strokes, reading the same information as is available to
a human reader. Given this information, it may be seen that an off-line approach is also more
likely to be extendable to a writer-independent reader, since one source of variation is eliminated.
Conversely, it is precisely this sort of information which we need to preserve when creating an
author verification system.

Cheques

One important commercial application for off-line cursive script is in the machine reading of bank
cheques. Given a system with a limited vocabulary (about thirty-five words) but with high accuracy
independent of author, one could imagine a system which would check that the amounts in figures
and digits matched. Given a system that achieved high accuracy without a lexicon, one could also
check that the payee corresponded to the account to be credited. (Of course, such a system might
well include signature verification.) Given the number of cheques passing through the banking
system each day, such a system, even if only able to confidently verify half of the cheques, would
save much labour on a tedious and unpleasant job. In fact the project supported by the French
post office has the goal of achieving a 0.01% error rate but permitting 50% of cheques to be rejected
for manual sorting. Further, security would be improved since it is currently impossible to verify
the signatures on cheques except those already singled out as suspect.

From postcodes to addresses

Off-line systems capable of recognising isolated digits have already been created and installed
in many post offices around the world, as part of automatic mail-sorting machines. Given a
system to locate the postcode on an envelope [43,53,77] this can be read and used to direct mail
automatically. Clearly certain countries such as the USA are at an advantage in having digit-
only zip-codes and several researchers have already tackled this problem [16,24-27,32, 37, 44] with
reasonable success. A further enhancement that can easily be imagined is to read the whole address
and either (a) sort envelopes without postcodes, or (b) in countries with limited resolution in the
postcode, sort the post to determine the destination more accurately. Mail sorting can be seen as an
ideal application for handwriting recognition, since it has a wide variety of levels of difficulty (from
isolated digits written at predetermined locations on an envelope, up to complete determination
of an address without a postcode) and admits of a certain amount of error while allowing a large
rejection rate. Some mail is already misrouted, so paper mail is considered fallible and errors
are already tolerated. Since there will always be some addresses illegible or incomprehensible to
a machine, we can afford to give a “don’t know” answer and send the item to a bin for human
sorting.

Other applications

Wright [78] describes a prototype for an order entry system, which would use a pen computer to
record deliveries, storing the orders in machine readable form for subsequent downloading at a
depot, or even transmission via a portable telephone. Given the expense and fragility of even the
dumbest of electronic slates (which would require the recognition task to be carried out at the
depot, with only stroke information recorded on the portable machine) it is not hard to imagine
that a cheaper, more robust system could be created with the deliveries entered, as before, on
paper and read off-line at a central computer. In many applications there is still an interest in
keeping a paper copy if only because of legal reasons. The idea of electronic signature theft may
make acceptance of some pen-based computing systems very slow.

A variety of other office document processing systems using off-line handwriting recognition
can easily be envisaged. Already many companies use electronic document processing systems
which manipulate the scanned images of documents rather than the documents themselves. This
is clearly a very data-intensive task, but one way of reducing the data burden is to extract the
information and store text in ASCII (or perhaps in a richer format recording style commands).
Further possibilities exist in reading handwritten documents for the blind or in automatic reading
of faxes. Orders could be processed and dispatched automatically and standard enquiries replied
to without human intervention. Other faxes could be fed directly into an in-house electronic mail
system, providing at the very least automatic notification of fax arrival by reading the cover sheet,
if not the full text of the document.

Of course, the advantages of handwriting recognition are not restricted to English or the Roman
alphabet, though these have probably attracted most research. In the literature there is a wide

range of papers describing handwriting recognition in a multitude of languages. The basic problems
of handwriting recognition are common to all languages, but the diversity of scripts means that
very different approaches may be used to take advantage of special features to make recognition
easier. For example, Chinese [40], Japanese [29,49,50] and Hebrew [12,39] have been studied.
Govindan & Shivaprasad [21] cite many more.

1.4 Psychology

To study the machine recognition of handwriting, it is worthwhile considering the way that people
read and write, to gain insights into techniques which may be useful.

Several authors have studied people’s ability to read, and Edelman, Ullman & Flash [13] quote
the following results for experiments conducted without context:

“In comparison, people recognize correctly 96.8% of handprinted characters [Neisser
and Weene 1960], 95.6% of discretized handwriting [Suen 1983] and about 72% of
cursive strings (see [Edelman 1988] appendix 1).”

A large body of psychological data has been gathered on the processes involved in reading type,
some of which is applicable to cursive script. Taylor & Taylor [72] and Rayner & Pollatsek [60]
provide useful reviews of the psychology of reading. Most research so far has concentrated on
reading isolated words out of context and uses tachistoscopes to flash a word up for a very short
time followed and preceded by masks to inhibit iconic memory. Some would argue that this gives
us little indication of the processes occurring in normal reading where many words are permanently
visible, but results are hard to prove in such a natural environment with many variables.

One of the fundamental facts discovered by research is the importance of recognition of words as
single entities and not as the conjunction of their component characters. Taylor & Taylor cite work
by Kolers & Magee, whose experiments involved training subjects on inverted text. (That is, text
whose letters are all upside-down.) They trained two groups — one to read words and one to name
letters — then each group was switched to the other task. No evidence was found that learning
one task improved performance in the other, thus one may conclude that “relatively fluent reading
requires familiarity with the shapes of words, but not with the letters in those words.” [p195]

Further evidence for reading by words rather than individual letters is given by the word
superiority effect. This is the term used for the phenomenon that a letter is better recognised
(more frequently recognised correctly when presentation time is short enough to induce errors)
when presented as part of a word than when presented either on its own or surrounded by arbitrary
characters in a non-word. (See descriptions of Reicher’s experiments in Rayner & Pollatsek [60]
p78.)

As will be seen later, many approaches to handwriting recognition rely on detecting significant
features in the writing, such as the strokes which go to make up individual letters. Bouma [3]
investigated the features which people use to recognise isolated characters and described a parti-
tioning of the set of lower case letters which grouped letters found to be psychologically close (i.e.
easily confused). Bouma’s classification is shown in table 1.

Short Tall Projecting
1 2 3 4 5 6 7
aszx |eoc |rvw | nmu|dhkb |tilf| gjpqy

Table 1: Bouma Shapes

Using these classes, words can be grouped according to their shape, so ‘leg’ would become 627,
but so also would ‘fop’ which is seen to be similar in shape. Taylor & Taylor used these Bouma
shapes for a study on the text of their own book, and found that the Bouma shape uniquely
specified 6953 out of 7848 words in the sample. Table 2 summarises these results. The words of
the book are classified according to each of four shape description techniques, and the number of

Figure 2: An Ambiguous Word

words of each shape are counted. Thus the outer contour! is enough to specify 2304 of the words
uniquely, but there are 91 shapes shared by ten or more words each. Similar work can be found in
Haber & Haber [23] who also give a decision tree which might be used to distinguish the letters of
the Helvetica font by observing a limited set of features.

Table 2: Discrimination of words using word shape measures

Shape type Number of Words sharing the same shape

1 2 3 41 5| 6] 7| 8| 9| 10+
Outer Contour 2304 | 452 | 209 | 103 | 64 | 48 | 40 | 19 | 16 91
Quter Contour +initial letter | 4088 | 694 | 248 | 113 | 55 | 35 | 21 | 17 | 11 23
Bouma Shape 6953 | 323 50 15| 4| 2 1
Bouma Shape + initial letter | 7431 | 185 14 1

Taylor & Taylor propose a reading mechanism with three paths:
Whole-word process This is a rapid process taking perhaps 50-100ms which is based only on
the pattern of the word as a whole, or the first half-dozen letters of longer words.

Letter-based process From 50ms after a word is presented, the individual letter identities are
becoming available. (This could be understood as a progressive increase in the frequency
of the filter used as suggested in work by Marr [42]). Outer letters are identified first, and
may be used to adjust the first hypothesis of the whole-word process, or to generate a new
hypothesis. These authors also hypothesise that word units (prefixes and suffixes) may be
recognised as single units.

Scan-parse process This process is the slowest and uses the letter identities to produce a pho-
netic version of the written word, which can be used as additional evidence for the word
identity.

It is interesting to note the work by Yamadori [79] and Sasanuma [66] which shows that damage
to certain areas of the brains of Japanese readers can severely impair reading of Kana (phonogram)
script whereas Kanji (ideogram) script is much less affected. This shows that different brain
pathways must be used for the two script types and indicates that the mechanism of reading is
more complex than it would at first appear.

A further fact which is evident from psychological studies, but which can be trivially verified
by looking at figure 2, is the importance of context. The word in the figure could equally well be
identified as ‘clump’ or ‘dump’ or even ‘jump’, and it is only from the meaning or the grammar

1Just using the three short/tall/projecting categories.

of surrounding words that the two can be distinguished. To implement this discrimination in an
automatic system, some language model must be introduced, to determine which words are likely
given the preceding word sequence. Such language models vary in complexity, from simple word
pair grammars (which state which pairs of words may be found adjacent) through to probabilistic
models indicating the probability of a particular part of speech in the next word position.

A further hope of psychological research is to investigate the link between reading and writ-
ing. Several authors see learning to write and learning to read as inseparable processes and have
produced models of handwriting generation to be used as a tool for handwriting recognition. This
approach may be applicable beyond the field of psychology by yielding useful, human-like methods
for handwriting recognition.

1.5 Optical Character Recognition

Off-line handwriting recognition has much in common with optical character recognition — the
reading of print by computer. This application received much attention during the 1980s and is
largely solved, with commercial packages available for microcomputers which can successfully read
type in a variety of fonts and in a certain amount of noise [48]. The reason why the success of
OCR has not carried over into handwriting recognition is the great variability in handwriting. For
type, all letters ‘a’ are produced from a single archetype, and thus are very similar on the page,
only being corrupted by a relatively small amount of noise in forms such as blurring, merging
and slight positional variations. The process of handwriting is much more variable in all of these
processes and suffers from variations due to other effects such as co-articulation — the influence of
one letter on another. Also, with type, the symbols are usually distinct (except certain ligatures,
as ‘fi’, which can be learnt as a separate symbol) so the problem of segmentation is not present.

As a consequence of this the techniques used are inadequate when presented with the greater
variability in handwriting, and we find relatively little help in the OCR literature.

2 Existing Handwriting Recognition Systems

This section reviews some of the other handwriting systems which have been detailed in print. To
do this it 1s convenient to classify them, as described already, into on-line, isolated character and
off-line cursive script systems. These three approaches share the same basic structure in that most
systems can be broken down into preprocessing, feature-extraction and recognition modules, but
because of the different data available and the different demands imposed by applications, different
approaches are taken to each of these three problems.

2.1 On-line systems

This area has seen perhaps the largest commercial interest so there are a number of systems on
the market accompanying the new ‘pen computers’ [73]. Naturally most of the work behind these
is unpublished, but there is nevertheless a large body of work in print.

One approach which has been taken to this problem is that of Morasso et al. [45,46,74]. In
the first paper [74] they describe the preprocessing required for an on-line system. Subsequently
they describe [45] a Kohonen self-organising network which is used to classify strokes into similar
forms and build what the authors refer to as a ‘graphotopic map’. The pen strokes are effectively
vector quantised by this process, though the authors present no justification for a two-dimensional
feature map in the space of pen strokes, on which a Kohonen net depends. Stroke information from
pairs of letters is fed into a backpropagation network which is trained to identify the digraph. A
97% accuracy was achieved with the training set. Finally, [46] a second set of Kohonen networks is
created, grouping consecutive strokes into characters and creating an ‘allograph’ lexicon of possible
stroke sequences which are labelled with their character names. No results are presented in this
paper.

Burr [10] treats only isolated characters and compares these letters to a set of 26 templates.
Having deduced the most likely sequence of letters by dynamic programming, Burr’s system per-

forms a dictionary lookup using word roots and suffixes. Wright [78] gives a very coarse Freeman
coding of the stroke sequence presented and looks this up in a table of previously encountered
word codes from which he can deduce the word written. Nag, Wong & TFallside [51] encode the
pen strokes using distance/angle (s,) coordinates and then use hidden Markov models to learn
the statistical properties of the stroke data.

Following the insights of psychological investigations, many of the other approaches taken to
on-line handwriting recognition are feature-based and involve identifying useful features in the
handwriting [6]. Brown [8] gives a review of previous feature-based approaches, describing other
researchers’ feature sets before setting out his own. A recurring problem is that of segmentation
— at which points to divide up the stroke information to decompose it into meaningful features. It
has been found that the local maxima of curvature are natural segmentation points and these tend
to be at minima of pen speed, which are easily determined. Kadirkamanathan [31] concentrates
on scale-space filtering to identify these segments in noisy data.

2.2 Isolated characters or digits

Suen, Berthod and Mori [71] in 1980 provided a good review of handwriting recognition, concen-
trating on isolated character recognition — which had been the focus of research until then. They
describe a variety of feature based approaches and divide these into global features (Templates
or transformations such as Fourier, Walsh or Hadamard); point distributions (zoning, moments,
n-tuples, characteristic loci and crossings and distances) and geometrical or topological features.
The latter was, and has remained, the most popular technique, and involves separate detectors
for each of several types of features such as loops, curves, straight sections, endpoints, angles and
intersections. For instance, Impedovo, Dimauro and Pirlo [27] use cross-points, end-points and
bend-points as their features, coding these as to their location in three horizontal and three verti-
cal zones within each character. The encoded characters are then identified using a decision tree
classifier. Elliman & Banks [14] also use features (end-point, junction, curve and loop) each of
which is associated with a numerical quantity, such as curvature or length, before being decoded
in a neural network (either backpropagation or adaptive feedback classifier).

Nellis & Stonham [52] and Hepp [24] use similar sets of global morphological features created
by separately examining the left, right, top and bottom edges of each character. Both sets of au-
thors feed this information into a neural network (Aleksander’s discriminator and backpropagation
respectively).

LeCun et al. [37] and Fukushima [18] take the approach of feeding a normalized bitmap image
of the character to be recognised into their networks (multi-layered perceptron and neocognitron
respectively). Both these networks are constructed from layers of identical feature detectors, which
become more specialised and less location specific deeper in the network, until the outputs of the
final layer are characters, independent of location in the image.

Yet another approach is taken by Idan & Chevallier [26] who also use bitmap images, but carry
out the recognition task with a Kohonen [33] unsupervised network. Hinton, Williams & Revow [25]
take a generation approach in which they generate spline models of digits and space Gaussian ‘ink
generators’ along these. Then, by using elastic matching and determining the probability that
each pixel was generated by an ink generator or their noise model, they find the best-fit model
for each test digit presented. While not a practical system, this approach is interesting for its
theoretical grounding and shares much with Edelman, Ullman & Flash [13]. Other works include
Bienenstock [2] and Kimura & Shridhar [32].

2.3 Off-line cursive script

A brief review of several off-line cursive script recognisers is given by Simon [69], though this area
of handwriting recognition is less thoroughly researched than those described above.

Papers by BoZinovié & Srihari [4,70] describe what is perhaps the most significant work so far
in the field of off-line cursive script recognition. In common with most of the on-line studies, they
use a feature-based approach, searching a representation of the input image for useful features
(such as hooks, cusps, straight line segments).

Reference reference lines

Line |
Finding
Events

raw image Smoothi Contour Event Letter > Word Words
e Tracing = Detection 9Hypotheﬁisiation = Formation [——=>

J A
1
Pr tati |
esegmentation | L <

Adaptation
PS-points

v

Figure 3: Schematic of BoZinovi¢ & Srihari’s System

Unusually, these authors generate their data by tracing handwritten words using an on-line
graphics tablet, rejecting the time information and then creating a bitmap image. This image
is then smoothed and slant corrected (the problem of slope correction is not addressed). To
the resultant cleaned image, they apply three procedures in parallel (see figure 3): finding the
baselines, contour tracing and presegmentation. Contour tracing involves the Freeman [17] coding
of the image border, then processing this structure to create a tree describing the image topology.?

The segmentation task is an important problem in cursive script recognition, for it is difficult
to decide, a priori, where one character ends and another begins. It is possible to sidestep this
problem by treating words as a whole, or to confront it, and concentrate on finding the boundaries
between characters. These authors choose an intermediate approach and seek presegmentation
points — where the gaps between letters might lie — by a complex heuristic. A single character
may straddle a presegmentation point, but characters are always bounded by these PSPs. The
word image is then further processed by a series of event detectors which identify such features as
dots, curves, strokes, loops and cusps (16 in all). From the presegmentation and event set, letter
hypotheses are constructed based upon learnt statistics of letters.

Words are hypothesised via a stack method, where the most likely prefixes are stored and
expanded until the word end is reached. After the first iteration of this procedure, the stack contains
all the hypotheses for the first letter in order of likelihood. The top (most likely) hypothesis is
then expanded by looking at what letters could follow. The resultant two-letter sequences are put
onto the stack to be expanded when they are the most likely sequences. At the end of the word,
the lexically correct word that is highest on the stack is chosen as the best match.

The authors conducted a number of experiments, using different writers and different lexica
(780 and 7800 words). In the first experiment, non-slanting, non-sloping writing was used, and
78% recognition was obtained on the small lexicon, 48% on the large. With a ‘mixed training
scheme’, results of 54-72% correct were obtained for three writers.

Edelman, Ullman & Flash [13] have also developed a handwriting reader (although they too
collect their data using a digitising tablet, their techniques are applicable to off-line recognition)
which relies on the alignment of letter prototypes. Here, anchor points (e.g. endpoints; turning
points at top, bottom, left or right of characters) are found in the test word and these points are
used to match the word against a set of prototype curves, coded as splines, which can be composed
into lower-case characters. Using a lexicon, these authors obtained an 81% recognition rate on
the training set and 47-53% on test sets by various authors. The authors estimate that their
system has a 78.5% character recognition rate, and that it has the potential to achieve near-human
performance. The training set sizes used were very small, but a large lexicon of 30,000 words was
used.

2Use of the topology of a word at first seems to be a good technique for script recognition, but closer examination
shows that this is not a good choice of invariant — vertical lines can often become loops, ‘t’ strokes can often join
up with other letters to create an enclosed area, and normally closed letters like ‘a’ and ‘o’ can often be left open
in normal handwriting.

A problem where useful results can be obtained from real data through a task of limited
vocabulary is that posed by the French post office. The task here is to recognise amounts written
(in words) on postal cheques. Several authors [36,38,47,54,56] have attempted this problem and
their results are as follows. Moreau, Plessis, Bougeois & Plagnaud [47] use the amount written
in words as a check on the value determined from the digits and with 60% rejection achieve 0.2%
error rate in recognising the total amount of the cheque, using the highly constrained grammar
associated with the task. Paquet & Lecourtier [54] achieve 60% correct on the 50% of words which
are well-segmented and Lecolinet & Crettez’ [36] result is 53% words correct. Leroux, Salome &
Badard’s [38] system gets 62% words correct. The system described in Simon [69] achieves 86%
correct on the test set (using a 25 word vocabulary). Tests using other authors’ scripts (separately
trained) give results between 47 and 91%.

3 An Error Propagation Network Handwriting Recogni-
tion System

In this section a complete off-line handwriting recognition system is described. The system is
explained in sections and the whole system is shown in the block diagram of figure 4. First,
the database on which the system is to operate is described, followed by a description of the
preprocessing techniques needed to transform the data into a more usable form. Next, the recurrent
network architecture is detailed and variations to the conventional multi-layered perceptron are
explained. Finally the Viterbi decoder which produces word-level output is presented, with details
of the enhanced durational modelling used. Earlier work on the same system was presented in less

depth in Senior & Fallside [67].

Raw
Scanned
Image Baseline o
—>> Hislogram —=> : —=> Smoothing —=» Thinning
Detection
Skeletonl/
Siope Neurdl ——— Parametrisation
Correction Network
Letter ‘Spectrogram’
Probabilities
Viterbi
Decoder >
Word

Figure 4: Schematic of the recognition system

3.1 Image acquisition and corpus choice

Words are written by a single author on an A4 sheet, each surrounded by white space to facilitate
word extraction. These sheets were then scanned at 300 dpi resolution, in 8 bits to produce one
file per page. These files were processed to extract each word into a separate file. Figure 5 shows
one such word. All files are stored in TIFF [1] format.

The corpus chosen was the set of numbers written out as words (‘one’ to ‘nineteen’, tens from
‘twenty’ to ‘hundred’, plus ‘thousand’, ‘million’ and ‘zero’). These words were chosen because they

10

form a corpus useful for an application such as cheque verification, but the small vocabulary enables
a reasonable study to be made in a short time and facilitates data collection. Ten exemplars of
each of these words were taken: three to serve as a training set and four as test data, (a test set
of 124 images), plus a further three to be used as a validation set (see section 3.4).

Subsequently, the data set has been increased in size and vocabulary by the collection of
transcripts of the LOB (Lancaster—Oslo/Bergen) corpus [30]. This is an extensive corpus of modern
English collected from a wide variety of sources, such as newspapers, novels and non-fiction books.
The corpus as a whole contains a million words with a vocabulary of around 15,000 words. Writing
out sentences from this corpus will give larger data sets permitting more significant results and
laying the foundations for future work considering the addition of a grammatical analysis after the
word recogniser, based on work already conducted on the LOB corpus, Kuhn & de Mori [34] for
instance. The preliminary LOB handwritten database contains 768 training words, 219 validation
words and 330 test words written by a single author, though these data sets are still too small for
reasonable results to be expected. The overall vocabulary is 550 words.

3.2 Preprocessing

From the original scanned image, containing 8MB of information, all that is ultimately desired
is the identity of the words on the page, which is in the order of bytes. One way of looking at
recognition is as a process of information filtering with the ultimate aim of deriving this word
information. In order to process the data effectively with a recognition technique such as a connec-
tionist network, they must be reduced in number and transformed into a form more appropriate
than a grey scale image, by the application of certain preprocessing techniques (the importance of
data representation is discussed in [42]). In the same manner as filters, cepstra, Mel scale binning
and vector quantisation are used to encode speech before attempting recognition, useful, invari-
ant information must be extracted from the written words while discarding the vast majority of
redundant variation.

A number of operations are involved in this sifting process. Each operation is described below,
and figure 4 illustrates the whole process.

Histograms and baseline detection

Normalisation is of prime concern in preprocessing handwritten words. To normalise an image,
it must be scaled so that letters are a standard height, and sheared so that letters are oriented
vertically on a horizontal base. The character height is determined by finding the intuitively
important lines which are shown running along the top and bottom of lower case letters in figure 5
— the half and base lines respectively (using the terminology of Brocklehust and Kenward [7]),
with a centre line between the two. With these lines, the ascenders and descenders which are used
by human readers in determining word shape (section 1.4) can also be identified.
The heuristic used for base line detection consists of the following steps:

1 Calculate the vertical density histogram by counting the number of black pixels in each
horizontal line in the image. (Vertical and horizontal density histograms are shown on the
right and bottom edges of figure 5.)

2 Reject the part of an image likely to be a descender.

3 Find the lowest remaining pixel in each vertical scan line.

4 Find the line of best fit through these points.

5 Reject all outliers, and calculate the new line of best fit. This is now considered to be the
base line of the character.

Slope and slant correction

Given the estimate of the base line, from section 3.2, the writing can be straightened to make the
baseline horizontal. This straightening is carried out by application of a shear transform parallel
to the y axis. (See figure 6b.) Next, the base line and the half line can be recalculated, using the

11

Figure 5: Histograms and half, centre and base lines.

knowledge that the baseline is now horizontal, by scanning the histogram above and below the
peak value, to find the 40% points of the slope. Slope correction can be carried out on whole lines
to remove rotation in the scanned image or skewed writing, and then carried out on individual
words to remove local tranformations.

Bozinovi¢ and Srihari [4] detail a complex method for letter slant correction (slant is the tilting
of tall strokes away from the vertical). This involves isolating areas of the text which are near-
vertical strokes and estimating the slant of each by calculating the centroids of the upper and
lower halves. These slant estimates are averaged, and a shear carried out to remove the slant.
This procedure has been found to be very sensitive to the thickness of the writing and is unreliable
when the writing is thinner than expected. Figure 6d shows a slant-corrected word.

Smoothing and thinning

To remove noise from the image, either from scanning defects, or from applying transforms to
discrete images, it is useful to smooth the image. This is carried out by convolution with a 2-
dimensional Gaussian filter. It has been found that there is negligible noise on a scanned image
when using a black fibre-tip pen on plain white paper, but degradation from this ideal situation is
possible from a large number of sources (such as paper quality, age and condition; pen or pencil
type; poor illumination when using a camera rather than a flat-bed scanner.)

Having normalised and smoothed the image, it is thresholded to leave every pixel black or
white. Next an iterative thinning algorithm is applied to reduce the lines in the writing to one-
pixel width so that the strokes can be followed later (see figure 6b). The algorithm used initially
was that due to Gonzalez and Wintz [20] but it was found that this did not give one-pixel wide
lines, so Davies’ [11] p153 algorithm was applied when the first procedure had terminated.

3.3 Parametrisation

Now that the image has been reduced to a standard form, which highlights invariants of the
words and suppresses spurious variations, the preprocessed image needs to be parametrised in an
appropriate manner for input to the network which is to carry out the recognition process. The
scheme chosen for this parametrisation is described below.

The area covered by the word is first divided into rectangles. (See figure 6e.) There are
sixteen horizontal rows and a variable number of vertical frames of a width proportional to the

12

Twele tuplve

) Initial image b) Slope corrected

= |
L, rO e 0
U\J\J[/\N

(¢) Slant corrected (d) Thinned
! —T ! R
8 |
il 1 }
] = P
LSRN A Ry WA %&
N A0 A #
(e) Boxes for parametrisation (f) The parametrised data

Figure 6: Successive stages in the preprocessing.

row height. Thus long words have more frames than short words, but a given character will always
occupy approximately the same number. For each of these rectangles; four bins are allocated to
represent different line angles (vertical, horizontal, and the lines 45 degrees from these). Given this
framework, the lines of the skeleton image are ‘coarse coded’:

Working from left to right in the thinned image, each stroke (a one-pixel wide line in the
skeleton between junctions or end points) is divided into equal length segments (the length being
determined by the character size) for which the centroid position and angle are calculated. The
box associated with this segment’s (z, y, #) values is now ‘filled’. Segments which are not perfectly
aligned with the angles of the bins contribute to the two bins representing the closest orientations.

Figure 6f shows the input pattern schematically. Each line represents a full bin and its position
and orientation correspond roughly to the position and orientation of the section of skeleton which
gave rise to it. Because of the coarse coding, some line segments contribute to two bins and this
is seen on the ‘I stroke which is between the vertical and 45 degrees so both these lines are shown
in the corresponding boxes in figure 6f.

Labelling and segmentation

The training data for the networks must be labelled to allow the network to associate input
patterns with the correct letter outputs, one per frame. To do this, a segmentation scheme is
required. The scheme used initially is an ‘equal length’ scheme, where each letter in any word is
assumed (though this is clearly inaccurate) to occupy the same number of frames of input. Thus
in an n letter word which takes k frames, the first £ frames are labelled with the first letter of
the word. A further segmentation scheme has been 1mplemented to allow ‘bootstrapping’ after the
network has learnt an approximate input-output mapping. Here the network uses its knowledge of
letter lengths to label frames automatically so for later iterations it can ignore the approximate,
equal-length segmentation. Alternatively the data could be hand-segmented according to what is
actually present in the data. This more accurate labelling could reasonably be expected to give
more accurate training and improved results, but with the penalty of a large amount of work.
Given the importance of features demonstrated by studies of reading (see section 1.4), further

13

improvements are to be expected if this parametrisation approach is combined with that of feature
spotting. To derive a reliable set of rules for all the features used by Brown [8] would be very
difficult, but there are certain important features such as ‘7’ dots, turning points, skeleton junctions
and endpoints which are easy to identify reliably with simple rules. By spotting these features
with rules and indicating them in the data representation passed on to the network, more relevant
information can be preserved, and the burden on the network’s processing is reduced. This extra
data increases the size of a frame from 64 bins to 161. Hence, the number of links in a network
with 40 feedback units increases from 7035 to 13534 (a 90% increase) and the training time is
correspondingly increased. Results with this enhanced preprocessing are compared to the basic
method in section 3.6.

3.4 Recurrent networks

This section describes the ‘recurrent networks’ which are used to recognise the patterns of line
segments present in the preprocessed data and to interpret them as letters. These networks are a
type of connectionist (often termed ‘neural’) network which is to say that they are composed of a
large number of very simple processing units with many interconnecting links. Each unit merely
outputs a function of the weighted sum of its inputs, but the usefulness of such networks resides in
the existence of training algorithms which can adjust the weightings to converge towards a desired
function approximation — in this case the network is taught to recognise letters.

The recognition method chosen for the main part of the system is a recurrent error propagation
network. Recurrent networks have been successfully applied to speech recognition and other dy-
namic problems where a series of time-varying signals needs to be classified [55, 63, 64]. A recurrent
network is well suited to the recognition of patterns occurring in a time-series because the same
processing is performed on each section of the input stream, but internal ‘state’ units are available
to encode multi-frame context information about the preceding signal. Recurrent networks were
found to perform better than Time-Delay Neural Networks [35,76] for this task because of their
better performance with time-distorted data. By repeated presentation of training examples, the
network parameters can be adjusted automatically so that the network recognises letter shapes in
a sequence of preprocessed frames of data.

The recurrent network architecture used here is a single layer of standard perceptrons with
sigmoid activation functions (as described by Rumelhart, Hinton and Williams [65]), however some
of the output units are connected one-to-one to some of the input units with a unit time-delay, and
these input units receive no external input (see figure 7a). The remaining input units accept the
parametrised input described above and the 27 output units estimate letter probabilities for the 26
lower case letters plus a space character. During the forward pass, successive frames are presented
at the input and results are fed back through the time delay, while output letter probabilities are
read off from the other outputs. To allow the network to assimilate context information, several
frames of data are passed through the network before the probabilities for the first frame are read
off. An interval of two frames has been found to be most satisfactory.

Training the network requires ‘unfolding’ it in time. During training on a word, the inputs,
outputs and feedback activations are stored for each frame. At the end of a word, the errors are
propagated back using the generalised delta rule [65], treating the network at different times as
different layers of a multi-layer network (figure 7b). One problem with network training is to know
when to finish training — too much training can cause the network to over-specialise and to adapt
too closely to the particular features of the training set. This would impair generalisation to unseen
test data, but if training is stopped too early, the optimum performance will not be achieved. This
problem is solved by creating a third data set which is used for validation. After training the
network for a short time, the network’s performance is tested on the validation set. This train
and validate cycle is repeated until the recognition rate on the validation set starts to deteriorate,
indicating that the network is starting to become overtrained. At this point training is stopped
and the network is tested on the test data which has still not been put through the network.

It is widely recognised that the back-propagation algorithm (introduced as the modified delta
rule in Rumelhart, Hinton & Williams [65]) used to train error-propagation networks can be im-

14

proved in a variety of ways, to speed up convergence and to make convergence to a good local
minimum more likely. In addition to the incorporation of a momentum term in the weight update
formulae, two such improvements have been used in this work, namely Jacobs’ delta-bar-delta up-
date rule [28] and Bridle’s Softmax [5]. The former provides for individual learning rates for each
weight and the latter a different transfer function on the output units of the network, ensuring
that the outputs are all probabilities (between 0 and 1 and summing to 1). Because of difficulties
in training stability, modifications suggested by Robinson [64] were incorporated and gave much
improved convergence. These changes use multiplicative learning rate changes and prevent the
learning rates from deviating too far from the mean. For this work the geometric mean was used,

and the additional measure of zeroing momentum terms when the network energy increased was
taken.

Prior probabilities

In any corpus of text, the occurrence frequencies f(L) of different letters £ will vary. In a typical
section of text, the letter ‘e’ may outnumber the letter ‘¢’ by a factor of several hundred. This
discrepancy will severely distort the network’s behaviour, since it will rarely be presented with ‘g’s

Input Frames Output

(Character probabilities)

(...eeeerrrhhtt...)

T Input/Output Units

}. b | Feedoack Units

\ S\ /
Unit Time Delay
(a) Schematic
t=0 t=1 t=2 t=3
SR SR SR SR

Input 0
Output O
Input 1

3 Ej5P)2 P

Feedback O Feedback 1 Feedback 2 :>

Output 1
Input 2
Output 2
Input 3
[
Output 3

— — — —
(b) Net unfolded for training

Figure 7: The recurrent error propagation network

15

and these will be swamped. The network trained on such data will recognise nearly anything as
an ‘e’ and is unlikely to recognise anything as a ‘¢’. To overcome this problem, two methods are
available, both of which have been tested.

The first method attempts to remove these biases in the training. In the backpropagation
algorithm, the objective function or energy F, is defined by £, = %ZJ (0pj — tpj)? for pattern p
in class £(p), with outputs o,; and target values ¢,;. This determines the error signal propagated
back through the network. If this error function is biased so that more weight is given to rare
letters, all letters will contribute roughly the same amount to the error signal. The new objective
function used is:

12 (0p5 = 1py)?
=32 ALK @

The second method, advocated by Makhoul [41] and Renals, Morgan & Bourlard [61,62], is
to train the network with the data available, but divide the output probabilities by the prior
probability of the class ignoring the data. This gives a measure of the relative probability of the
class given the data which is a better measure to use in the post-processing. In initial trials this
method did not work as well as the first, which has been used for all experiments presented here.

Ly

3.5 Post-processing

The output of the network is in the form of probability estimates for each of the 27 letter classes
in each of the frames. From these data, the word that gave rise to them must be determined.
This is achieved using Dynamic Programming [68] in the form of the Viterbi algorithm. A Markov
model [58] is created for each word, with one state per letter, each state containing the probability
that the data so far were generated by the letters in that model. For every new frame, each state’s
probability is multiplied by the network’s estimate of the probability of the letter to which that
state corresponds. Transitions (transferring one state’s probability to another state) are allowed
only from one state to itself or to the next state. Figure 8a shows the model for the word ‘one’
with two arrows from each state marking the permitted transitions. After the last frame of data
has been processed, the probability of the final state of any word model is the probability that
the observed data were produced by that model. By choosing the maximum of these likelihood
estimators, if the models are good, a good estimate of the identity of the original word is obtained.
All of these probabilities are stored and multiplied in the log domain for numerical accuracy. In
fact this will increase speed too because these log probabilities can be stored as integers which
are added to carry out probability multiplication, and the Softmax formulation means that the
network outputs are in any case exponentials.

ONONO
OaUnOn

(a) A simple Markov model (b) A complex durational model for one letter

Figure 8: Markov models

Durational modelling

If the duration statistics (i.e. the probability of a state lasting a given number of frames) of the
Markov models are examined, an exponential decay can be seen (the solid line of figure 9). This

16

is far from the bell-shaped curve that one would expect to see for the actual durations of letters
observed in the database. This discrepancy points to inaccuracy in the modelling and indicates
how the performance of the recogniser might be improved. Ramesh & Wilpon [59] present one
attempt to overcome this problem in the modelling of speech using hidden Markov models.

0.45

0.4r B 1
—— onestate

two states B
fffff complex .9.75.6 .4
complex .9 .8 .65 .6 i

Probability
o 8 o 2
P—a % <
I
I
I

o

o

[$;)
T

o
[
T

0.051-

6
Duration (frames)

Figure 9: Durational modelling of different Markov models.

A simple solution is to force a minimum duration greater than one. This can be achieved by
duplicating each state in the word model which makes each letter last at least two frames. This
is seen to improve the performance, but cannot pretend to model the data accurately (the dotted
line of figure 9.) Note that both curves are selected to have a mean of 3.22 frames — the observed
mean letter length in the database.

A more complex durational model can be used, such as that shown in figure 8b, where each of
the original states is replaced with four, with transitions as depicted by the arrows. By choosing
the probability of each transition, the probability distribution of the number of frames spent in the
model can be made to conform quite closely to that observed in practice, as shown in the dashed
curves of figure 9. These two bell-shaped curves generated by four-state complex Markov models
are much closer to the histogram of observed letter lengths.

3.6 Results

The system performance is judged by the number of words in the test set which are correctly
identified, and these are quoted as a percentage of the 124 test words used. All results below
are for networks with 40 feedback units trained using the cross-validation technique described in
section 3.4. The results shown are averaged across four test runs, and are presented with standard
deviations to indicate the sensitivity to initial conditions. The four test runs were identical except
for the seed used by the random number generator which randomises the initial weights of the
network to break symmetry. Experiments under other conditions used the same initial weights
(the same seeds) so paired data analysis can be conducted to assess performance improvement.
The first two columns of results are the means and sample standard deviations for models trained
with equal-length segmentation, and the next two show the results after the network has been
retrained using its own segmentation estimates.

Networks trained using one type (one, two or four state) of Markov model (‘MM’) have also
been tested with other models. From the significantly higher recognition rates when testing on

17

Method Equal Auto
Mean (%) | op—1 || Mean (%) | op—1
4 state MM 80.2 2.2 79.2 2.2
4 state MM (New preprocessing) 84.3 3.0 85.5 3.8
Tested on training data 96.5 1.8 98.3 1.4
Tested with 2 state MM 83.4 1.5 84.0 4.2
Tested with 1 state MM 83.7 3.3 82.6 4.4
2 state MM 83.4 4.2 81.6 2.7
Tested with 4 state MM 84.8 3.5 82.4 2.3

Table 3: Percentage recognition rates for networks with 40 feedback units.

the training set compared to the test set, it can be seen that a larger training set capturing more
variation would improve the performance.

Using paired statistics, the significance of any improvements can be calculated using Student’s
t-test. The newer preprocessing method which incorporates the feature spotting mentioned in
section 3.3 is better than the original. (t7 = 3.84 gives a significance greater than 99%.) The
change in performance by retraining using automatic segmentation is not always positive and in
the case of the best results is not significant. Training using the 2 state Markov models is worse
than that using 4 state MMs, to 95% significance (t; = 2.0). In fact, the network trained with 2
state models performs better when tested with the 4 state models (¢7 = 2.4 i.e. 97.5% significance.)

Though work so far has concentrated on the numbers corpus, the system described above has
been tested on a small LOB-based database. Initial results (on a 40 unit network) are encouraging
(62.1%) but a larger network and more training data could be expected to give better results.

3.7 Conclusions

The above results show that the method of recurrent error propagation networks can be applied
with some success to the task of off-line cursive script recognition. Comparison of results with other
researchers is difficult because of differences in experimental details, the actual handwriting used
and the method of data collection. The results which have been published for similar problems are
noted in section 2.3.

These experiments show that an 85.5% recognition rate can be achieved on the task attempted,
and that the enhancements in preprocessing and durational modelling have significantly improved
this performance. Further improvement can be expected with a future increase in the training set
size. Improvements might also be achieved by finding a more robust, more detailed preprocessing
technique.

This report has only addressed the problem of small vocabulary, single-writer handwriting
recognition, so has limited applicability. Future work will continue to aim for higher recognition
rates on this task, but must also begin to look at large vocabulary or writer independent testing.

Acknowledgements

The author would like to extend his thanks to the following for help in producing this report:
F. Fallside, T.T. Jervis, A.J. Robinson, G. Wong.
References

[1] Aldus & Microsoft. Tiff Standard Definition, 5.0 edition, August 1988.

[2] Elie Bienenstock. Visual pattern processing using a neural-network based approach. In Cam-
bridge University Summer School on Neural Networks, April 1991.

18

[3] H. Bouma. Visual recognition of isolated lower case letters. Vision Research, 11:459-474,
1971.

[4] R.M. Bozinovi¢ and S.N. Srihari. Off-line cursive word recognition. IEEE PAMI, 11(1):68-83,
January 1989.

[5] John S. Bridle. Probabilistic interpretation of feedforward classification network outputs, with
relationships to statistical pattern recognition. Neurocomputing, F 68:227-236, 1990.

[6] E.R. Brocklehurst, D.M. Ford, and Hilary J. Symm. Feature extraction for cursive script
recognition. Technical report, National Physical Laboratory, November 1988.

[7] E.R. Brocklehurst and P.D. Kenward. Preprocessing for cursive script recognition. Technical
report, National Physical Laboratory, November 1988.

[8] M.K. Brown. Cursive Word Script Recognition. PhD thesis, University of Michigan, 1981.

[9] John Browning. Artificial intelligence survey. The Economist, 322(7750):21, March 1992.

[10] D.J. Burr. Designing a handwriting reader. IEEE PAMI, 5(5):554-559, September 1983.
]

.R. Davies. Machine Vision: eory, algorithms, practicalities. Microelectrics and signa
11] E.R. Davi Machine Visi Th lgorith calities. Mi lectri d signal
processing Number 9. London Academic, 1990.

[12] P. de Bruyne and R. Korolnik. Segmentation and recognition of calligraphic text. In IEFE 2nd
conference on Neural Networks, number 349, pages 214 —218, November 1991.

[13] S. Edelman, S. Ullman, and T. Flash. Reading cursive script by alignment of letter prototypes.
International Journal of Computer Vision, 5(3):303-331, 1990.

[14] D.G. Elliman and R.N. Banks. A comparison of two neural networks for hand-printed character
recogition. In IEE 2nd Neural Networks, number 349 in IEE, pages 224-228, November 1991.

[15] Raouf F.H. Farag. Word level recognition of cursive script. IEEE Transactions on Computers,
(C-28(2):172-175, February 1979.

[16] Thomas Fontaine and Lokendra Shastri. Character recognition using a modular spatiotempo-
ral connectionist model. Neuroprose, University of Pennsylvania, Philadelphia PA 19104-6389,
1992.

[17] Herbert Freeman. On the digital computer classification of geometric line patterns. Proceedings
of the National Electronics Conference, 18:312-324, 1962.

[18] Kunihiko Fukushima. Neocognitron: a self-organising neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193-202, 1980.

[19] Elisabeth Geake. Letters to a computer. New Scientist, pages 30-33, 27 June 1992.

[20] Rafael C. Gonzalez and Paul A. Wintz. Digital Image Processing. Addison Wesley, Reading,
Mass., 1977.

[21] V.K. Govindan and A.P. Shivaprasad. Character recognition — a review. Pattern Recognition,
23(7):671-683, 1990.

[22] 1. Guyon, P. Albrecht, Y. LeCun, J. Denker, and W. Hubbard. A time delay neural network
character recogniser for a touch terminal. In INNC' Paris ’90, 1990.

[23] Ralph Norman Haber and Lyn R. Haber. Visual components of the reading process. Visible
Language, XV(2):147-182, 1981.

[24] Daniel J. Hepp. An application of backpropagation to the recognition of handwritten digits
using morphologically derived features. Proc SPIE, 1451:228-233, February 1991.

19

[25] Geoffrey E. Hinton, Christopher K.I. Williams, and Michael D. Revow. Adaptave elastic

models for hand-printed character recognition. In Advances in NIPS, volume 4, 1992.

[26] Yizhak Idan and Raymond C. Chevalier. Handwritten digits recognition by a supervised
Kohonen-like learning algorithm. ICJNN 91, 3:2576-2581, December 1991.

[27] S. Impedevo, G. Dimauro, and G. Pirlo. A new decision tree algorithm for handwritten
numerals recognition using topological features. Proc SPIFE, 1384:280-284, November 1990.

[28] Robert A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural

Networks, 1:295-307, 1988.

[29] Kazuki Joe, Yoshihiro Mori, and Sei Miyake. Construction of a large scale neural network.
Concurrency: Practice and Ezperience, 2(2):79-107, June 1990.

[30] S. Johansson, E. Atwell, R. Garside, and G. Leech. The tagged LOB corpus. Technical report,
Norwegian Computing Centre for The Humanities, Bergen, 1986.

[31] Maha Kadirkamanathan. A Scale-Space Approach to Segmentation and Recognition of Cursive
Seript. PhD thesis, Cambridge University Engineering Department, 1989.

[32] F. Kimura and M. Shridhar. Handwritten numerical recognition based on multiple algorithms.

Pattern Recgnition, 24(10):969-983, 1991.
[33] T. Kohonen. Self Organisation and Associative Memory. Springer-Verlag, 1984.

[34] Roland Kuhn and Renato de Mori. A cache-based natural language model for speech recog-
nition. IEEE PAMI, 12(6):570-583, June 1990.

[35] K.J. Lang and G.E. Hinton. A time delay neural network for speech recognition. Technical
Report CMU-CS-88-152, CMU, 1988.

[36] Eric Lecolinet and Jean-Pierre Crettez. A grapheme-based segmentation technique. In Inter-
national Conference on Document Analysis and Recognition, volume 2, pages 740-748, 1991.

[37] Y. LeCun, B. Boser, J.S. Denker, D. henderson, R.E. Howard, W. Hubbard, and L.D. Jackel.
Backpropagation applied to handwritten zip code recognition. Journal of Neural Computation,
1:541-551, 1989.

[38] M. Leroux, J.C. Salome, and J. Badard. Recognition of cursive script words in a small lexicon.
In International Conference on Document Analysis and Recognition, volume 2, pages 774-782,
1991.

[39] Laurence Likforman-Sulem, Henri Maitre, and Colette Sirat. An expert vision system for
analysis of hebrew characters and authentication of hebrew manuscripts. Pattern Recognition,

24(2):121-137, 1991.

[40] Si Wei Lu, Ying Ren, and Ching Y. Suen. Hierarchical attributed graph representation and
recognition of handwritten chinese characters. Pattern Recognition, 24(7):617-632, 1991.

[41] John Makhoul. Pattern recognition properties of neural networks. In Neural Networks for
Signal Processing - Proceedings of the IEEE workshop, pages 173-187. IEEE, Piscataway, NJ,
1991.

[42] David Marr. Vision. Freeman, San Francisco, 1982.

[43] W. Martins and N.M. Allinson. Visual search of postal codes by neural networks using human
examples. In IEE 2nd Conference on Neural Networks, 1991.

20

[44] Ofer Matan, Henry S. baird, Jane Bromley, Christopher J.C. Burges, John S. Denker,
Lawrence D. Jackel, Yann LeCun, Edwin P.D. Pednault, William D. Satterfield, Charles E.
Stenard, and Timothy J. Thompson. Reading handwritten digits: A zip code recognition
system. IEEE Computer, 25(7):59-62, July 1992.

[45] P. Morasso. Self-organisation of an allographic lexicon. In IJCNN 1989, volume 1, pages
141-144, June 1989.

[46] P. Morasso, F. Kennedy, E. Antonj, S. DiMarco, and M. Dordoni. Self-organisation of an
allographic lexicon. In International Neural Network Conference Paris, volume 1, pages 141-

144, July 1990.

[47] Jean-Vincent Moreau, Brigitte Plessis, Olivier Bougeois, and Jean-Luc Plagnaud. A postal
cheque reading system. In International Conference on Document Analysis and Recognition,

volume 2, pages 758-766, 1991.

[48] Shunji Mori, Ching Y. Suen, and Kazuhiko Yamamoto. Historical review of OCR research
and development. Proceedings of the IEEE, 80(7):1029-1058, July 1992.

[49] Yoshihiro Mori and Kazuki Joe. A large scale neural network which recognizes handwritten

kanji characters. Advances in NIPS, 2:415-422, 1989.

[50] Yoshihiro Mori and Kazuhiko Yokosawa. Neural networks that learn to discriminate similar
kanji characters. Neural Information Processing Systems, 1, 1988.

[51] R. Nag, K.H. Wong, and F. Fallside. Handwritten script recognition using hidden Markov
models. In ICASSP ’86. IEEE, 1986.

[62] J. Nellis and T.J. Stonham. A fully integrated hand-printed character recognition system
using artificial neural networks. In IEE 2nd Conference on Neural Networks, number 349 in
IEE, pages 219-223, November 1991.

[63] Paul W. Palumbo, Sargur N. Srihari, Jung Soh, Ramalingam Sridhar, and Victor Demajenko.
Postal address block location in real time. IEEE Computer, 25(7):34-42, July 1992.

[64] T. Paquet and Y. Lecourtier. Handwriting recognition: Application on bank cheques. In
International Conference on Document Analysis and Recognition, volume 2, pages 749-757,

1991.

[65] Barak A. Pearlmutter. Dynamic recurrent neural networks. Technical Report CMU-CS-88-
191, CMU, School of Computer Science, Pittsburgh, PA15213, December 1990.

[66] J.C. Pettier and J. Camillerapp. An optimal detector to localize handwriting strokes. In
International Conference on Document Analysis and Recognition, volume 2, pages 710-718,

1991.

[67] Réjean Plamondon and Guy Lorette. Automatic signiature verification and writer identifica-
tion — the state of the art. Pattern Recognition, 22(2):107-129, 1989.

[68] L.R. Rabiner and B.H. Juang. An introduction to hidden Markov models. IEEE ASSP
magazine, 3(1):4-16, January 1986.

[69] Padma Ramesh and Jay G. Wilpon. Modelling state durations in hidden Markov models for
automatic speech recognition. In ICASSP 92, volume 1, pages 381-384, 1992.

[60] Keith Rayner and Alexander Pollatsek. The Psychology of Reading. Prentice-Hall, 1989.

[61] Steve Renals, Nelson Morgan, and Hervé Bourlard. Probability estimation by feed-forward
networks in continuous speech recognition. In IEEE Workshop on Neural Networks for Signal
Processing. IEEE, IEEE, October 1991.

21

[62] Steve Renals, Nelson Morgan, Hervé Bourlard, Michael Cohen, Horacio Franco, Chuck Woot-
ers, and Phil Kohn. Connectionist speech recognition: Status and prospects. Technical Report

TR-91-070, ICSI, December 1991.

[63] A.J. Robinson. Dynamic Error Propagation Networks. PhD thesis, Cambridge University
Engineering Department, February 1989.

[64] Tony Robinson and Frank Fallside. A recurrent error propagation network speech recognition
system. Computer Speech and Language, 5:259-274, 1991.

[65] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by error
propagation. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing:
Ezxplorations in the Microstructure of Cognition, volume 1, chapter 8, pages 318-362. Bradford
Books, 1986.

[66] S. Sasanuma. Can surface dyslexia occur in japanese. In Orthographies and Reading. Lawrence
Erlbaum Associates, 1984.

[67] A.W. Senior and F. Fallside. Off-line handwriting recognition by recurrent error propagation
networks. In David Hogg and Roger Boyle, editors, British Machine Vision Conference 1992.
Springer Verlag, September 1992.

[68] H.F. Silverman and D.P. Morgan. The application of dynamic programming to connected
speech recognition. IEEE ASSP Magazine, pages 6-25, July 1990.

[69] Jean-Claude Simon. Off-line cursive word recognition. Proceedings of the IEEE, 80(7):1150—
1161, July 1992.

[70] Sargur N. Srihari and Radmilo M. Bozinovié. A multi-level perception approach to reading
cursive script. Artificial Intelligence, 33:217-255, 1987.

[71] Ching Y. Suen, Marc Berthod, and Shunji Mori. Automatic recognition of handprinted
characters— the state of the art. Proc. IEEFE, 68(4):469-487, April 1980. Contains 244
references.

[72] 1. Taylor and M.M. Taylor. The Psychology of Reading. New York Academic, 1983.
[73] J.M. Tazelaar. Recognizing script. Byte, 16(4):210, April 1991.

[74] Arnold J.W.M. Thomassen, Hans-Leo Teulings, Lambert R.B. Schomaker, Pietro Morasso,
and Jonathan Kennedy. Towards the implementation of cursive script understanding in an
on-line handwriting recognition system. In Esprit ‘88: Putting the Technology to Use, pages
628—639. North Holland, 1988. Project 419.

[75] M. van Braekel and P. Daenens. The infrared determination of writing sequence of ball-point
pen strokes. In 10th Meeting fo the International Association of Forensic Sciences, volume

24/4, page 450, July/August 1984.

[76] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phoneme recognition using
time delay neural networks. IEEE Acoustics, Speech and Signal Processing, 37(3):328 —339,
March 1989.

[77] Ching-Huei Wang and Sargur N. Srihari. A framework for object recognition in a visually
complex environment and its applicaion to locating address blocks on mail pieces. International
Journal of Computer Vision, 2:125-151, 1988.

[78] P.T. Wright. On-line recognition of handwriting. GEC Journal of Research, 8(1):42-48, 1990.
[79] Atsushi Yamadori. Ideogram reading in alexia. Brain, 98:231-238, 1975.

22

