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Abstract

Compositional Q-Learning (CQ-L) (Singh 1992)
is a modular approach to learning to perform com-
posite tasks made up of several elemental tasks
by reinforcement learning. Skills acquired while
performing elemental tasks are also applied to
solve composite tasks. Individual skills compete
for the right to act and only winning skills are
included in the decomposition of the composite
task. We extend the original CQ-L concept in
two ways: (1) a more general reward function,
and (2) the agent can have more than one actuator.
We use the CQ-L architecture to acquire skills for
performing composite tasks with a simulated two-
linked manipulator having large state and action
spaces. The manipulator is a non-linear dynam-
ical system and we require its end-effector to be
at specific positions in the workspace. Fast func-
tion approximation in each of the Q-modules is
achieved through the use of an array of Cerebellar
Model Articulation Controller (CMAC) (Albus
1975) structures.

1 INTRODUCTION

Reinforcement learning has emerged as an important learn-
ing method for the control of autonomous agents. Its appeal
lies in the fact that the agent forms its own useful behaviours
with only an evaluation signal from the environment indi-
cating how well it is doing. Many successful applications
of reinforcement learning in autonomous agents have been
reported by Lin (1992) and Thrun (1993); however, they
usually involve learning only a single task or skill.

An autonomous agent is frequently required to perform
complex tasks which can be decomposed into simpler sub-
tasks. There are two issues in task decomposition: (1) the
acquisition of an elemental skill for solving a sub-task, and
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(2) the coordination of several of these skills to perform the
complex task.

In this paper, we describe Compositional Q-Learning (CQ-
L), an approach proposed by Singh (1992) that enables the
agent to learn both elemental skills and the coordination
between them in composite tasks. It is efficient as it al-
lows solutions of elemental tasks to be transferred across to
composite tasks. We apply the CQ-L architecture to solve
composite tasks with a simulated two-linked manipulator
having state and action spaces several orders of magnitude
larger than those reported in Singh (1992). In order to store
Q-values in large state and action spaces as well as obtain
fast function approximation, we use an array of Cerebel-
lar Model Articulation Controller (CMAC) (Albus 1975)
structures.

This paper is organized as follows. In Section 2, we describe
reinforcement learning and Q-Learning. In Section 3, we
describe elemental and composite tasks, the CQ-L archi-
tecture and our extensions. In Section 4, we describe the
manipulator simulation and how the CQ-L architecture fits
into the closed-loop system. The CMAC is described in
Section 5 and details of our experiments such as the control
tasks and training procedure used are given in Section 6.
Results are presented in Section 7 and a comparison with
related work is given in Section 8. Finally, we draw some
conclusions in Section 9.

2 REINFORCEMENT LEARNING

Reinforcement learning (Barto, Sutton & Anderson 1983) is
a method useful for solving Markovian sequential decision
tasks where the agent operates in a stochastic dynamical
environment. A model of the dynamics of the environment
is not required and the performance of the agent is judged
on the basis of a scalar signal known as the reinforcement
or payoff which it receives from the environment. The ob-
jective is to determine the best policy, which specifies the
agent’s actions in each state, in order to maximise some
cumulative measure of payoff received over time. An ex-
ample is the expected return, which is the expected long
term discounted sum of payoff. The agent performs dif-



ferent actions on the environment in order to discover their
utilities and increases the probabilities of selecting promis-
ing actions.

Q-LEARNING

In Q-Learning (Watkins 1989), the state-action value���������
	
is estimated.

���������
	
is the return in state

�
when

action
�

is performed and the optimal policy is followed
thereafter. The action space is discrete and a separate���������
	

exists for each action
�
.

Each time the agent takes an action
�

from state
�

at time 
 ,
the current state-action value estimate for

�
and

�
denoted

by ������������
	
is updated as follows:
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where
3

is the actual next state,
)

is the discount factor,
�

is a step-size parameter, 9 is the set of possible actions and'(�������
	
is the expected value of the payoff the agent will

receive by taking action
�

in state
�

. The state-action value
estimates for other states and actions remain unchanged.

When ����������
	
has converged to the true state-action val-

ues
�:�����!�
	

, then the greedy policy that selects actions
according to the following criterion is optimal:

� � ���4	;�
arg

*�+�, .0/21 �:�����!56	
. However, during learning, the agent

has to explore by performing different actions. One way
is to select actions according to the following probability
distribution:
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where P is a parameter that determines the probability of
selecting non-greedy actions. It is slowly increased during
learning to make the policy more greedy.

3 COMPOSITIONAL Q-LEARNING
(CQ-L)

A detailed description of Compositional Q-Learning can be
found in Singh (1992). Here, we describe the main ideas
involved and develop two extensions.

�

3.1 ELEMENTAL AND COMPOSITE TASKS

Both elemental and composite tasks are defined for the state
set Q and action set 9 , and are subject to the same envi-
ronmental dynamics with

< JCR ���
	 being the state transition
probability from state

�
to state

3
when action

�
is per-

formed. There are S elemental tasks T�U , ��VXWYV S , each of
which cannot be broken into smaller sub-tasks. Composite
task Z�[ is a temporal concatenation of elemental tasks i.e.

\
Although we follow most of the notation used in Singh (1992),

some terms are written differently in order to better describe the
extensions we have introduced.

% T [� � T []&^_^ T [`!a 7 , where b [ is the number of elemental tasks in
Z�[ . The ordering of the elemental tasks within a composite
task is important.

In order for a composite task to remain a Markovian decision
task, Singh extends the state representation of

��c Q to�ed$c Q d
by augmenting S bits to each state

�
so that the

payoff for the composite task is a function of the extended
state and not of both the state and the current elemental task.
Each bit corresponds to an elemental task and is switched
on when the goal state for that task is reached. The original
state

�fc Q without augmenting bits is called the projected
state of

�gdhc Q d
.

Singh assumes that rewards are zero in all states except
the goal states of elemental tasks. We do not make that
assumption and extend the reward function such that re-
wards can be non-zero in states other than the desired final
states of elemental tasks. Our full reward function, ikjU ��3�	
for elemental tasks, or i�lmj[ ��3kd�	

for composite tasks, has
two components. The first component, i�nU ��3�	 for elemental
task T&U , or i�l n[ ��3 d 	

for composite task Zo[ , depends on the
task and delivers a reward when the goal state of the task is
reached. For a composite task, i�l n[ ��3"d�	

can also give a re-
ward when the goal state of the current elemental task in the
decomposition of Zo[ is entered, provided the augmenting
bits corresponding to elemental tasks before and including
the present one in the composite task are on i.e. the ele-
mental tasks have been performed in the correct sequence.
This component enables the agent to learn different goal-
directed behaviours for different tasks and is the same as
the reward function used by Singh. We add a second com-
ponent to the reward function: i MU ��3�	 , which can deliver a
reward in any state and depends only on the projected state3

and possibly the current elemental task T�U as well, regard-
less of whether it is being performed on its own or as part
of a composite task. Thus, the full reward function can be
written as i�jU ��3�	p� i nU ��3�	�# i MU ��3�	 for elemental task ThU , and
i-l�j[ ��3"d�	q� i-l n[ ��3"d�	p# i MU ��3
	 for composite task Z [ when
elemental task T&U in its decomposition is being performed.

The net payoff that the agent receives from the environment
is influenced by stochastic effects and the cost of actions.
The payoff function for elemental task T U is

' U �������
	:�
r R /2s < JtR ���
	 i�jU ��3
	Y�vu��������
	

, where
u������!�
	

is the cost of
taking action

�
in projected state

�
. Similarly, for com-

posite task Zo[ , it is
' l[ ���ed6���
	�� r Rxw /2s w < JtwyRxw �=�
	 i-l�j[ ��3"d�	g�

u��������
	
. We assume that the cost function

u��������
	
is task-

independent
]
.

When other conditions specified in Singh (1992) are satis-
fied, the relationship between the Q-value of composite task
Z�[ while performing ThU (sub-task

5
in its decomposition) to

that of elemental task ThU in the undiscounted (
)z�{�

) case

|
In the experiments described in Section 6, we considered

a deterministic environment and the cost per step } is fixed, so~Y�I���g�8�k�
simplifies to �@�� �����e� } and

~��� ���k���8�k�
to � � �� �����_�g� } .



is given by :
� l a��� ��� d ���
	p� � ��� �������
	h#�� � Z�[ �!56	 (3)

where
�X� Z [ �!56	 is independent of state

�
and action

�
.

In the manipulator control task that we address here, re-
wards in states other than the goal state enable the agent to
develop useful strategies for reaching its destination with-
out collision with obstacles. It is possible to show that
provided these rewards depend only on the projected state
and current elemental task, as is the case with i MU ��3�	 , the
relationship in Equation 3 holds.
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Figure 1: The CQ-L architecture for the case of an agent
with three Q-Modules and two actuators; hence, each Q-
module has two Q-networks. There are eleven CMAC struc-
tures within a Q-network and 66 CMAC structures in the
entire architecture.

3.2 CQ-L ARCHITECTURE

The CQ-L architecture evolved out of a modular network for
supervised learning consisting of expert networks and a gat-
ing network that arbitrates between them (Jacobs, Jordan,
Nowlan & Hinton 1991). The basic idea here is to allow a
separate expert network, which is a Q-module here, to learn
each elemental task and let the gating module perform task
decomposition by selecting the appropriate Q-module. A
bias module compensates for the difference in the Q-values
between a composite task and an elemental task in its de-
composition (see Equation 3).

Our second extension to CQ-L is to the case where the
agent has � actuators. The resulting architecture in which
each Q-module

W
consists of a cluster of � Q-networks

is shown in Figure 1. For example, two actions ( � �


) are required by the manipulator at each time-step, one

for each joint, and coordination between these two actions
is necessary for the successful completion of a particular
task. The Q-values of a module, written as a vector, are� U � % � U ��� U ] 7 � , where

� U � and
� U ] are the outputs of the

individual Q-networks within the module for a particular
state and action. Grouping Q-networks in this way ensures
that each Q-module is independent and enables an elemental
task that requires the coordination of all actuators to be
performed using a single Q-module. When Q-module

W
is

selected, the predicted Q-values of the entire architecture
is �� � � U # 
 , where


 � % � � � ] 7 � is the bias module
output.

The learning rules for the Q-networks and gating module
that we describe now were first proposed by Nowlan (1991)
in his work on competing experts and associative mixture
models. We assume that the correct Q-values are generated
by several regressive processes and wish to model their dis-
tributions. The output of Q-module

W
, � U , are the means of

Gaussian density functions with variance � ] . The output
of the gating network, � U , determines the a priori proba-
bility,

� U � A�� ��� r [ A�� a , of the stochastic switch selecting
Q-module

W
and depends on the inputs to the gating net-

work, i.e. the task command and augmenting bits in this
case.

Given a particular task, let us consider what happens at time
 with � A 5�� 
 	 being the currently selected Q-module. The
agent is in state

�
and selects action

�
according to Equation

2, making a transition to state
3

. The output of the entire
architecture is given by �� � 
 	p� � ��� . H

� N �������
	C# 
 � 
 	 , where
 � 
 	Y� 
 M�� n�� H � N is the output of the bias module for the
current task command and state of the augmenting bits. The
desired output of the architecture is � � 
 	�� '(� 
 	!# ��z� 
 #;�-	

,
where

'(� 
 	E� '(�������
	
is the payoff received by the agent

and �� � 
 # �-	p� % *�+-, .0/21 � ��� . H
����� N ��34�!56	67"# 
 � 
 # �-	

.

The desired output from the Q-module section of the archi-
tecture is simply ��� ���

� 
 	 � � � 
 	 � 
 � 
 	 , with the proba-
bility that this value is generated by Q-module

W
given by

the Gaussian density function:

� � �	� ���
� 
 	 > W�	�� �

� � A"!$#&%�'�(*),+
G.-0/
%
�
+
G1-
#
22*3 2 (4)

where � �54 
�6
is a normalizing constant. Given the de-

sired output ��� ���
� 
 	 , the a posteriori probability of selecting

Q-module
W

becomes

� ��Wx> � � ���
� 
 	�	�� � U � 
 	 � � � � ���

� 
 	 > W�	r [ � [ � 
 	 � � � � ���
� 
 	x> 7k	 (5)

The log likelihood of producing the desired Q-values� � ���
� 
 	 is

5�� � � ���
� 
 	�	$�98.:"; r [ � [ � 
 	 � � � � ���

� 
 	 > 7"	 . We then
perform gradient ascent in the space of parameters � U and� U in order to maximise this log likelihood.

First, we evaluate the partial derivative of the log likelihood



with respect to the output of Q-module
W
:� 5�� � � ���

� 
 	�	� � U � 
 	
� �
� ]
� ��Wx> �	� ���

� 
 	�	�� ��� ���
� 
 	m� � U � 
 	�	 (6)

Next, we evaluate its partial derivative with respect to theW
th output of the gating network:� 5�� �	� ���

� 
 	�	� � U � 
 	
� � ��Wx> �	� ���

� 
 	�	m� � U � 
 	�	 (7)

Finally, gradient ascent is achieved with the following:

� U � 
 # �@	p� � U � 
 	�#�� F � 5�� � � ���
� 
 	�	� � U � 
 	 (8)

� U � 
 # �@	p� � U � 
 	�#��
n
� 5�� � � ���

� 
 	�	� � U � 
 	 (9)

where
� F and

�
n are learning rate parameters.

The bias network



is adjusted according to:
��� 
 # �@	p����� 
 	h#����t� � � 
 	m� ��z� 
 	�	 (10)

to absorb the difference between the Q-values of composite
and elemental tasks.

In Singh (1992), the update rules in Equations 8, 9 and 10
were used at each time step to update all Q-modules, the
gating module and the bias module, respectively. We found
this to be unsatisfactory in the case of composite tasks and
made the following changes to facilitate more robust learn-
ing: (1) the Q-modules should be updated only when the
state

3
the system arrives in is not a goal state of an ele-

mental task in its decomposition i.e. when the state of the
augmenting bits and bias module output have not changed;
(2) the bias network should be updated only when the agent
arrives at a goal state of an elemental task in its decom-
position. The first change prevents undesirable updates to
Q-values when the outputs of the bias module have not con-
verged to their appropriate values yet. The second change
prevents Q-value prediction errors during execution of an
elemental task from affecting the bias module.

In our implementation of the CQ-L architecture, we used an
array of CMAC structures (described in Section 5) in each
Q-module. The gating and bias networks are implemented
as look-up tables since the number of tasks, augmenting
bits and Q-modules is small.

4 ROBOT SIMULATION

The simulation is based on a real manipulator arm and has
two revolute joints, each free to rotate through an angle of�	�] rads, i.e.

�

��
� � ���

�

 rads and

� ���
��
� ] �
�	�

 rads,

where � � and � ] are as shown in Figure 2. The manipulator
is a non-linear dynamical system whose equations of motion
are derived from the Lagrangian in terms of the potential
and kinetic energies. These equations are integrated using
a fourth-order Runge-Kutta method sampled at 500Hz.

The state
� c Q that is seen by the agent is made up of

the angular positions and velocities of the joints i.e.
� �

A

end-effector
Position of

B

CLink 1

Link 2

Dest3

Dest2

Dest1
� �

� ]

Figure 2: Robot manipulator with obstacles in the
workspace. The destination of each elemental task is also
shown.
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Figure 3: System block diagram showing the interaction of
the agent containing the CQ-L architecture with the envi-
ronment.

% � �-���� �@� � ] ���� ] 7 . A collision occurs when any part of the links
hits an obstacle or when the manipulator attempts to move
outside the allowed ranges of � � and � ] .

The way in which the CQ-L architecture fits into the en-
tire closed-loop system is shown in Figure 3. The ac-
tion selector implements the probabilistic action selection
mechanism of Equation 2. The reinforcement i is i�jU ��3�	
or i-lmj[ ��3 d 	

as described in Section 3.1. The agent con-
trols the manipulator by generating position change com-
mands

� � to each joint. These commands,
� c 9 , are

chosen from the following set of eleven possible actions:
9 ������� ^ � �C��� ^ 
 � ��� ^ �2� ��� ^ ���
� ��� ^ � 
 �k��� ^ �"�	� ^ � 
 �"��� ^ ���
�� ^ ���	� ^ 
 �	� ^ � � , in units of rads. The selected commands are
then passed to a PD-servocontroller having the following
form: � � b �"! � � � b ] !#�� (11)

where b � and b ] are the proportional and derivative gains,
respectively. This produces the torque commands for driv-
ing the manipulator. Unlike a purely kinematic system, an
instantaneous response to position change commands is not



possible.

5 CEREBELLAR MODEL
ARTICULATION CONTROLLER
(CMAC)

The CMAC (Albus 1975) is a coarse-coding structure where
each region in the input space has a set of overlapping but
offset hypercubes associated with it. Each hypercube is de-
fined by quantizing functions operating on every input and
it corresponds to a component of the desired output value.
There are several quantizing functions for each input and
the sum of the resulting components makes up the output
value. The CMAC performs fast function approximation
and gives good local generalization. This helps to speed up
reinforcement learning since function values at a particular
position in state space can be inferred from the values at
neighbouring states and every point in state space does not
need to be visited explicitly.

The angular positions and velocities of both joints are fed
into a CMAC which is used to learn the state-action value���������
	

. In our implementation of the CQ-L architecture,
each Q-network has eleven CMAC structures, one for each
action

�
. Hence, each Q-module comprises 22 CMAC

structures and there are 66 CMAC structures in the entire
architecture.

Each CMAC has 12 resolution elements over the angular
position input range (in Albus’ notation,

����� � 

) and six

resolution elements over the angular velocity input range
(
� � ���

). There are four quantizing functions for each
input

� � � � 	 , two position inputs ( � �X� 

) and two

velocity inputs
� � � � 
 	

, giving a total of
�X�=������ !(� �
	� 	

= 20,736 elements. This allows a quantizing resolution
of

� ^ � 
 � rads for positions and
� ^ � rad/s for velocities for

the input ranges that we considered, leading to 577,600
distinguishable input states.

6 EXPERIMENT DETAILS

6.1 TASKS

In all the tasks, the agent is required to drive the manipulator
from an arbitrary starting arm configuration to one where its
end-effector is brought to a fixed destination in the case of
elemental tasks, or to several destinations, one after another,
for composite tasks. The destinations are shown in Figure 2
and the elemental and composite tasks are listed in Table 1.
These tasks are based on one of the experiments reported
in Singh (1992, 1991) so that a direct comparison can be
made.

6.2 REWARD AND COST FUNCTIONS

The learning ability of the agent depends to strength of
the reinforcement signal received for different events as

Table 1: Elemental and Composite Tasks

Task Description Decomposition
��� ��

at end

T �
reach 1 T �

001T ] reach 2 T ] 010T � reach 3 T � 100Z �
reach 1, 3 T � T � 101Z ] reach 2, 3 T ] T � 110

Z � reach 1, 2, 3 T � T ] T � 111

well as the cost per step. Since collisions occur more
frequently than successful arrivals at the destination, es-
pecially in the early stages of learning, the negative rein-
forcement that comes with collisions cannot be too large
as to overwhelm any positive reinforcement previously ac-
quired when it reached the destination. However, insuffi-
cient negative reinforcement impairs the agent’s ability to
avoid obstacles.

We implemented the following reinforcement schedule
�
:

1. If the destination for elemental task T�U is reached,
i nU ��3�	;� � ^ �q# � ^ � A ! H������� �

� ���� 2 � N
. This function gives

a higher than normal reinforcement if the destination
is approached with low velocities. For composite task
Z�[ , we write i-l n[ ��3kd�	

for i nU ��3�	 .
2. If a collision occurs, i M ��3�	p� ��� ^ � 
 � !:> �� >

of the link
involved, subject to the constraint that the maximum
negative reinforcement is i � ��� ^ � � . This reward
depends only on the projected state

3
.

3. If either
> �� �&> or

> �� ] >
is greater than 10.0 rad/s, i M ��3�	p���� ^ � � . This indicates that excessively high velocities

are undesirable and depends only on the projected state3
.

The cost per step
u��������
	��
� ^ � 
 � is constant for all states

and actions.

6.3 TRAINING

Training was conducted in cycles of 5000 trials where each
trial consists of at most 100 steps for elemental tasks T �

, T ]
and T � , 250 steps for composite tasks Z �

and Z ] and 400
steps for composite task Z � . If the destination is reached
or a collision occurs, the current trial ends and the next one
begins with the manipulator starting from a random arm
configuration.

In each trial of the corresponding experiment described in
Singh (1992), the agent was presented with a randomly
selected task which can be either elemental or composite,
even in the early stages of learning. Even with the mod-
ifications described in Section 3.2, we could not achieve

�
In points 2 and 3, the task subscript � has been dropped as��� ����� is also task-independent.
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reliable learning and task decomposition if all six tasks
were presented from the start. This is because the learning
task which we address here is more difficult as rewards are
sparser due to the larger state space and greater number of
steps needed to reach a goal state.

Instead, training was done in two phases. In the first 200
training cycles, only the three elemental tasks were pre-
sented in random order. The particular Q-module to be used
for each of the elemental tasks was not pre-determined and
had to be selected through competition by the gating mod-
ule. Then, all six tasks were presented in random order in
the last 100 cycles. For composite tasks, the gating module
had to learn the correct temporal concatenation of elemental
tasks.

During the first 200 cycles, the Q and gating modules were
updated in every time-step. However, in the last 100 cycles,
the Q-modules were not adapted and updates to the gating
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Figure 6: Variation of average number of steps per trial with
training.

and bias modules were carried out only when the goal state
of the relevant elemental task was reached, i.e. when the
state of the augmenting bits had changed. In the early
stages, Q-modules are selected effectively randomly during
the execution of each elemental task. Thus, prediction
targets are unreliable and can cause a wrong Q-module to
be irreversibly favoured. Updating the gating module only
when the prediction target is reliable, i.e. when the goal
state of an elemental task is reached and an intermediate
reward received, leads to more robust task decomposition.

7 RESULTS

Figure 4 shows how the performance of the agent improved
with training in terms of the increasing number of successful
arrivals at the desired destination and decreasing number
of collisions in each cycle. When composite tasks were
first introduced in the 200th cycle, the number of successes
decreased dramatically to about half the previous level. This
is because the number of elemental task requests had halved
and the agent was not yet able to perform composite tasks.
In the next 25 cycles, the gating module learnt how to select
the appropriate Q-module for each of the elemental tasks
within composite tasks, and performance improved rapidly
during this time.

The way in which the outputs of the gating module � U
changed over the 300 cycles can be seen in Figure 5. By
comparing corresponding stages in this figure with those
in the learning curve in Figure 4, it can be seen that the
number of successes increased rapidly when the outputs of
the gating module for each task started to diverge and a
particular Q-module was selected for each elemental task.
For elemental tasks in the first 200 cycles, this happened
between cycles 50 and 75; for composite tasks in the last
100 cycles, this happened between cycles 200 and 225.

Figure 6 shows the huge increase in the average number of
steps per trial when composite tasks were first introduced.
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Figure 7: Meshplots showing the variation of Q-values over the full range of manipulator movement for each of the three
Q-modules for joint 2 action 4 (

� � ] � ��� ^ � 
 � rad) at fixed velocities
�� � � �� ] � � ^ � rad/s.

After correct decomposition had been achieved, the average
number of steps per trial is higher than before as longer trials
involving composite tasks were now included in each cycle.

A snapshot of the functions learnt by the CMAC Q-modules
can be seen in Figure 7. These surfaces are plotted over the
entire range of angular positions for each joint for a specific
action

� � ] �{��� ^ � 
 � rad and Q-network 2 (for link 2), in
each of the three Q-modules. Since the input space is four-
dimensional, the two angular velocities are fixed at

�� � �
�� ] � � ^ � rad/s. In the cases where two peaks are present

on the surface, there are two inverse kinematic solutions
by which the end-effector can reach the destination in the
workspace. Q-modules 1, 2 and 3 have acquired the skills
to perform elemental tasks T � , T �

and T ] respectively.

Figure 8 shows the trajectories followed by the manipulator
in order to reach the destination from different start posi-
tions in the workspace for each of the three elemental and
three composite tasks.

We carried out three additional experiments to test the gen-
erality and robustness of our approach:

1. More Q-modules in the CQ-L architecture than ele-
mental tasks: We used a CQ-L architecture with six
Q-modules. The gating module selected only the three
necessary Q-modules, one for each elemental task, and
suppressed the contributions from the remaining three.

2. Task decomposition of other composite tasks: We
presented the nine other composite tasks that can be
formed from the three elemental tasks to the agent. All
twelve composite tasks were decomposed within 100
cycles.

3. Noise in sensing: We added zero-mean Gaussian noise
( � � =0.125) to the sensed angular positions and veloc-
ities. Although the number of successes in each cycle
fell, the gating module was still able to decompose the
tasks presented to it.

8 RELATED WORK

Mahadevan & Connell (1990) developed an architecture
where multi-step behaviours were learnt using reinforce-
ment learning and their coordination achieved by a pre-
determined priority ordering scheme in order to perform
a box-pushing task. Maes & Brooks (1990) proposed a
scheme for the coordination of behaviours in a walking
robot by collecting statistics of the positive and negative
feedback received when a behaviour was active and us-
ing them to determine which of several behaviours were
relevant and reliable. These behaviours were hard-wired
actions and did not need to be learnt. The CQ-L archi-
tecture is able to combine both the learning of multi-step
elemental behaviours and the coordination between them in
a single architecture.

Lin (1993b) studied the scaling up issues for reinforcement
learning and proposed the use of neural networks trained
using an experience replay algorithm to obtain generaliza-
tion for faster reinforcement learning. In our approach, the
fast function approximation achievable with CMAC struc-
tures removes the need for an experience replay algorithm
and the storage of experiences for replay.

Lin (1993a) also addressed hierarchical learning where an
agent learns low-level skills for solving elemental prob-
lems before learning a high-level skill, which involves the
coordination of low-level skills, for solving a more com-
plex problem. Lin treats the coordination problem as a
Q-Learning task where

��� � 
 � 
 A � � b W85=56	 is evaluated and a
skill is selected in the same way that an action is selected
in low-level skills. The gating module in CQ-L does not
maintain Q-values of elemental skills. It selects a Q-module
according to its ability to predict Q-values in a particular
task, as indicated by its posterior probability. This proba-
bility is reflected in the relative strengths of the outputs of
the gating module � U . However, the underlying principle
in both cases is similar as a stochastic action selector, e.g.
Equation 2, is used to select a skill or module. The selec-
tion of the most promising skill or module becomes more
deterministic as learning progresses. In addition, the CQ-L
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Figure 8: Trajectories followed by the robot for the three elemental tasks: T �
(a), T ] (b) and T � (c); and the three composite

tasks: Z �
(d), Z ] (e) and Z � (f).

architecture has the advantage of being able to provide the
true value of

�����4d=�!�
	
at each stage of the composite task.

Jacobs & Jordan (1993) used a modular architecture very
similar to the CQ-L architecture to model the inverse dy-
namics for a two-joint arm in a multi-payload robotics task.
They found that the expert networks specialised in payloads
with similar masses and the architecture was able to learn
faster and generalize better than a single monolithic net-
work. However, the trajectory that had to be followed by
the arm was pre-specified and did not have to be learnt.

9 CONCLUSION

Singh compared the performance of CQ-L with a one-for-
one architecture where a single Q-module is required to
perform composite tasks on its own. Although a monolithic
network can work after considerably more training for tasks
with a small state space which were examined in Singh
(1992), it is not feasible for tasks with a large state space
and long action sequences, such as those investigated in
Singh (1991) or the manipulator control tasks we addressed
in this paper. A modular approach is essential for solving
complex composite tasks. The CQ-L architecture is useful
even when the number of elemental tasks in composite tasks
is not known since the gating module is able to select only
the necessary Q-modules.

Our results show that the CQ-L architecture can be success-

fully applied to the learning of complex composite tasks
with large state and action spaces. We introduced two ex-
tensions to the original CQ-L concept: (1) a more general
reward function where the agent can receive non-zero re-
wards in states other than the goal states of elemental tasks,
and (2) the agent can have more than one actuator. In ad-
dition, we made several modifications to the strategy for
parameter updates in order to achieve reliable task decom-
position. Fast function approximation by CMAC structures
enabled local generalization to be obtained without requir-
ing experience replay.

As mentioned above, the CQ-L architecture is very sim-
ilar to modular networks (Jacobs et al. 1991) for super-
vised learning. Recent developments such as the use the
Expectation-Maximization algorithm for parameter updates
in the Hierarchical Mixtures of Experts architecture (Jordan
& Jacobs 1993) have reduced significantly the training time
required to reach a given level of performance in supervised
learning tasks. It will be interesting to see how well these
methods work in reinforcement learning situations.
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