A Dynamic Neural Network Architecture by

sequential Partitioning of the input space!.

R.S.Shadafan? & M.Niranjan
May 13, 1993

Cambridge University Engineering Department,
Trumpington St., Cambridge, CB2 1PZ, England.

Email: rss/niranjan@eng.cam.ac.uk

!Part of this work was published in the proceedings of the IEE International Conference on Neural
Networks, March 28 - April 1, 1993, San Francisco, Ca., voll, pp. 226-231.
2Supported by a grant from Trinity College, Cambridge, and Karim Rida Said Foundation.

Abstract

We present a sequential approach to training multilayer perceptron for pattern classifi-
cation applications. The network is presented with each item of data only once and its
architecture is dynamically adjusted during training. At the arrival of each example, a
decision whether to increase the complexity of the network, or simply train the existing
nodes is made based on three heuristic criteria. These criteria measure the position of
the new item of data in the input space with respect to the information currently stored
in the network.

During the training process, each layer is assumed to be an independent entity with
its particular input space. By adding nodes to each layer, the algorithm effectively adding
a hyperplane to the input space hence adding a partition in the input space for that layer.
When existing nodes are sufficient to accommodate the incoming input, the involved
hidden nodes will be trained accordingly.

Each hidden unit in the network is trained in closed form by means of a Recursive
Least Squares (RLS) algorithm. A local covariance matrix of the data is maintained at
each node and the closed form solution is recursively updated. The three criteria are
computed from these covariance matrices with minimum computational cost.

The performance of the algorithm is illustrated on two problems. The first problem
is the two dimensional Peterson & Barney vowel data. The second problem is a 32
dimensional data used for wheat classification. The sequential nature of the algorithm has
an efficient hardware implementation in the form of systolic arrays, and the incremental
training idea has better biological plausibility when compared with iterative methods.

Contents
1 Introduction

2 Recursive Least Squares

3 The Sequential Machine

3.1 Criterion for linear separability

3.2 Criterion for remoteness

3.3 Criterion for locality
3.4 The final classifier and

4 Experimental Work
4.1 Vowel Recognition .
4.2 The Wheat problem

5 Conclusions.

an illustrative example

10
10
13

14

1 Introduction

Neural Networks have been successfully applied to many pattern recognition problems.
Usually, the classification problem is cast as an interpolation problem by assigning real
valued ‘targets’. The network attempts to interpolate these targets at locations defined
by a set of training data in multi dimensional input space or feature space. In this input
space, the network may be seen as approximating a nonlinear function. Often, a contour
on the the network output function is treated as a discriminant function. Sometimes, with
proper normalisation, network outputs are also interpreted as posterior probabilities of
class membership. Training, or parameter estimation, is usually done by minimising the
total squared interpolation error over the collection of training examples, using a gradient
descent type of procedure.

In this paper, we consider an algorithm that is suitable for data that arrive sequentially.
As each item of data arrives, the classifier has to be trained incrementally so as to satisfy
the new arrival and at the same time be consistent with the past observations. Past
observations are not retained. Additionally, even in situations where all data are available
before training, one might be able to achieve a computational advantage with sequential
learning procedures as such algorithms see each item of data only once.

A further motivation for this work is the observation that in a multi-layer perceptron
classifier the contribution of each unit in hidden layers is essentially ‘local’. If we view the
classification boundary as being approximated by segments of hyperplanes, the positions
of these segments are determined primarily by data that lie close to them. Data far
away from the segment boundaries contribute little to the error function. In this paper,
we exploit this observation by sequentially partitioning the input space so that training
nodes in the multi-layer perceptron is local.

We present to the network each example only once and dynamically increase the size
of the network. As every example arrives, the net will decide whether to add a new node
or simply train the existing nodes according to some criteria.

There are many advantages in this approach, the network can be expanded to a multi-
layer network by introducing new layers whenever they are needed, training them sep-
arately and sequentially with the set of outputs from the previous layer. In addition,
this network allows continuous learning (i.e. learning every new example even outside the
training set), which means the net will dynamically forget and remember examples accord-
ing to their distributions and occurrences. Such on-line learning is especially useful when
the data arrive sequentially and have a slowly drifting pattern of statistical behaviour.

Every node in the network is trained by the Recursive Least Squares (RLS) algorithm,
a technique which is widely known in the area of adaptive filters [1]. Azimi-Sadjadi et
al. [2] and Sin et al. [3] have used RLS algorithm in training Multi-Layer Perceptrons
(MLP). Other related work is the use of the Extended Kalman Filter (EKF) algorithm,
which is similar in form to RLS, but allows one to incorporate knowledge or estimates of
noise variances in the data. Singhal et al. [4] have used the EKF algorithm to train an
MLP. The EKF algorithm has also been used for estimating Radial Basis Functions model
by Kadirkamanathan et al. [5] & [15]. The common theme underlying these methods
that we borrow from adaptive signal processing is that the inverse of a matrix appearing
in the closed form expression for the least squares solution of a system of equations can
be evaluated recursively, using the matrix inversion lemma.

In the following sections we will show how a perceptron can be trained by the RLS

method, and construct the criteria which will control network growth. Then, the se-
quential machine will be introduced and illustrated by a simple example. Finally, we
will demonstrate the performance of this classifier on two real life problems, namely the
vowel classification as a low 2-dimensional problem, and the wheat classification as a large
33-dimensional problem.

2 Recursive Least Squares

Given a set of N training data x;, #;, ¢ = 1,..., N, where x; € RPt'and ¢; are real
values known as targets, the interpolation conditions for a perceptron model are a set of
simultaneous equations given by,

For input data of dimension p, we work in a p + 1 dimensional space to absorb the bias
term in the perceptron model, making the notations easier. The (p + 1) component is
set to 1. The nonlinear function f(.) is usually a sigmoid, given by

1
fle) = 1+ exp(—a) (2)
The system of equations becomes,
xiw; = log ti (3)
11—t
In matrix notation, we rewrite this as
Xw = C, (4)

where X is a Nx(p+ 1) matrix of the input data vectors, w is the unknown parameters of
the perceptron and C'is computed from the target values by the inverse of the nonlinearity.
Due to the nature of the log function, for pattern recognition problems we use 0.1 and
0.9 as targets, instead of 0 and 1.

The above is usually an overdetermined set, i.e. N >> (p + 1), of linear equations.
The least squares solution that minimises the total squared error,

FEF =

|Mz

(€)%, (5)
f(xt wi), (6)

1
27
e, = tl' -
can be obtained from the pseudo-inverse as,
w = [X'X]"' X'C, (7)
Letting [X* X] = B and X' C = (7, reduces this to:

w = B'@G, (8)

10

Average Energy

[0} 10 20 30 40 50 60 70 80 90 100

No. of Examples

Figure 1: A comparison on a simple vowel classification problem between the LMS (solid
line) and the RLS (dashed line) convergence rates as a function of number of examples
the network was sequentially presented with. The problem here is linearly separable and
has only two dimensions.

Here, the matrix B is the auto-correlation matrix of the input patterns, and the vector G is
the cross-correlation between the inputs and their designated targets [10], both quantities
can be found recursively at the introduction of a new example x; as follows:

B; = Bii+x; x,, (9)
G: = G+ %0t (10)

In sequential training, we use the matrix-inversion lemma [1], to compute the inverse of
these terms recursively. The inverse of B; can be computed from

-1 o ot -1
B, x; x; B4

Bt = p7l — . 11
% =1 (1-|—Xf Bi_—ll Xi) ()

For sequential learning we prefer the above RLS approach to a gradient descent type
algorithm. This is because the network sees each example only once and additional
information is retained in the form of inverse covariance matrices. A simpler approach
is to use a Widrow-Hoff type algorithm (the Least Mean Squares (LMS) algorithm in
adaptive signal processing) to perform an approximate gradient descent using d(e;)?/dw
at the arrival of each example x;, ;. In this case, the information we extract from
each item of data is minimal. With the RLS algorithm, we accumulate data covariance
information in addition to the gradient information. Though the amount of computation
at each iteration is much higher than the LMS type approach, convergence is much faster,
see Fig. 1. Further, in a practical implementation where the data arrival is sequential
(e.g. time series prediction or on-line control), we can pipeline these computations on a
systolic array type architecture [6, 7].

3 The Sequential Machine

We now look at how to incorporate the use of the RLS algorithm to train a single per-
ceptron into building a multi-layer network of perceptrons sequentially. This is done
essentially by partitioning the input space of each layer into local areas and the appli-
cation of the RLS algorithm on each node local to the newly presented datum. As each
example arrives, we apply three criteria to either associate the example with an existing
node and re-estimate its parameters or expand the network if the existing nodes cannot
properly account for the data.

3.1 Criterion for linear separability

This criterion will check whether our new input example will cause an untrainable (or less
comfortable training) situations with every node in the current machine. This is vital to
detect since unrelaxed training using the RLS-algorithm will cause a bad placement of
the hyperplane separating the two classes for any node in the network.

This criterion is based on the correlation between the outputs Y = f(X w) and
their designated targets T, (the quantity T Y'). To make use of the quantities B ' & G;
computed by the RLS algorithm, we consider the approximate corresponding linear version
of the same quantity z = C* X w. If the RLS solution was exact, which is the case when
X w =, (hence Y = T'), then z will go to a maximum value of C* C'. On the other
hand, if the RLS solution for w totally failed, the correlation between X w and C' is zero.

The above idea can be developed to a criterion figure which will equal to one when the
network has a total success and to zero if the network has a total failure, when training
the new example with the existing B~! & (. This can be expressed in the normalised
correlation:

Ct* X w
Gt B—l Gt
= e (13)

The normalised quantity Z can take any value between 0.0 (least correlation) and 1.0
(most correlation), the degree of correlation depends mostly on whether the new example
maintains the linear separability in the input space to the boundary under test. We can
set a threshold value Z,€[0.0,1.0] to specify the permitted degree of linear separability
needed to be maintained to allow training.

For every example X; presented to the system, B' & G for each node will be tem-
porarily updated using equations 10&11, and Z can be calculated using equation 13. If
7 > Z, for a particular node then training this example with that node is going to keep
the situation linearly separable and B! & G; will keep their present values, otherwise
training is not relaxed or the new example is linearly inseparable therefore a new node is
introduced to ease the training process, and B & G; will retain their previous values.
Fig. 2 shows different values of Z for a newly presented example from both classes around
the boundary with respect to its location in the input space.

The Threshold Z, is set according to how relaxed the user wants the network. However,
more relaxed network will create more nodes hence larger network size.

Z=0.4886
Z=0.6441
o o
o o
o #=0.7748 ° Z=0.8627
=1
=0.8171
E 0.5 Z=0.8584 & b
=
S Z=0.7157
Z=0.9
Z=0.9257 £=0.5918
Z=0.9324
Z=0.7692 £=0.4186
Z=0.6369
o L
o] 0.5 1
1st feature

Figure 2: A system with two classes in two dimensional space seperated by one hyperplane.
New examples are introduced from both classes at different location labeled with their
corresponding 7 value.

3.2 Criterion for remoteness

There might be cases where the new example is linearly separable (i.e. high Z value)
however it is too remote to be associated with its class cluster. In this case, we associate
the input to a new cluster of the same class. To measure remoteness, we introduce a second
criterion, again determined by quantities that can be computed by the RLS algorithm.

For instance we can compute the quantities B! & G for each class the node is clas-
sifying, then each new examples will be trained with the same class but with opposite
target using the RLS algorithm for a new hyper plane. The Error |¢; — x; W/| will be an
indication of how near x; is to that cluster, where ¢; is the corresponding inverse of the
nonlinearity of the target ;. This value will swing from near zero to |2 ¢;| as x; travels
from remote distance to the centre of that cluster. Normalizing this quantity will give a
measure of how remote this input is to that cluster:

|Ci — X; W|

D
|2 Ci|

(14)

The advantage of this criterion is that it takes the geometry of the cluster tested into
consideration by applying the RLS algorithm on that cluster. However, separate B! & G
quantities for each side of the hyperplanes must be maintained and calculated each time
the node has been trained with new input. Fig. 3 shows different values of D for newly
introduced examples to a system of two classes, in each case D is computed for both
classes and the lowest value of the two is chosen.

3.3 Criterion for locality

Locality in this context is defined as follows:

1
=0.8807
D=0.9685 P
P=0.9654
D=08682 o 9PP=0.22
o 00Op
o
o + N
o + +D=0.19
1 +
S
8 osf D=0.9536 N 1
=
=
~ ¥ D=0.5763
P=0.9407
D=0.9541
=0.9647
D=0.8361 P
p=0.897
D=0.8965
o 1
0 0.5 1

1st feature

Figure 3: A two class system similar to Fig. 1. The target of the new example does not
affect D since each example will be trained with oppsite target of the cluster under test.
D is calculated for both classes and the lower value is always chosen.

The input x; ts local to a boundary if there is no other boundary between the location
of the input and that boundary.

When testing the present input for locality to a boundary, the input is orthogonally
projected on the boundary producing a new point x; in the input space which will be
tested by all the other nodes in the same layer. The present example is local only if all
the outputs of the other nodes maintained their status within the same class.

Since the weight vector w is always perpendicular to the boundary, the difference
between X;- and x; should be in the same/opposite direction, or:

X;—X; = qW, (15)

where ¢ is a scalar, and all the vectors are taken without the bias term in this equation.
Moreover, X;- is on the boundary, hence:

x; w =0, (16)

where vectors now include the bias term. Using these two equations we can solve for X;
and carry out the test on the other nodes. Changing output status for a node k can be
detected when the quantity x; wy has a different sign than x; wj. Computationally, this
can be done by multiplying both quantities:

Ly = [x; wilx; wy, (17)

if the answer is negative then a change in status has occurred, L is positive otherwise.

3.4 The final classifier and an illustrative example

The machine developed here is to classify only two classes, but expansion to more than
two classes is straight forward. For r class problems, we will build » machines each will

classify one class against the other r — 1 classes, hence the final classifier will have r
outputs, each will map to only one class. In a two class problem, the machine will only
have one output which fires when the presented example belongs to one of the classes.

Layers generated within the network will be treated as an entity and trained separately,
nodes will be added to any layer to partition the input space of that layer to solve for
nonseparable (or unrelaxed) training situations.

The algorithm for partitioning the input space is summarised as follows, snap shots
of the process are illustrated in Fig. 4:

1. Start the machine with one node, and train it with the first example using the

RLS algorithm.
2. Present a new example and for every node in this layer:

— Check remoteness by computing D for both sides of the boundary
— Check locality by computing L.
— Check separability by computing 7.

3. If the example is remote to all boundaries, create a new node and train it with
this example using the RLS algorithm, go back to step 2.

4. If the example is local and linearly separable with a set of nodes, train these
nodes with the example using the RLS algorithm, go back to step 2.

5. If the example is local but linearly nonseparable with a node, then create a
new node and use B~! & (7 of the opposite class of that node and the present
class to train the newly created node, go to step 2.

The addition of more layers will be controlled by the number of outputs of the final
layer, if the final layer developed to have more than one output, another layer with one
node will be added, so the machine will always has one final output all the time. The
partitioning algorithm will then be applied to the new output layer with its input being
fed from the previous layer. For each example presented, the process will be repeated
until the machine converges to one output. The behaviour of the model is shown in Fig.5,
the network eventually converged into 2 layers with one node in the output layer.

The quantities needed to be preserved in some memory are B! & (for the RLS
algorithm. Each node will need B™! & (for both classes combined to train the node
under test, and other two B™! & G for each class separately to be used for training
newly created nodes. It will also need to keep track of the quantity C'* C' for both classes
combined to normalize 7, and C" C for each class to be deported to the newly born nodes
when needed. These quantities consumes relatively less memory when compared to other
neural network techniques. Memory size here does not depend on the number of training
examples rather than the size of the network, as both G, which is a vector, and B, which
is a square matrix, do not grow until a new node is added to the same layer.

One fact to point out is that since network size and its parameters are modified
sequentially with every example without anticipating future examples, the final network
architecture depends on the sequence of how the examples are presented to the network
during training process, this might affect the final performance of the network. However,
if the number of examples is large enough for the network architecture to converge into

Net with 1 node 1 Net With 1 node

1
0.8+~ . 0.8+~ .
[5) () o0
S 06 4 3 o6f- o o0 .
8 . 8
2 04r 1 = 04 I]
N N
0.2+ . 0.2+ .
0] : 0] :
0 0.5 1 0 0.5 1
1st feature 1st feature
1 Net with 2 nodes 1 Net with 3 nodes
0.8+ . 0.8+ .
o 0% o o 0% o
=] L o _ =1 L o o _
:E'_E 0.6 °. 00++++ (? :E'_E 0.6 °. oO++++ (?é;o
= 04 +:+ - = 04 +:+ |
N N °
0.2 1 0.2 ©9,° 1
0] ‘ 0] ‘
0 0.5 1 0 0.5 1
1st feature 1st feature
1 Net with 4 nodes 1 Net with 4 nodes
. +
08~ ,*i 8
o 0% o0 o
=1 L o _ =1
*g 0.6 o o 00 L c?(%oo g
—— + + ——
g 0.4+ Lt . g
L * 0% o _
0.2 0%
0 1
0 0.5 1
1st feature
1 Net With5nodes
.
o8- ' §° o
o +
% 0.6 o0 Oooo 00 O - %
E o ++:+ 000 E
T 04 .t . o
N P 0o o N
0.2 +. 808 + .
0 1
0 0.5 1
1st feature

Figure 4: Space partitioning for one layer of 2-D input space. New hyperplanes are
introduced by creating new nodes when neccessary. Old hyperplanes are trained when
training is relaxed enough. Both training and creating is done upon the arrival of a new
example.

Net With 1 node ‘ 3000 Net WiFh 2 nodes

3000
3 o o o o o
S 2000 - o % ’ . - S 2000 - o % 4$£+: -
E E -ﬁh+ 4+
= = ‘
& 1000 - - & 1000 - J® ©o -
o
O i L O 1 L
(0] 500 1000 (0] 500 1000
1st feature 1st feature
3000 Net WiFh 3 nodes ‘ 3000 Net WiFh 3 nodes
o
£ 2000 ° o - 4 & 2000
7 T L z
:é 1000 SH ? :é 1000
~ o o(? ® ° ~ ow ? o
O L L O L L
(0] 500 1000 (0] 500 1000
1st feature 1st feature

Figure 5: Simulation of the algorithm on a simple 2-D problem. The dotted lines denote
the class boundaries contributed by each of the three nodes in the hidden layer, the solid
line is the effective class boundary of the whole network.

a proper solution, then its performance is expected to have small variations for different
sequences. We will show that this is true for the vowel data, (see Fig. 8).

Moreover, one might anticipate that noisy examples will shape the network to a poorer
solution, but because of the localisation of training and the stability of the RLS learning
rule, the network maintained a good generalization, although it affected the network
size, as noise added to the examples will expand the input space and introduce more
complexity to the final boundary shape. This point is illustrated on one of the vowel
classes in section 4.1, where we added noise to the original training data and examined
the final architecture and its performance on clean testing set of data, (see Fig 9).

4 Experimental Work

We now show the performance of the model on two pattern recognition problems. The
first is a 2-dimensional vowel recognition problem. The second is a more complicated
33-dimensional problem involves wheat classification.

4.1 Vowel Recognition

The data here is based on Peterson & Barney database [14]. The classes are vowel sounds
characterised by the first four formant frequencies made by people of different ages and
gender. To visualize the problem, we reduced the problem to two features by taking the
first two formant frequencies.

The database consists of 1494 examples. It was randomly mixed without repeating
any example, and split into two set: a 1000 example set used as the training examples
and a 494 example set used as the testing examples.

10

The examples are mapped to 10 vowels (10 classes). Therefore, we built ten one-output
machines, each machine has a hidden layer and one output which fires in response to only
one specific class. The hidden layer was allowed to evolve to a number of nodes enough
to partition the input space using our algorithm. Table 1 shows the performance of each
machine and its final size . These results also indicate good generalization to the testing
data set.

‘ Vowel | TY IH EH AE AH AA AO UH UW ER | Ave
Train | 97.6 955 944 96.8 953 96.0 95.0 934 959 928 | 95.3
Test | 98.0 96 943 964 947 97.0 955 915 947 91.3 | 94.9

Net size 9 19 16 16 41 17 15 15 11 28 | 18.7

Table 1: Results of the vowel problem. Each percentage corresponds to individual class
recognition. Net size corresponds to number of nodes in the hidden layer.

Further, the outputs of the above 10 networks were tested collectively to recognise
the corresponding classes. The scheme was to choose the highest output to designate
the correct class. Accordingly, the networks managed to correctly classify 78% of the
training data, and 74.5% of the testing data. This modest result can be due to the
overlapping between classes, taking into account only the first two formant frequencies
were considered in the training data, see Fig. 6. Nevertheless, our results are comparable
to other sequential and non-sequential methods applied on the same problem, reported
in [15, 16, 17]. Table 2 shows these reported results and the results of our algorithm.
It has to be noted that the work of Kadirkamanathan [15] is the nearest to our work in
terms of the size of the training and the testing sets, Lowe [16] used only 338 examples
as the training set and 333 examples as the testing set. Other results - not mentioned
here - were reported by Prager [19] and Jacobs et al. [18], however, Prager used the first
four formant frequencies instead of two, and Jacobs only used four out of the ten vowel
classes. Overall picture of how the classes were finally bounded using our scheme is shown

in Fig. 7.

Classifier Train | Test
Optimum Linear Transformation [16] | 41.12 | 40.24
Distance-to-class mean (Euc.) [16] 68.05 | 68.77
Distance-to-class mean (Mah.) [16] 78.40 | 80.18
Full Gaussian Classifier [16] 76.63 | 74.85
Nearest Neighbour [16] 100.0 | 77.48
K-Nearest Neighbour (K=5) [16] 82.25 | 81.38
Gaussian RBF (36 hidden) [16] na | 80.18
Thin plate spline (32 hidden) [16] na | 81.08
Gaussian RBF (softmax) [17] na 78

Dynamic network (85 hidden) [15] 76.58 | 75.40
Our Sequential space partitioning 78.0 | T4.5

Table 2: Percenatge correct of different reported classifiers and our classifier. na: not
available.

11

4000

3500

3000

N

a1

3
T

2000

2nd formant frequency

1500

1000

500

0 200 400 600 800 1000 1200 1400
1st formant frequency

Figure 6: Initial boundaries made by the 10 networks at the output level 0.5, notice the
overlapping.

To illustrate the effect of the input data sequence on the architecture and its final
performance, we trained one of the machine with different sequences by randomly changing
the sequence of the first 250-300 examples in the training set without any repetition in the
examples, as these examples constitute the most crucial factor on shaping the network.
The dynamics of the hidden layer for different sequences for the vowel UH is shown
in Fig. 8. We chose this vowel because it is a difficult problem as noticed from its low
performance and it is surrounded by other classes from all direction, see Fig. 7. Although
different sequences resulted in different network sizes, the performances, on both training
and testing sets, were comparable. Table 3 shows the performances for 10 different
sequences and the corresponding hidden layer size.

cycles | 1 2 3 4) 6 7 8 9 10 | Ave | Std. Dev.

train | 93.9 93.7 93.8 938 93.0 93.5 933 934 938 93.3 |93.6 0.3
test | 91.7 91.9 91.3 909 91.7 91.7 89.7 91.3 92.1 90.9 | 91.3 0.7

net size | 15 16 31 12 13 14 21 12 18 13 | 16.5 3.8

Table 3: Percenatge correct results of 10 different training input sequence of the vowel
(UH). Net size corresponds to the number of nodes in the hidden layer.

On the noise issue, again we selected the vowel (UH) data and added different levels
of noise to the training examples, and tested its performance on the clean testing set.
During these experiment, hidden layer size was not allowed to exceed 100 units. The
results are shown in Fig 9 for both normal and uniform added noise. The network size

12

4000

3500 X B

XX XX

X X +

e .
> AT T o]
2500} o T e .

2nd formant frequency
N
(@]
2

1500

1000

500

0 200 400 600 800 1000 1200 1400
1st formant frequency

Figure 7: The final classification of the 10 classes in the vowel problem using the The
correct class at the highest output scheme. Class (UH) is denoted by ’.” in the midle of
the graph.

increased with the noise level, but the performance was maintained on both training and
testing sets.

4.2 The Wheat problem

The wheat problem constitute a higher dimension database. The task here is to classify
one strain wheat grain called mercia against 21 other varieties. Mercia wheat grain is
important for good quality bakery. The database is supplied by a special imaging system
developed at the National Institute for Agricultural Botany in Cambridge [12]& [13] for
wheat identification. It contains 23006 training examples and a separate set of 2000
examples for testing. Fach example is a vector of 33 elements.

Out of the entire training set we selected 2000 examples (1151 mercia and 849 other
classes) as our training set. The experiment involved three networks using three different
Z, values see section 3.1, leading to different network sizes, but all made to converge to
one node in the second layer. The network sizes and their performances are summarised
in table 4

The same problem was tackled by Prager [19] using different kinds of training methods,
for the sake of comparison the performances of these networks are listed in table 5. Our
results put us in the middle amongst Prager’s networks, however, emphasis is drawn to
the number of data cycles each network needed to converge compared to one data cycle
in our case.

13

20

181 1

No. of nodes (net size)

0 100 200 300 400 500 600 700 800 900 1000
No. of examples

Figure 8: Growth patterns of a hidden layer for the class (vowel UH) during training for
different presentation sequences of the input examples.

Lo 0.9 10.450.35

Net Size 17 3 1
Train-2000 | 81.7 | 83.2 | 84.2
Train-23006 | 79.1 | 80.9 | 81.9
Test-2000 | 82.1 | 83.5 | 84.5

Table 4: Results of the wheat problem.

5 Conclusions.

A sequential approach to designing a Multi-Layer Perceptron pattern classifier is pre-
sented. The architecture of the MLP (i.e. the number of nodes) is increased dynamically
with the complexity required to classify the incoming data. Training each node in the
network is done in closed form using the Recursive Least Squares algorithm with local
covariance matrices. Thus each node contributes to a segment of class boundary that
makes local classification decisions. The approach has the advantage that training is
sequential hence it is fast and particularly useful when the nature of the problem is es-
sentially sequential too. Whereas, iterative methods require to have the whole batch of
the training set and pass it to the network for a large number of times, making it slower
and harder to implement. In situations where there is a large number of data items, the
computations may be pipelined and implemented on a systolic array type architecture.
We are currently working on a simulation of such type of an architecture.

The performance of the algorithm is illustrated on the simple two dimensional vowel

14

Uniform Noise
100

A A —

90

701 %

o : training e
S 1 + : testing
60 ks \ ! x : netsize 1

(]

o

2

B

o

=

S /
é X
[¢]

g

2

i

301 -

20 -7 .

101 1

O L L L L L
0 5 10 15 20 25 30 35 40 45 50

Noise level

Normal Noise

80 / ,
701 : o : training —

/ +: testing
601 * % netsize -

401 / 1

30 / 1

Percentage correct - No. of nodes

20+ T -
10} -

O L L L L L
0 5 10 15 20 25 30 35 40 45 50

Noise level

Figure 9: Performance of the algorithm under noisy environment. The problem used is
the vowel (UH). The y-axis represents percentage correct for training and testing data,
it also represents the number of nodes in the hidden layer. At any time, the number of
nodes was not allowed to exceed the 100 unit limit.

15

Network type Training | Train Test
Cycles

Single Layer Network: 42818 | 83.3% 86.9%

500 Random Locations: 3714 72.8% 177.4%

Approx. 500 pruned Locations: 3476 78.4% 82.8%

Sequential Space Partitioning: 1 81.9% 84.5%

Table 5: Performance of Prager’s Networks on the wheat problem and our network per-
formance.

classification and on the larger dimension Wheat problem. The results are comparable
to other methods on the same benchmark problems, although less computations were
required. As expected, the order of the input data effected the network architecture, but,
provided that the training data set is large enough, these effects can be minor and may
have negligible effect on the final performance and generalization of the network. They also
show encouraging signs to maintain performance even under noisy environment, although
the increase in complexity of the noise data increased the size of the network. We believe
that this increase in the net size is not contributing much to its performance, and many of
these created boundaries are redundant. We are currently working on a pruning algorithm
to remove such redundant units.

References

[1] Simon Haykin, Introduction To Adaptive Filters. Macmillan Publishing Company,
1984.

[2] M. R. Azimi-Sadjadi and S. Sheedvash, “Recursive node creation in back-propagation
neural networks using orthogonal projection method,” ICASSP 91, Toronto.

[3] S-K. Sin and R. J. P. deFigueiredo, “An evolution-oriented learning algorithm for
optimal interpolative net,” IEEE Trans Neural Networks, vol 3, No 2, March 1992.

[4] Sharad Singhal and Lance Wu, ¢ Training feed-forward networks by the extended
Kalman algorithm,” ICASSP 89, Glasgow.

[5] V. Kadirkamanathan and M. Niranjan, “ Nonlinear adaptive filtering in nonstation-
ary environments,”, [CASSP 91, Toronto.

6] J. V. McCanny and J. C. White. VLSI Technology and Design. Academic Press,
1987.

[7] S. Y. Kung. VLSI Array Processors. Prentice Hall, 1988.

[8] C. Chatfield and A. J. Collins, Introduction To Multivariate Analysis. Chapman and
Hall, pp. 190-193, 1980.

[9] N. R. Draper and H. Smith, Applied Regression Analysis. John Wiley & Sons, Inc.
1966.

16

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

William A. Gardner, Introduction To Random Processes. Macmillan Publishing Com-
pany. 1986.

Nils Nilsson, The Mathematical Foundations of Learning Machines. Morgan Kauf-
mann, 1990.c

P. D. Keefe and S. R. Draper, “ The measurement of new characters for cultivar
identification in wheat using machine vision,” Seed Sci. and Technol. | vol 14, pp.

715-724, 1986.

P. D. Keefe, “ Observations concerning shape variation in wheat grains,” Seed Sci.

and Technol. |, vol 18, pp. 629-640, 1990.

G. E. Peterson and H. L. Barney, “Control methods used in a study of the vowels,”
JASA, vol 24, pp. 175-184, 1952.

V. Kadirkamanathan and M. Niranjan, “Application of an architecturally dynamic
network for speech pattern classification,” Proc. of the Inst. of Acoustics, vol 14, part
6, pp 343-350, 1992.

D. Lowe, ” Adaptive radial basis function nonlinearities and the problem of generali-

sation,” Proc. IEE Conference on Artificial Neural Network, 1989.

J. S. Bridle, “Probabilistic interpretation of feedforward classification network out-
puts, with relation to statistical pattern recognition,” F.Fougelman-Soulie & J. Her-
ault (eds.) Neuro-computing: algorithms, architectures and applications, Springer-

Verlag, 1990.

R. Jacobs, M. Jordan, S. Nowlan, G. Hinton, “Adaptive Mixtures of local Experts,”
Neural Computation, vol 3, No 1, spring, 1991.

Richard W. Prager, “ Some experiments with fixed non-linear mappings and single
layer networks,” Technical Report (CUED/F-INFENG/TR.106), Cambridge Univer-
sity Engineering department, July, 1992.

17

