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Abstract

Highest Confidence First (HCF) estimation is applied to deterministic scaled-ordered non-
rigid registration of organ models. A local Posterior energy measure is computed from
Bayesian combination of local Prior and Likelihood energy measures, over a Markov Ran-
dom Field (MRF) defined over the Finite Element neighbourhood of every element node.
Prior energy is derived from the Gompertz metric of biological growth, and Likelihood en-
ergy is derived from the biologically meaningful similarity between local FEM eigenmode
displacement components. The Centroid Size metric is generalised to give the characteristic
scale of an organ model, which allows for normalisation of model size and eigenmode mag-
nitude. Linear axes along which modal moments act are used as an estimate of intrinsic
model pose, so that initial rigid-body registration can be achieved.
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Chapter 1

Introduction

In this report we describe a deterministic algorithm for computing a map of homologous
sites between two organ models. This algorithm uses Bayesian combination of evidence to
integrate a local metric of biological growth with a metric of the likelihood of biological
homology.

The likelihood features are FEM eigenmodes, which have a number of useful properties
when used as scale-ordered shape features (Syn & Prager 1995b). Linear axes for both
models are used to approximate eigenmodes of fundamental spatial frequency, allowing
pose estimation for an initial rigid-body registration. FEM eigenmodes are then used in
ascending order of spatial frequency in order to refine the homology map.

Such a non-rigid registration procedure has a number of applications in a 3D ultrasound
imaging system

e register models with different spatial sampling eg. comparing an organ imaged using
3D ultrasound and MR;

e resampling a warped mesh resulting from a 3D segmentation;

e automatic registration of training models can be use for building a statistical descrip-
tion of shape variation;

e automatic registration of segmented organs to examine which points are vary least
and are therefore best suited for use as landmarks;

e aspeculative application is the registration of a model to unordered boundary elements
derived from 3D ultrasound images using texture, intensity and inter-frame velocity

edges (cf. Sclaroff & Pentland (1995)).

1.1 Prospectus

Size metric

We generalise the Centroid Size metric (Bookstein 1991) to apply over the triangular surface
faces of an organ model so that models can be size-normalised before registration.



FEM eigenmodes

We review the properties of FEM eigenmodes which are not only modes of mass flux in
biological growth, but also features of biological homology. Eigenmodes are only determined
up to a scale-factor, and magnitude can be normalised using the size metric derived above,
whereas direction normalisation is handled using a relatively ad hoc scheme.

Pose estimation for initial registration

The first three eigenmodes are of fundamental spatial frequency, and the modal moment
vector (which is usually non-zero due to sampling and numerical roundoff) is a convenient
linear axis which describes a major plane of symmetry. We use modal moment vectors to
construct a trio of principal modal axes which define the model’s intrinsic pose, and hence
can be used to estimate a rigid-body registration.

Bayesian registration

We apply Highest Confidence First (HCF) estimation to local Posterior energies at each
model site, in computing a homology map which defines the non-rigid registration of two
models. The local Posterior energy is a Bayesian combination of a Prior energy derived from
the Gompertz metric of biological growth, and a Likelihood energy derived from the similar-
ity between local eigenmode components. HCF estimation is performed using eigenmodes
in increasing order of spatial resolution, so that a graduated improvement in localisation of
the homology map is achieved.



Chapter 2

Size metric

2.1 Covariances between size and shape

Bookstein (1991, Ch. 5.5) presents the Centroid Size metric as the only size variable in-
variant to independent, identical and isotropic noise in landmark specification. There are a
number of equivalent definitions of Centroid Size, one of which is as the summation of all
inter-landmark squared-distances.

We generalise this to operate over a 3D model consisting of triangular surface facets.
The model interior is ignored since it adds nothing to our shape measure - all internal
displacements are determined from surface landmarks and displacements in our applications.

2.2 Coordinates in a triangle

Figure 2.1 shows a triangle with node positions (a, b, c).
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Figure 2.1: Coordinate parameters of triangle in 3D space



Consider a small strip (a,3) parallel to the baseline (a,b). Let r denote a position in
this strip.

a = a+u(c—a) (2.1)

B = b+ Ac—-Db) (2.2)

r = a+ B —a) (2.3)

dA = hdp.||B — afldX (2.4)
B—a = (b-a)(i-p) (25)

We can find the height of the triangle from the vector (¢ — a) by subtracting the com-
ponent along the triangle’s baseline.

b—a b—-a
(c=a)- (Hb—aH '(°“"‘)) Tb—al

2.3 Centroid Size integrated over two triangles

h =

‘ (2:6)

Let us extend Bookstein’s metric to operate between two triangles T} and T, respectively
bounded by the nodal coordinates (a, b, c) and (d, e, f).

If r is a point within T} and s is a point within T5, then the Centroid Size metric is the
double integral

1 1 1 1
[ [ e=siaacaas = [ [0 [0 [ @60 - aal)(hall 2 = asl)lie = sl dXsdpas ddadn
T JTs 0o Jo Jo Jo

3ky + 3ky — 4ks3
= hih — bll||ld — 2.7
= bl - e (21522 27)
where
kyo=lall> +[|bl|* +[lc[I* + [|d[|* + [lel|* + [I£[” (2.8)
ky = ab+bect+catdetef+fd (2.9)
ks = ad+aet+af+bd+bet+bfitecdtcetef (2.10)

Summed over all N triangle pairs (7}, T;) on the model surface, the Centroid Size metric
becomes

N 7
cs = %(ZZ/T/T Hr—sH?dAl.dAg) (2.11)

=1 j>1

Equation 2.7 was algebraically integrated by computer and has some expected proper-
ties, being

1. symmetric under permutations of (a, b, c) or (d,e,f) and their components.

2. symmetric under swapping (a, b, ¢) with (d, e, f).



2.4 Scale-normalised liver models

Figure 2.2 shows twelve volumetric liver models of varying size and sampling which have
been scale-normalised using the Centroid Size metric. These models were sampled and

segmented from MR scans of fetal cadaveric livers (Pasapula 1995).
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Figure 2.2: Scale-normalised volumetric liver models



Chapter 3

FEM eigenmodes

3.1 FEM eigenmodes as shape features

Sclaroff & Pentland (1995) describes the use of 2D eigenmodes in modal matching of images
in a video database, leading to applications in object recognition and classification. A
connectivity model is built using Gaussian interpolation of unordered edge elements from
an edge finder. An affinity table is compiled of the strongest correspondences between two
objects which should have only a small rotation offset, from which the overall homology
map is derived. We have applied a rotation-invariant extension of this algorithm (Syn &
Prager 1994) with some success to an artificial dataset of 3D ellipsoidal models, but it fails
with more complex 3D models such as those shown in Figure 2.2.

3.2 Eigenmode symmetries

Eigenmodes are ordered in descending order of spatial scale, and when comparing between
two similar models are also ranked in descending order of similarity, since the two models
have more shape differences at smaller spatial scales.

Elastic eigenmodes exploit local structural weaknesses of models, which at large spatial
frequencies expose axes of global symmetry. Again these axes of symmetry are scale-ordered
since the modal energy of these structural weaknesses are dependant on spatial scale.

In fact the first three eigenmodes for a model in 3D will always be of fundamental
spatial frequency, so that there is only one spatial phase change over the surface. These
fundamental modes act about the principal modal axes which are used in Chapter 4 to
determine model pose.

3.2.1 GGallbladder models

Figure 3.1 shows two gallbladder models in the same pose. The first three non-rigid eigen-
modes are the same, and there is a single linear bending axis about which each mode bends
or twists, since each mode is of fundamental spatial frequency. Figures 4.1-4.3 show the
bending axes more clearly.



(a) Gallbladder

S

—

\\\y\

(e) Bent gallbladder

S
\\QVNN\‘»\.‘\!‘;

(b) First mode

(f) First mode

(c) Second mode

©

(g) Second mode

(d) Third mode

(h) Third mode

Figure 3.1: First three non-rigid eigenmodes of two volumetric gallbladder models (in the

same pose)



3.2.2 Liver models

Figure 3.2 shows the first three non-rigid eigenmodes of the Liverl and Liver5 models.

Arrows indicate the gross modal action, from which the bending axis for each mode can be
deduced.
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Figure 3.2: First three eigenmodes of liver models (Liverl and Liver5)

3.3 Eigenmode similarity

Syn & Prager (1995a) develop a model of biological growth which, given a number of sim-
plifying assumptions, shows that eigenmodes describe the directions of mass transfer during
growth. We have already argued above that for two similar models, their corresponding
eigenmodes are ranked in order of similarity because the models have accentuated differences
at smaller spatial scales (ie. fine details are more likely to differ).

When comparing two biological models, we may treat them as noisy instantiations of
some prototype. Such noise is manifested in all stages of biological morphogenesis and
growth!, in genetic shape and control parameters as well as in the imaging and shape-

'Syn & Prager (1995a) review current work on the robustness of biological morphogenesis in the presence
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modelling process. When the models are very similar to each other (and hence to the
prototype), then the modes of growth of the prototype are also very similar to the modes of
the two models for the reason mentioned above. Additionally the shape difference between
model and prototype lies within the linearisation limit of more eigenmodes?.

Since each position on the prototype grows into a point on both models, there is a
biological correspondence or homology between all points on the eigenmodes of two biological
models. In establishing corresponding points between two models, we can therefore compare
the eigenmode components at these points to give the likelihood that these points are
homologous.

Figure 3.3 illustrates the situation when both models are similar to each other and to
the prototype.

prototype

homology s

only a small deformation needed between
prototype and model, so shape difference
lies within linearisation distance of more
eigenmodes

models will have more
eigenmodes in common

Figure 3.3: Organ models are noisy instantiations of a prototype

A related issue is that of choosing biological landmarks. The more variable the position
of a point on an organ, when compared to other organs, the more statistical power it
has in describing the current instantiation of organ shape. Sites with large eigenmode
displacement components are ones which vary most between organs, according to the model
of biological growth presented in (Syn & Prager 1995a), and will therefore be most significant
in determining the likelihood of homology between models. This accords with our use of
FEM eigenmodes as shape features.

3.4 Mode normalisation

In order for eigenmodes to be used as shape features for comparison and registration be-
tween two models, they must first be normalised in magnitude and direction, since they are

of noise
?Figenmodes of smaller spatial scale will have smaller linearisation limits.

11



arbitrarily scaled when derived as eigenvectors. The models being compared are sampled
with arbitrary density and distribution, so that the standard method of scaling the 2-norm
is inadequate. Normalising the mean displacement component at surface sample points is
also inadequate because eigenmodes components have near-zero net displacement (Syn &
Prager 19955, Ch. 3).

We use a normalisation scheme which scales the largest single component at any sample
point to a fraction (normally 10%) of the characteristic scale of the model, which represents
the linearisation limit of the eigenmode. An additional constraint is that the net volume
change associated with the desired sign of each non-rigid eigenmode is the largest positive
one.

Figenmodes with large spatial frequency are used as shape features, and they are dis-
cretely sampled vectors of a displacement field which has only a very small number (1-3)
of phase changes and local displacement maxima over the model surface. Even with noise
in spatial sampling and mode computation, these maxima will be spatially large and vary
smoothly, which is why the normalisation used above is fairly robust.

Using this normalisation scheme, we avoid the circular problem of normalising eigenmode
direction and magnitude by first having to determine initial pose and correspondence.

3.4.1 Volume change in symmetric eigenmodes

The sign of volume change is a macroscopic characteristic of eigenmode direction, which we
have found to be robust enough to be used for direction normalisation. It is possible when
comparing two noisy models for a sparsely sampled eigenmode to give volume changes of
opposite signs. We have found this to be the case for higher eigenmodes of some of the
liver models, and this is because of the sparse sampling of the model which falls below the
minimum Nyquist frequency needed to specify both model shape and eigenmode features.

Note that non-rigid eigenmodes always cause a change in model volume. Displacement
fields which do not are by definition rigid-body displacements. Note also that symmetric
eigenmodes acting on symmetric models will give the same volume change for positive and
negative eigenmode displacement.

3.4.2 Normalising higher eigenmodes

The standard FEM constraint is to ensure that the largest single component has a positive z-
direction (Hitchens 1992, Ch. 8), but this is pointless when the initial pose is undetermined.
However after initial pose has been estimated using the principal modal axes, this constraint
can be used to normalise the direction of higher eigenmodes.

12



Chapter 4

Pose estimation for initial
registration

We have shown that FEM eigenmodes are shape features with the desirable properties of
scale-ordering, similarity-ordering and global shape support. Sclaroff & Pentland (1995)
regard eigenmode features as generalised axes of symmetry, and in this chapter we utilise
this property to perform pose estimation for initial rigid-body registration of structures
which are to be finely registered in Chapter 5

4.1 Eigenmode moments

We have seen in Section 3.2 that the net moment of the eigenmode field about the centroid
must be zero. If we compute the moment using only the boundary components of the
eigenmode field, which have the largest magnitude and are perceptually most significant,
then there will be a net moment vector for models such as those shown in Figure 3.1

4.1.1 Gallbladder model

Figures 4.1-4.3 show superposed views of each eigenmode, together with surface normals
which are used to highlight local displacement components. The approximate position is
also indicated of the modal moment axis about which the components of each fundamental
mode acts.

4.1.2 Liver model

Figures 4.4-4.6 shows the surface normals and bending axes for the Liver9 model.

4.2 Principal modal axes

The modal moment axes indicated above are linearised approximations to the line of zero
phase change in each eigenmode of fundamental spatial frequency. A mutually-orthogonal
set of three axes can be computed as an estimate of model pose.

13
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Figure 4.1: Modal moment axis for first eigenmode of gallbladder model
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Figure 4.2: Modal moment axis for second eigenmode of gallbladder model
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Figure 4.3: Modal moment axis for third eigenmode of gallbladder model
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Figure 4.4: Modal moment axis for first eigenmode of Liver9 model

key to
eigenmode
magnitude

positive
zero

negative

modal moment axis

Figure 4.5: Modal moment axis for second eigenmode of Liver9 model
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Figure 4.6: Modal moment axis for third eigenmode of Liver9 model



Vector moments are taken about the model centroid, of each eigenmode component
about its point of action on each element node. The modal moment axis is defined as
the axis which maximises the projection of the moment vector distribution, and can be
computed as the primary eigenvector of the covariance matrix of moment vectors. Two
modal moment axes are computed from the first two fundamental eigenmodes, and are
mutually orthogonalised to give a right handed trio which forms the set of principal modal
azxes.

It can be seen that the ordering of the fundamental eigenmodes reflects the mirror and
rotational symmetries of the gallbladder and liver models. The first two gallbladder modes
give modal moment axes which are normals defining the two dominant planes of mirror
symmetry which run along the major axis. The third gallbladder mode shows the plane of
minor symmetry which is perpendicular to the long axis.

The first liver mode is perpendicular to the long axis and is the dominant plane of
symmetry. The two other modes show up planes of symmetry which are less well defined.

4.2.1 Accuracy of modal axes

The directional accuracy of modal moment axes is dependant to some extent upon the
sampling distribution of the Finite Element nodes, regardless of the accuracy of the eigen-
vector computation routine. In the worse case represented by the liver models in Figure 2.2,
there is an error of approximately 30°, which is sufficiently accurate as an initial rigid-body
registration.

When viewing animated eigenmodes, the human eye does a very good job of estimating
the orientation of modal moment axes, and this is because the displacement field is inte-
grated continuous over the model surface. This can also be done computationally by using
FEM interpolation of the displacement field, at the cost of more computation.

16



Chapter 5

Bayesian registration

We present here a deterministic algorithm for determining a non-rigid registration between
two biological organs using Bayes rule to combine a likelihood measure based on eigenmode
similarity and a prior constraint based on a model of biological growth.

5.1 Growth model is the prior function

Syn & Prager (1995a) present a new biologically motivated metric of organ shape difference.
The Gompertz function is suggested as an energetic metric of biological growth, based on
experimental evidence from the literature as well as a thermodynamic model of growth
control. It is shown that when comparing two fully grown organs which are treated as noisy
instantiations of some prototype, the linearised metric is simply the mass difference between
the organs.

This metric can be computed locally during the registration process, by an exactly con-
strained fit of principal eigenmodes of mass transfer to the number of committed homologies.
This is explained in more detail below in Section 5.8.2 as the metric of local Prior energy.

5.2 Eigenmodes are the likelihood features

Syn & Prager (1995b) explain the properties of FEM eigenmodes when used as shape
features, and Section 3.3 shows that eigenmode similarity between two points is a measure
of the likelihood of their biological homology.

We use the monotonic and efficient 2-norm metric to quantify eigenmode similarity,
given that eigenmode components have been normalised as described in Section 3.4. This
gives us a metric of local Likelthood energy.

5.3 Markov neighbourhoods in Finite Element models
The Finite Element Method utilises shape functions to interpolate stresses and strains

within each element (Syn & Prager 1995b), so that the displacement of a point within an
element is solely a function of the displacements of the element nodes.

17



Consider the special case when this point coincides with an element node. This node is
shared between adjacent elements, and its displacement is therefore only influenced by the
nodal displacements of all these adjacent elements. The neighbourhood formed by such a
group of adjacent elements is Markovian, and we can see that each nodal component of an
eigenmode exists within a Markov neighbourhood.

nodal displacements
of eigenmode

A
/ 4
,
;

//
displacement of central node

is influenced only by nodes
of the five adjacent elements

element node

tetrahedral Finite Element

Figure 5.1: Five Finite Elements in a Markov neighbourhood

5.4 MRF-Gibbs equivalence

Bayesian combination of the Prior probability Pp, and Likelihood probability Py, leads to
the Posterior probability Pps that a site on one model is homologous to a site on another
model. Therefore the Posterior probability associated with the central site is computed only
from eigenmode components within the Markov neighbourhood, and Bayes Theorem gives

Pp, P
Pp, = % (5.1)

where 7 is a normalisation constant.
Likelihood and Prior energies over each Markov Random Field (MRF') can be described
at a neighbourhood site f using a MRF-Gibbs equivalence (Chou & Brown 1990)

Pp.(f) = Ape UrrN/n -
Pri(f) = Age”UnN/T2

Equations 5.2 and 5.3 have the probabilistic constraint that

>, P(H=1 (5.4)

fEMRF

In order that the Posterior energy can be derived directly by adding Prior and Likelihood
energies, we use this one constraint to normalise the energies of both Prior and Likelihood.
Another constraint is simply that

A=Ay =1 (5.5)



since this only maps to a constant offset to Up, and Uy in each MRF.
Dropping the normalisation offset Z from Equation 5.1 gives the Posterior energy Up;
(scaled by some T3)

Ups = (Up,/T1) + (Urk/T2) (5.6)

5.5 Normalising Prior and Likelihood energies

Use the change of variable T = —% over the clique, then

N
ZeU"Tl = 1
=1
= (T 4 ()T + .. 4 ()T (5.7)

We can find T’ by computing the root of the monotonic function

y= (T + ()T .+ (T —1 (5.8)

using a simple Newton-Raphson iteration

Y
Tlnext = TI_E
a7
UN\T' UNT! o UnT' _q
_ o (T (T () 59)

U (0T 4 Uy (eV2)T 4.+ Uy (V)T
which gives us 77 and T3 in Equation 5.6.

5.6 Scale-ordered registration

We have now established an energetic measure which describes the likelihood of two sites on
different models being homologous, conditioned by the constraint of biological plausibility.
This local information has to be integrated over the entire surface so that we arrive at a
global homology map which minimises the Posterior energy over all sites.

The first non-rigid eigenmode is of fundamental spatial frequency so that there is only
one phase change over the model. A non-rigid registration using this eigenmode should give
only one of two locally optimal fits!. Similarly registration using subsequent eigenmodes
gives a spatial localisation determined by the eigenmode’s spatial wavelength.

Chapter 4 shows how a pose estimate can be arrived at to give an approximate rigid-
body registration, which should lie within the domain of the “correct” local optimum of the
first eigenmode’s non-rigid registration. The homology map is then estimated to the spatial
resolution of the first eigenmode, and refined using as many eigenmodes as are similar
between the two models. The number of similar eigenmodes two models have in common
therefore determines the resolution to which a biological homology can be determined.

'Two local optima occur because the two phases of a fundamental eigenmode can be matched in two
ways to a corresponding fundamental eigenmode.
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5.7 Highest Confidence First estimation

The minimisation problem outlined above has the following characteristics
1. initialisation within the domain of a local optimum
2. graduated presentation of increasingly localised optima
so the algorithm used needs to
1. initialise the homology map using the first eigenmode

2. refine the homology map using subsequent eigenmodes, while taking into account the
registration given by previous eigenmodes

We have implemented the Highest Confidence First (HCF) algorithm to meet these
criteria. HCF is an efficient algorithm which embodies the principles of graceful degradation
and least committment, with small and predictable run-time (Chou & Brown 1990). It
performs an approximate Maximum A-Posteriori (MAP) optimisation using local homology
estimates, with global scheduling to rank committment decisions in order of importance.

5.7.1 Augmented search space

Chou & Brown (1990) define an augmented search space as the set of possible homologies
or committments for a site, augmented with the additional option of being uncommitied.
After a site has committed to a homology, it can still change its committment but cannot
nullify it.

The augmented Posterior enerqgy is a modified measure which only considers committed
sites in the MRF. An uncommitted site always takes into account the states of active
neighbours when making a committment however.

5.7.2 Local stability measures

The order in which sites have their committments updated, is determined by a priority
queue with the least stable site at the top of the heap.

The stability measure for a committed site is the difference in Posterior energy between
the current committment f; and a committment (different from the current one) f; which
gives the smallest Posterior energy. This represents the largest reduction in local Posterior
energy which can be achieved by a change in committment.

= i Ups — Upg 5.10
szMI]%}l?I,lfﬁéfl P (f2) P (fl) ( )

The stability measure for an uncommitted site is the negative difference in Posterior
energy between the sites which give the two smallest Posterior energy values. This indicates
the depth of the energetic “well” which the best committment sits in, and is always negative.

B fzeMrlr%lliVI,lfQ;éfl _<Ups(f2) - UPS(fl)) (5.11)
st- Ups(fi) = min Ups(f) (5.12)
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5.8 Implementation

All sites are initialised as being uncommitted to begin with, so that the augmented local
Posterior energies are essentially determined by local Likelihood. Therefore sites with strong
Likelihood evidence of one committment over others will be visited early in the construction
of the homology map. Sites without strong Likelihood evidence will take the neighbourhood
configuration into account when making committments.

A serial implementation of HCF still has the weakness that the first committment made
strongly influences subsequent committments but may be inaccurate. Chou, Cooper, Swain,
Brown & Wixson (1993) present Local HCF as a parallel implementation which addresses
this potential instability by integrating initial committments over the network of sites.

5.8.1 Spatial refinement

HCF terminates when the top of the priority queue, which represents the least stable site, is
positive. The homology map obtained is used to update the rigid-body registration, which
improves the accuracy of the local Prior energy measures).

The map initialises another HCF run using the next eigenmode, which gives a principled
method of propagating Posterior estimates from all previous runs as Prior information in
the current run.

5.8.2 Computing Prior energy

Local Prior energies in a MRF are usually defined with respect to cliques, which are totally
connected subgraphs in the MRF. Cliques allow the Prior energy to be built up piece-
wise from different configurations of spatial dependency. Examples of potential functions
assembled from heuristically assigned clique functions are found in (Chou & Brown 1990).

The Gompertz metric of biological growth gives a Prior energy measure computed from
local mass change, which can described locally as a linear sum of eigenmode components.
Each eigenmode component has an associated local mass change, which varies non-linearly
with modal amplitude. Given any committment configuration in a MRF, an exactly con-
strained least-squares fit is performed to find eigenmode amplitudes from homology posi-
tions, whence the local Prior energy.

The qualitative behaviour of the Gompertz metric encourages homology vectors in each
element’s neighbourhood to not only minimise displacement, but also form a coherent cluster
of committments. This coherence propagates through overlapping MRF's from the top of
the stability queue downwards to less stable sites.

In cases where the mesh is both noisily and sparsely sampled, the determination of
eigenmode amplitudes can be made overconstrained by using fitting only a few eigenmodes
to a larger number of committment constraints. This reduces the ability of local Prior
energy to discriminate between similar committment patterns, and will dampen the local
variability of the homology map.
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Chapter 6

Results

6.1 Rigid-body registration using principal modal axes

Figure 6.1 shows the rigid-body registration of two gall-bladder models using principal
modal axes.

second principal modal axis

first principal modal axis

Figure 6.1: Rigid-body registration of gall-bladder models using principal modal axes

Figure 6.2 shows the refinement in pose estimation derived from the first and second
modal homology maps.

pose estimation using
first modal homology map —

pose estimation using
second modal homology map

Figure 6.2: Refinement of rigid-body registration using homology maps

6.2 Relative importance of Likelihood features

Gee, Le Briquer & Barillot (1995) note that the exact form of the Prior function is unim-
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portant, so long as it penalises “unlikely” homologies and encourages “likely” ones. The
quality of the homology map is determined very much by the quality of the Likelihood
features, which is demonstrated below. Note that the size of the wireframe model has been
scaled up by 10% to show the homology vectors more clearly.

6.2.1 Registration using only Prior energy

Figure 6.3(a) shows the registration achieved using only a simple Euclidean metric in com-
paring homologous sites. The Euclidean metric performs relatively well in this situation,
even without neighbourhood information, because of the lack of noise, good initial pose
estimation, and the coherent relative spacing of the two models’ element nodes.

Figure 6.3(b) shows the registration achieved using only the Gompertz metric which
operates over an MRF when comparing homologous sites. In general the Gompertz metric
is more reliable because it has neighbourhood support in deciding the biological plausibility
of a suggested homology.

(a) Euclidean Prior (b) Gompertz Prior

Figure 6.3: Registration using only Prior energy

6.2.2 Registration using only Likelihood

Figure 6.4 shows the homologies obtained by using only Likelihood features in HCF estima-
tion. There is no Prior constraint on a site to commit to another nearby site. Figure 6.4(a)
shows that all sites commit to the correct side of the other model, but with bad spatial
localisation since only the first eigenmode is used. Figure 6.4(b) shows that with the first
two (mutually-orthogonal) fundamental eigenmodes, spatial localisation is improved.

The two gall-bladder models have 18 non-rigid modes in common, where the 18th mode
has a spatial wavelength of approximately 1/4 the length of the model. Figure 6.4(c)
shows that with gradual spatial localisation using all 18 eigenmodes, all sites including the
awkward ones near the gallbladder tip have committed with good spatial resolution. The
hidden part of the homology map to the rear of the models, also has improved localisation
compared to Figure 6.4(b). The improved pose estimation by the homology maps have also
given a better underlying rigid-body registration.
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(a) 1st eigenmode (b) 2nd eigenmode (c) 18th eigenmode

Figure 6.4: Registration using only modal Likelihood features

6.3 Registration using three eigenmodes

Figure 6.5 shows the successively refined HCF estimate of 3D registration between two
gall-bladder models. Figure 3.1 showed that the first three eigenmodes are of fundamental
spatial wavelength, so that the registration achieved in Figure 6.5(b) should be localised
to approximately half the length of the gall-bladder model. In fact the presence of the
Gompertz prior and the regular spacing of the two meshes, means that the homology map
is almost perfectly recovered!.

(a) (b) ()

HCF estimate using 1st eigenmode  HCF estimate using 2 eigenmodes ~ HCF estimate using 18 eigenmodes

Figure 6.5: HCF estimate and refinement of gall-bladder registration using first three eigen-
modes

The effect of the Gompertz prior can be seen in Figure 6.5(a), which has a more coherent

!Standard FEM modelling practice suggests 8 elements per feature wavelength, so the maximum regis-
tration resolution of the gallbladder models according to this criterion is approximately the length of the
gallbladder.
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homology map than Figure 6.4(a), in which only the Likelihood feature was used.

25



Chapter 7

Discussion

7.1 Inmitial rigid-body registration

Section 3.4 described an eigenmode normalisation scheme whereby eigenmode directions
and magnitudes are uniquely determined for use as Likelihood features. The initial pose
estimate is also uniquely determined by this normalisation, which relies on volume-change as
a reliable macroscopic property of the eigenmode field. When the model’s spatial sampling
is sparse and noisy however, a more robust scheme is required.

Without a unique normalisation of the first two modal moment axes, there are four
possible initial pose estimates, and the best one is determined using a nearest-neighbour
metric which sums the distance between surface element mid-points.

The reason we separate the processes of initial pose estimation, and subsequent non-
rigid registration is that in almost all cases of MR or ultrasound scanning, the initial pose
estimate is in fact available from information about patient orientation.

7.2 Registration without initial pose estimate

The Necker cube illusion strongly suggests that the Human Visual System (HVS) performs
local optimisation in fitting a model to the image, and actively peturbs each local optimum
to converge onto alternative optima. This is consistent with a scheme in which a num-
ber of hypothesised registrations are computed and compared, leading to a more robust
registration algorithm.

For each of the four initial pose estimates derived from principal modal axes with-
out direction normalisation, we initialise the homology map using only Prior energy since
Likelihood features are not yet direction normalised. Then for every pair of correspond-
ing eigenmodes, sign-indeterminate displacement components are compared at homologous
sites on each model, which determines if the two eigenmodes are signed consistently.

Likelihood features are now used to refine the homology map, and the sign-determination
process can be repeated again. The four final homology maps are compared, and the one
which has the lowest total remaining Posterior energy is chosen.
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7.3 Deterministic versus statistical algorithms

The deterministic local-search approach of HCF estimation is also in accordance with the
Necker cube. HCF is preferable to stochastic algorithms such as simulated annealing which
are computationally expensive although globally optimal. Stochastic algorithms do not give
repeatable results so the quality of solutions needs to be assessed over a number of runs.
HCF also has the additional advantage that there is an explicitly defined site-updating
schedule.

Gee et al. (1995) make the point that Bayesian matching algorithms are highly depen-
dant upon the quality of the Likelihood features used, and that the Prior has just to behave
as a reasonable penalty function. Thus designing the registration algorithm to use powerful
Likelihood features obviates the need for a globally-optimal stochastic algorithm.

7.4 Choosing an appropriate Prior

The Gompertz prior has a number of attractive properties:

1. it is both experimentally and thermodynamically motivated as a local metric of bio-
logical growth energy;

2. it can be used to compare adult organs from different patients;
3. it is computable for any clique configuration in a MRF;

4. it encourages a coherent (ie. consistent with our biological growth model) local pattern
of committment, propagated by HCF over the entire homology map.

Most penalty functions applied in medical imaging are mechanically motivated eg. the
membrane model (Amit, Grenander & Piccioni 1991), Laplacian model (Szeliski 1990), thin-
plate or biharmonic model (Bookstein 1991), linear elasticity model (Syn & Prager 1995b)
etc., and the viscous fluid prior used by Christensen, Rabbitt, Miller, Joshi, Grenander,
Coogan & Van Essen (1995) has produced particularly impressive results in 2D and 3D
mapping of images. In comparison with the Gompertz prior:

1. the viscous fluid prior was developed to allow large nonlinear strains, and has no
biological basis;

2. there is no justification for using it to compare either models of a growing organ, or
organs from different patients;

3. it is not linearised into eigenvectors since it is designed specifically to compensate
for linearisation effects, so cannot be computed for arbitrary clique committment
configurations;

4. it can therefore only constrain local homologies when it is gridded in a computable
configuration.
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Computations are run for hours on a massively-parallel supercomputer, and results have
been shown which map (non-reversibly) a monkey’s brain to a child’s (Miller, Christensen,
Amit & Grenander n.d.). In the context of medical imaging however, a Prior function should
penalise such extreme examples as being biologically implausible instead of accomodating
them.

7.5 Eigenmode similarity

We use the Lanczos algorithm with reorthogonalisation (Syn & Prager 1995b) to com-
pute FEM eigenmodes. Our implementation which has been generalised to operate with
eigenspaces so as to detect repeated eigenmodes. We use a slow but robust reorthogonlisa-
tion scheme which unfortunately means high-order eigenproblems can take a longer time to
solve for a certain required accuracy.

When registering models which are more densely and accurately sampled, there are likely
to be more similar eigenmodes which are also more accurately computed. Given enough
eigenmodes registration can proceed using projected eigenmode components as Likelihood
features (Syn & Prager 1994). These projected components are defined relative to lower
eigenmodes, and are therefore rotation invariant so that there is no need for initial pose
estimation.

7.5.1 Liver models

The liver models shown in Figure 2.2 were sampled with over 200 surface points and 10
internal points on the long axis. This results in long tetrahedral elements whose radial
wavelength is already half the width of the liver, so that coupling between opposite sides of
the liver model is quite coarse. This compromises the precision of the eigenmode displace-
ment field, which is why the Liver models have at most 4 eigenmodes in common. These
modes are all of fundamental spatial frequency, so that the derived homology map has poor
spatial localisation.

A more sophisticated scheme for sampling internal points, such as the octree scheme
described in Syn & Prager (1994), will improve both the quality and number of similar
eigenmode features which can be used in registration. Even with sparse and very uneven
sampling (eg. Liverll has a few slices missing and one degenrate point near the thin end),
the computed eigenmodes are still robust enough to give at least 2 sets of eigenmode features
for use in registration.

7.6 Summary

We have presented a local Likelihood measure of biological homology, together with a Prior
measure of biological growth energy. A Bayesian framework is used to compute a local Poste-
rior measure for any committment configuration within MRFs defined in the neighbourhood
of each element node. HCF estimation is used to initialise homology committments, and
then in scale-ordered refinement of the homology map.

We will continue to update this report as experiments yield more results.
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Anonymous ftp
Technical reports in this series can be obtained via anonymous ftp from our server

svr-ftp.eng.cam.ac.uk

World Wide Web
Reports can also be accessed through the Speech,Vision and Robotics Group’s web server

WWW.eng.cam.ac.uk
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