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Abstract

We present an automatic trajectory planning and obstacle avoidance method
for a multi-linked manipulator which uses position and velocity sensor infor-
mation directly to produce the appropriate real-valued torques for each joint.
The inputs are fed into a Cerebellar Model Arithmetic Computer (CMAC)
[1] and in each state, the expected reward and torques for each joint are learnt
through self-experimentation using a combination of the Temporal Difference
(TD) technique [9] and stochastic hillclimbing [14]. Actions which cause the
manipulator to reach the desired destination are rewarded whereas actions
which lead to collisions with either joint limits or obstacles are punished by
an amount proportional to the velocity before collision. After training, the
manipulator is able to move along collision free paths from different start
positions in the workspace to the destination.

Keywords: Reinforcement Learning; Machine Learning; Robotics; Connec-
tionist Models

1 Introduction

The task of controlling a multi-linked manipulator can be broadly divided into three
parts: path planning; coordinate transformation from task-oriented coordinates to body
coordinates ! as in inverse kinematics; and the generation of motor commands. Path
planning involves finding the best path from a start position to the destination and usually
obstacle avoidance, while the generation of motor commands involves trajectory tracking,
i.e. applying the appropriate torques at each joint in order to follow some desired position
and velocity profile. An accurate dynamical model of the manipulator is normally required.

This report proposes a method that handles these tasks without using a dynamical
model. A simulation of a robot manipulator with two links is used to demonstrate the
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!Task-oriented and body coordinates are sometimes referred to as distal and proximal coordinates,
respectively.



ability of the learning controller in moving the end-effector of the manipulator from a start
point to some desired destination. A reinforcement signal which indicates when a collision
with an obstacle or joint limit has occurred or when the destination has been reached
is required. Joint position and velocity information from sensors are used as inputs to
the system in our experiments, but the method can be modified to accept inputs from a
range sensor or a vision system. The appropriate torques to each joint are obtained which
not only enables the manipulator to reach its destination, but also avoid collisions with
obstacles in the workspace.

This report expands on the findings described in [11] and is organized as follows.
Related work are described briefly in Section 2. Section 3 describes the simulation of the
robot and the task in greater detail. Section 4 contains details about the implementation of
CMACs in the experiments. Section 5 provides an overview of reinforcement learning and
Section 6 describes the theory of associative stochastic learning automata — the learning
algorithm we employed is based on the theory explained in these two sections. Section 7
presents the reinforcement schedule used to facilitate learning of useful behaviours. Section
8 contains experimental results and a detailed study of two motions of the robot. Section
9 discusses several issues related to this work and finally, the conclusion is in Section 10.
An appendix showing the derivation of the robot dynamics simulation model can be found
at the end of the report.

2 Background

Barto, Sutton and Anderson [2] employed reinforcement learning in the control of a dy-
namical system in the form of a pole on a cart. The pole was free to move in a vertical
plane and the cart horizontally in left and right directions. The objective was to balance
the pole by applying a horizontal force to the cart. A reinforcement signal indicated when
the pole had fallen over and learning was aided by the use of an Adaptive Critic Element
(ACE) which tried to predict the reinforcement signal.

Nguyen and Widrow [7] employed two connectionist networks in the control of a sim-
ulated trailer truck backing into a loading dock, one to represent the kinematic model of
the trailer truck and another the controller which had to generate the appropriate steering
signal at different truck positions. This is a highly non-linear control problem and the
controller was able to perform the task successfully even when the cab and trailer were
initially ‘jack-knifed’.

Mahadevan and Connell [4] described a subsumption approach for automatically pro-
gramming a behaviour-based robot using reinforcement learning in a box-pushing task.
The robot acquired several behaviours: (1) finding a box, (2) pushing a box across a room,
and (3) recovering from stalled situations. Only one behaviour was active at any given
time, selected by applicability functions and a priority-ordering scheme. These behaviours
enabled the robot to find and push boxes around a room successfully.

More recently, Prescott and Mayhew [8] used reinforcement learning to enable a sim-
ulated mobile robot to acquire reflexive obstacle avoidance behaviour. The input to the
mobile robot was from a primitive range sensor and after training, forward and angular
velocities were obtained which caused it to move at an optimal speed along collision free
paths in an environment containing obstacles.

The task we address here contains elements of the above. As in the truck backer-
upper, the robot manipulator is a non-linear system; however, it is not necessary to have
a two-stage learning process in our method since an emulator of the robot dynamics is
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Figure 1: Robot manipulator with obstacles in the workspace.

not required. We also seek to control the manipulator through real-valued torques in a
dynamical formulation of the problem.

In the discussion that follows, robot refers to the two-linked manipulator under consid-
eration, shown in Figure 1; agent, the controller which has to learn the correct actions to
take; and state @, the angular positions and velocities of the joints, i.e. @ = [01,01,02,92].
Figure 2 provides an overview of the proposed method. The various components and
symbols will be explained in subsequent sections.

3 The Robot Simulation

The robot simulation is based on an actual robot and has two revolute joints, each free
to rotate in the same plane through an angle of 6%rrads, e, T <0 < %Trads and
—34—7r < b < 3T”rads, where 67 and 0y are as shown in Figure 1. The equations of motion
are derived from the Lagrangian in terms of the potential and kinetic energies. (see
Appendix)

The objective is to get the end-effector at the end of link 2 to the destination from an
arbitrary starting position in the workspace. A collision occurs when any part of the links
hits an obstacle or when the robot attempts to move outside the allowed ranges of §; and

3.

4 Cerebellar Model Arithmetic Computer (CMAC)

The joint angular positions and velocities are first fed into CMACs [1] which are used to
represent several functions of the inputs described in later sections.

The CMAC is a coarse-coding structure where each region in the input space has a set of
overlapping but offset tiles associated with it. Every tile is defined by quantizing functions
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Figure 2: Interaction between the agent and robot.

operating on each input, with each quantizing function corresponding to a component of
the desired output value. The sum of the weights indexed by these components makes
up the output value. The CMAC performs fast function approximation and has good
generalization properties which help learning since function values in neighbouring states
are usually similar.

4.1 Implementation of a CMAC

The example shown in Figure 3 illustrates the method of implementation and the general-
ization ability of a CMAC. There are six resolution elements (in Albus’ notation, @ = 6),
four quantizing functions (K = 4) and two inputs which are the angular positions of each
joint, 61 and 6 (N = 2).

Point A is a point in input space corresponding to a previously visited state x4 =
[041,042] = [3.14,0.00] with its output value p4 updated during the last visit and point
B is a point nearby in input space with &g = [0p1,0p2] = [3.44,0.20] which has not been
visited before.

The operations involved in order to arrive at the output value p4 are as follows. The
quantizing functions quantize the input values [641,042] = [3.14,0.00] to yield sets of
resolution elements m*%, = {21,32,23,24} and m%, = {21, 32,23, 24}, where the numbers
in the sets and their subscripts are identifiers of the selected resolution elements and their
quantizing functions, respectively. The resolution elements from corresponding quantizing
functions relate to a component of the output p4, hence the number of components forming
the output value is equal to the number of quantizing functions for each input variable.
The set of these components is A% = {{21,21},{32,32},{23,23},{24,24}}, and the sum
of the weights indexed by these components gives the output p4 i.e. pa = w1[{21,21}]+
wa{32,32}] + w3[{23, 23 }] + wa[{24, 24}].

Likewise, A5 = {{21,21},{32,32},{33,23},{24,24}} with all except the third compo-
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Figure 3: Example of CMAC usage.

nent being the same as in A%. Thus, pp = w1[{21,21}] + w2[{32,32}] + w3[{33,23}] +
wq[{24,24}]. The result of this is generalization where the output value of pg is similar to
that of p4 (since three out of four indexed weights to be summed are the same for both
pa and pp) eventhough only p4 had been updated previously.

The update procedure is as follows: if p is to be updated so that p* is computed the
next time the state is visited, an amount A = Zi:l—_,f’ is added to each weight, where | A* |
is the number of components in set A*.

The quantizing interval is the width of a resolution element. It can be seen that the
quantizing functions are offset by % of the quantizing interval. The offset corresponds
to the quantizing resolution that can be achieved. Thus, if a bigger neighbourhood of
generalization is required, the number of quantizing functions K can be reduced or the
quantizing interval increased, while a greater resolution of the CMAC can be achieved
by either increasing K or decreasing the quantizing interval. The number of resolution
elements ) for each quantizing function is obtained by dividing the range of the input by
the quantizing interval.

4.2 Experiment specific details

The accuracy of the functions to be approximated and represented by CMACs are limited
by the quantizing resolution. A higher quantizing resolution requires a larger number of



weights in each CMAC and more exploration has to be performed before the entire input
space can be considered ‘visited’ due to the smaller neighbourhood of generalization. How-
ever, this does not mean that an agent with CMACs having higher quantizing resolutions
need more training cycles to reach a particular level of performance as the higher accuracy
of the functions contribute to improved performance. (see Section 8)

The CMACs that were implemented in the Case 1 experiment (see Section 8.1) are
identical to the example shown in Figure 3, except that there are now four input variables,
i.e. the input space is four-dimensional. The CMACs had six resolution elements (€ = 6)
over the input range for each quantizing function, there were four quantizing functions for
each input (K = 4) and four inputs (N = 4) i.e. angular positions and velocities of each
joint, giving a total of KQN = 5,184 weights for each CMAC. This allowed a quantizing
resolution of 0.25 rads for angular positions and 1.0 rad/s for angular velocities for the
input ranges that we considered.

If the quantizing resolution is doubled for each of the four inputs, i.e. increase the
number of resolution elements ¢ from 6 to 12 for each input, while keeping the number
of quantizing functions K at 4 and the number of inputs N at 4, the number of weights
in each CMAC would increase from 5,184 to KQV = 82,944, a sixteen-fold increase in
memory requirements. A common technique used when there is a large number of weights
is hashing where more than one weight is mapped to a particular location in memory.

In the Case 2 experiment, the quantizing resolution for angular positions was doubled
to 0.125 rads while the quantizing resolution for angular velocities was maintained at
1.0 rad/s. The number of resolution elements for angular positions was increased to
)y = 12 while for angular velocities, ¢}, = 6 as before. The number of quantizing
functions K and inputs N was the same as in Case 1. The number of weights needed
to store each CMAC increased to K(Qi,\]pQ{}V”) = 4(12% x 6%) = 20,736 i.e. a four-fold
increase without hashing, where N, and N, refer to the number of inputs having ¢}, and
@), resolution elements respectively.

5 Reinforcement Learning

Reinforcement learning methods are based on a single scalar reinforcement signal from
the environment that evaluates the performance of the learning system. It differs from
supervised-learning methods since the reinforcement signal does not directly contain gra-
dient or directional information i.e. it does not indicate whether improvement is possible
and how (by how much and in which direction) the behaviour should be changed for im-
provement. The learning system has to infer this directional information from a collection
of evaluation signals. Hence, reinforcement learning methods are able to overcome one of
the limitations of supervised learning, the requirement of a ‘teacher’.

The learning system has to explore and try different actions in order to discover ac-
tions that can lead to improved performance. In doing so, it encounters a conflict between
performing actions that enable it to learn more about the environment (and hence take
better actions in future) and actions that lead to payoffs based on the knowledge it cur-
rently has. Thrun [12] calls this the exzploration vs. exploitation trade-off and suggests
several directed exploration methods to minimize the costs of learning.

One of the earlier demonstrations of the potential of reinforcement learning for control
tasks was the pole-balancing experiment of Barto, Sutton and Anderson [2] mentioned
above. Barto, Sutton and Watkins [3] showed how a class of adaptive prediction methods
that Sutton called temporal differences (TD) methods [9] can be used to solve sequential
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decision tasks in which an action selected at a given time will influence future actions
and the final outcome and both short- and long-term consequences of decisions have to be
considered.

5.1 Sequential decision tasks

These tasks can be formulated in terms of a stochastic dynamical system whose behaviour
(which can be probabilistic) unfolds over time under the influence of a decision-maker’s
actions. The objective is to find strategies for selecting actions so as to maximize a measure
of long term payoff gain.

Mathematically, the sequential decision task can be treated as a Markovian decision
problem exhibiting the Markov property whereby the system state at any moment together
with future input determine (the probabilities of) all aspects of the future behaviour of
the system, regardless of how the the present state was reached.

In a typical sequential decision task, the mode of operation is as follows, where agent
refers to the decision-maker:

1. The agent observes the environment and determines the current state.
2. The agent performs an action.

3. The environment delivers a payoff, which is a function of its state, the agent’s action
and possibly random disturbances.

4. The environment makes a transition to a new state, dependent on the same three
factors above.

5. The agent observes the new state, performs another action, receives another payoff
and the environment changes state again. This process is repeated for a number of
time periods or until some terminating condition, e.g. goal is reached, is met.

The agent’s task is to select actions that maximize the cumulative payofl over time. If
the number of time periods, the horizon, of the operation is infinite, a discount factor v, is
introduced which allows payofls to be weighted according to when they occur. Normally,
the weights decrease with increasing temporal remoteness of the payoffs, thus the weighted
sum will have a finite value. The discount factor adjusts the degree to which the long-term
consequences of actions must be accounted for.

The agent uses a rule called a policy © to select actions depending on its state z; a
policy’s return is the weighted sum of the payoffs r the agent would receive if the policy
7« was used to select all the actions. When random factors are involved, this will be the
expected return for state z:

F, li_o: 7trt+1] (1)

where 0 < v < 1.
The expected return needs to be written as a function assigning to each state z the
expected return if policy 7 is followed starting from state z:

Vi(z) = Ex li ’}/t’]"H_l | 20 = :c] (2)



The function V™ (z) is the evaluation function of state  for policy 7; it gives an immedi-
ately accessible prediction of return at any state. A policy that maximizes the expected
return for all possible initial states is called an optimal policy ©*.

In cases where payoff is zero everywhere unless some goal state is reached, selecting
actions to maximize return is the same as selecting actions that bring about the goal state
and with the discount factor, the agent selects actions that bring about the goal state in
the fewest time periods.

5.2 Solving sequential decision tasks

In order to estimate optimal policies in the absence of a complete model of the decision
task, adaptive or learning methods which learn about the system underlying the task while
interacting with it are used.

There are two general approaches in these methods. Firstly, the model-based approach
involves constructing a model of the decision task in the form of estimates of the state-
transition and payoff probabilities by keeping track of the frequencies with which various
state transitions and payoffs occur while interacting with the system. Once an accurate
model is formed, computational techniques such as dynamic programming can be applied
to find an optimal policy.

Secondly, there is the direct approach where instead of learning a model of the decision
task and estimating state-transition and payofl probabilities, the policy is adjusted directly
as a result of the observed consequences of performing various actions.

Reinforcement learning using the TD procedure [3] is a direct and incremental ap-
proach for learning the evaluation function V(z) in Equation 2 and an (optimal) decision
policy. 2 The TD procedure works by using a parameter estimation method to obtain
approximations to information that can be supplied by a model of the system underlying
the decision task if such a model was available, and then applying stochastic dynamic
programming methods on these approximations.

The TD error 3, which is the difference between the evaluation function value estimated
by the model and the true value, is obtained by:

Et41 = g1 + YVil@ig1) — Vi(ae) (3)

with the quantities evaluated at time ¢ and ¢ + 1.
The evaluation function is updated according to:

Vig1(ae) = Vi(@e) + aerpa (4)

where « is the learning rate parameter.

The policy is then updated to make an action that has led to a better-than-expected
performance more likely and an action that has led to worse-than-expected performance
less likely to be selected the next time state x; is visited. The TD error g,41 provides a
convenient utility measure of the last action taken with respect to the expected return of all
actions in state x4; a positive ;47 means that the last action led to better-than-expected
performance and vice versa.

21t is not guaranteed that an optimal policy will always be found by the TD method and the degree of
optimality achievable depends on many specific implementation details such as the manner of representing
system states.

3In some implementations, the TD error is the output of a critic. It is also known as a heuristic
reinforcement signal.



5.3 Experiment specific detalils

The learning procedure used is the on-line method described above in which the agent seeks
to learn the evaluation function V() of a policy and adjusts the policy incrementally for
improved performance in every time step.
The TD (temporal difference) error is obtained by Equation 3, repeated here for em-
phasis:
eig1 = Tip1 + YVi(@i41) — Vi(@) (5)

where x; is the state of the system at time ¢ and v is the discount factor.
The evaluation function, represented by a CMAC, is updated according to:

Vir(®) = Vi(@) + 0c,p10(2) (6)

where ¢;(x) 14+ Aeiq(z) if 2=
c(x) = Ae—i(z) if @ #x

This is similar to Equation 4 above with the addition of ¢;(x), a stimulus trace affecting
the states through which the system passed in the time steps preceding ¢. This stimulus
trace, which decays at a rate dependent on the parameter A, can accelerate the learning
process as shown by Sutton [9].

The policy updating process is based on the principle described above, but since the
appropriate real-valued torques have to be determined at each state, the stochastic hill-
climbing theory described in next section needs to be incorporated.

6 Stochastic Hillclimbing

Williams [14] proposed a method of combining theory from stochastic learning automata
[6] with reinforcement learning in a connectionist network framework. Stochastic learn-
ing automata provide the stochastic behaviour necessary for exploration in reinforcement
learning, while a connectionist network framework permits estimations of expected return
to be learnt using an update rule similar to back-propagation [5].

6.1 Associative stochastic learning automata

A stochastic learning automaton is an abstract machine that selects actions and receives
feedback from the environment evaluating those actions. It selects actions randomly based
on some internally stored distribution over the set of possible actions. This distribution is
updated on the basis of the evaluative feedback from the environment called reinforcement,
the idea being that actions receiving favourable evaluation should become more likely
choices by the automaton.

Williams [14] generalizes the stochastic learning automaton in two ways. The first
concerns the choice of state space for the automaton, denoted by ©, in which a func-
tion 1 : @ — A™ maps it to the m-dimensional simplex of action probabilities, yielding a
parameterized-state stochastic learning automaton.

Second, the automaton is allowed to have non-reinforcement input i.e. context input,
so that it can learn a general input-output mapping. The preferred action may differ in
differing contexts and the automaton is trying to learn which actions to associate with
different context inputs. This can be achieved by having a bank of stochastic learning
automata, one for each possible context input.

9



With these generalizations, the resulting automaton is called an associative stochastic
learning automaton (ASLA).

Consider an ASLA which is the ¢th unit in a network. The output is denoted as y;
and the input 2. y; is drawn from a distribution depending on z* and a set of parameters
w' consisting of parameters w;; denoting the strength of the connection from the jth unit
to the i¢th unit. Let W denote all the parameters w® of the network. A probability mass
function ¢;(¢,w',x') = Pr{y; = £ | w', '} determines the the value of y; as a function of
the parameters of the unit and its input. *

6.2 Stochastic hillclimbing algorithms

Learning procedures which ‘stochastically hillclimb’ in a measure of performance such as
the expected value of the reinforcement signal E{r | 8}, where § € O, can now be described
[14]. These procedures must search the parameter space © for a point where E{r | 6}
is maximum. In the case where a network of ASLA is considered and W denotes the
parameters, the learning task becomes that of finding W which maximizes E{r | W'}.

Restricted REINFORCE Algorithm

In a restricted reinforcement learning task, the automaton makes exactly one action selec-
tion for each reinforcement value received. A network faces a such a task and at the end
of each trial, reinforcement r is received and the parameters W are adjusted according to:

Awgj = ag(r — bij)es; (7)
dlng;
Jwij
the characteristic eligibility of w;;. The factor (r—b;;) is called the reinforcement offset and
the reinforcement baseline b;; is assumed to be conditionally independent of y;, given W
and z'. The rate factor a;; is assumed to be non-negative and essentially constant, except
for possible dependence on i and j but not on the input «* to the unit. Any algorithm

having this form, to be applied to the restricted reinforcement learning problem, is called
a restricted REINFORCFE algorithm.

is called

where «;; is a learning rate factor, b;; is a reinforcement baseline, and e;; =

Theorem 1 (Williams): For any restricted REINFORCE algorithm, the inner product
of E{AW | W} and Vyy E{r | W} is non-negative. Furthermore, if a;; >0 for all ¢
and j, then this inner product is zero only when Vyy E{r | W} = 0. Also, if a;; = a is
independent of 7 and j, then E{AW | W} = oV, E{r | W}.

This means that the average update direction in parameter space lies in a direction
in which the performance measure E{r | W} is increasing, thus performing a local opti-
mization in the reinforcement learning task.

Theorem 1 also applies to stochastic learning automata with or without context input
and no interconnections between units. Under these circumstances the restricted RE-
INFORCE algorithm reduces to learning algorithms associated with stochastic learning
automata e.g. linear reward-inaction Lr_5 and associative reward-inaction Ap_g.

*An ASLA has two parts: deterministic and stochastic. The parameters w;; and input z! provide the
parameter(s) of a random distribution deterministically and output y; is then drawn from this distribution.

10



Extended REINFORCE Algorithm

The restricted REINFORCE algorithm needs to be extended in order to cater for learning
problems having a temporal credit-assignment component where more than one action
may be selected for a single reinforcement value. For example, a network may be trained
on a episode-by-episode basis > where each episode consists of k time steps during which
the units may recompute their outputs and the context input may change. At the end of
an episode, a single reinforcement r is delivered and the parameters are incremented by:

k
Aw;j = aij(r —byj) Z: ei(1) (8)

with similar conditions for the reinforce baseline b;; and a;; terms. This algorithm is
known as the eztended REINFORCE algorithm.

Theorem 2 (Williams): For any extended REINFORCE algorithm, the inner product
of E{AW | W} and Vy E{r | W} is non-negative. Furthermore, if a;; > 0 for all 4
and j, then this inner product is zero only when Vy, E{r | W} = 0. Also, if a;; = a is
independent of 7 and j, then E{AW | W} = oVy E{r | W}.

6.3 Experiment specific details

The theory described above can be used for a connectionist network comnsisting of asso-
ciative stochastic learning automata where the weights connecting the ASLA are updated
with the REINFORCE algorithm. We have used the stochastic hillclimbing approach and
the REINFORCE algorithm eventhough we have not implemented such a connectionist
network because it allows the agent to have real-valued outputs, reinforcement and context
inputs.

A further extension to the theory is the use of a multi-parameter random distribution,
in particular, the normal distribution with two parameters, its mean g and standard
deviation o. Since temporal-difference techniques are employed in our approach, the
extended REINFORCE algorithm is used to determine changes to the parameters p and
o in order to maximize the performance measure E{r | z}.

We implemented a large continuous bank of ASLA with the state = [01,91,02, 02] as
the context input. The ‘correct’ ASLA is selected at each state since its parameters g and
o are functions of the input state. ‘Each’ ASLA is simply a stochastic learning automaton
with no context input which provided a real-valued action at its output when selected.
There are no connections between the ASLAs.

In the task under consideration, the actions in each state are torques to each joint of
the robot whose magnitudes and directions need to be determined stochastically. Each
torque is chosen from a gaussian probability distribution with the parameters mean g and
standard deviation o represented in input state space by CMACs 6. The probability of
applying torque 7 in a joint is given by

1 _(r=w?
g(T7/'L7O-) = € 2: (9)
2o

5An episode corresponds to a trial in the experiments described in Section 8.

6Prescott and Mayhew [8] used a similar approach to obtain the forward and angular velocities for a
mobile vehicle in the task described in Section 2.
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The REINFORCE algorithm for updating the parameters p and o is as follows:

Ap = a(r—b,)e where ¥ = % = (7;2“)2 ]
and Ao = a(r—b,)el?) where el?) = o (T_‘?g —

The characteristic eligibilities of parameter updates are denoted by e(*) and e(?). (r —b,)
and (r — b,) are the reinforcement offsets indicating how good the last action was with
respect to reinforcement baselines b, and b,.

The TD error e;41 [3] (see Section 5.2), which provides a utility measure of the last
action taken with respect to the expected return of all actions performed when the agent
is in a particular state, can be used as the reinforcement offset. As the TD error provides
a reinforcement offset value at every time step, we have not adhered strictly to the re-
quirement by the extended REINFORCE algorithm of a single reinforcement signal at the
end of an episode. (see Section 7)

The characteristic eligibilities of the preceding states are weighted and summed (see

(

Equation 8) to form stimulus traces st“)(m) and sgg)(:c) as in Equation 6 for updating u
and o respectively. Since the operations involved in updating p and o are the same, let

(1) (»)
H . _ | € . _ | s
o) e o= i0]

Writing p,, e; and s; for the terms above evaluated at time ¢, the policy update rule
is:

p:

Pt+1(“’) = p(x) + Bersi(x) (10)
where s;(xz) = elz)+ Asima(z) if =y
si(®) = Asimi(@) if @ # @

The learning rate parameter is denoted by g instead of a as in Equations 7 and 8 to
distinguish it from « in Equation 6.

This update rule allows u to increase towards 7 if 7 > p and the return from taking
action 7 is better than the average action p, as indicated by positive e;41 (and vice versa).
The standard deviation o is decreased if | 7 — p | < o and ;44 is positive, leading to
convergence towards a locally optimum action. The converse of this causes o to increase
and allows more exploratory behaviour.

7 Reinforcement Schedule

The learning ability of the agent depends to a large extent on the magnitude of the re-
inforcement signal and the time at which it is received. The reinforcement schedule is
essentially a reward function. Since collisions occur more frequently than successes, espe-
cially in the early stages of learning, the negative reinforcement that comes with collisions
cannot be too large as to overwhelm any positive reinforcement previously acquired when
the robot reached the destination. However, insufficient negative reinforcement decreases
the agent’s ability to avoid obstacles.
We implemented the following schedule, where r is the reinforcement:

1. If the destination is reached, r = 50—|—50€_(|é1|+|é2|). This gives a higher than normal
payoff if the destination is approached with low velocities.

12



2. If a collision occurs, r = —5X% |0| of the link involved, subject to the constraint that
the maximum negative reinforcement is r = —50.

3. If both 491 and 92 are greater than 10 rad/s, r = —10. This is to indicate that
excessively high velocities are undesirable.

The last reinforcement rule violates to some extent the requirement of a single reinforce-
ment signal at the end of an episode by the extended REINFORCE algorithm described
in Section 6.2. Its inclusion was to prevent the selection of excessively high torques and
velocities as the discount factor v in Equation 5 encourages the agent to generate actions
enabling the goal to be reached in as few time steps as possible. Mahadevan and Connell
[4] also used differing reinforcement values in non-terminal states to encourage the learning
of desirable behaviours.

8 Results

8.1 Initial values

The following values were used for the agent’s parameters: a = 0.1, 8 = 0.1, A = 0.5 and
v = 0.95 7. We set the standard deviation of torques oq(z) and o3(x), for joints 1 and
2 respectively, to 10.0 Nm for all states at the beginning so that the agent starts with
exploratory behaviour and does not get stuck at local maxima in the early stages. The
mean torques pq () and po(z) and the evaluation function V(z) are set to zero throughout
at the beginning. Since the stimulus traces decay rapidly, we need only to maintain a queue
of 5 previous states and characteristic eligibilities and update the function values of these
states according to Equations 6 and 10.
We present results for two cases:

Case 1 The quantizing resolution of the CMACs for joint positions 6, and 65 is 0.25 rad.
Case 2 The quantizing resolution of the CMACs for joint positions 61 and 6, is 0.125 rad.

The quantizing resolution for joint velocities g, and 6, is 1.0 rad/s for both cases. As
described in Section 4, the amount of memory required to store each CMAC for Case 2 is
four times that of Case 1.

For each case, the learning curves, evaluation function and policy are examined. (Ref-
erences to figures are given in Case 1 followed by Case 2 order.)

8.2 Training

Training is conducted in cycles of 5,000 trials where each trial consists of at most 100
steps. If the destination is reached or a collision occurs, the current trial ends and the
next one begins with the robot starting from a random position in the workspace. This

"The value of v < 1.0 is required for the stability of the difference equations formed by Equations 5, 6
and 10 if the training operation has an infinite-horizon. In the experiments described in Section 8, training
was conducted in trials consisting of at most 100 steps, i.e. the horizon is finite, and the values of V, pu
and ¢ did not grow without bound even when v = 1.0. However, performance in terms of the number of
successes per cycle was better when v = 0.95.
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Learning Curves (Case 1)
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Learning Curves (Case 2)
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Figure 10: Case 2 Policy - Mean pq(z) and po(z) of gaussian pdfs for joints 1 and 2
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means that the agent is trained so as to enable the end-effector of the robot to reach the
destination from different start positions in the workspace. &

Figures 4 and 8 show how the performance of the agent improves with training in
terms of the increasing number of successes and decreasing number of collisions in each
cycle for 200 training cycles.  The total number of steps taken in each cycle (divided by
70 to fit into the graph) is also indicated.

With a lower quantizing resolution (Case 1), the maximum performance level of about
3,000 successes and 1,600 collisions was reached after 60 cycles. The best performance
was obtained at the 114th cycle with 3,461 successes and 1,473 collisions. The decreasing
number of steps taken even after the number of successes and collisions have stabilized
indicate an ongoing effort by the agent to generate actions that bring the robot to the
destination in as few steps as possible. At the end of the 200 cycles, the average number
of steps per cycle is about 100,000 steps, i.e. 20 steps per trial.

With a higher quantizing resolution (Case 2), the maximum performance level of about
4,100 successes and 700 collisions was also reached after 60 cycles. The best performance
was obtained at the 113th cycle with 4394 successes and 369 collisions. The number of
steps per cycle decreases until about 115,000 at the end of the 200 cycles, i.e. 23 steps per
trial.

It can be seen that the learning rate is not affected by the quantizing resolution of the
CMACs. However, the maximum performance level was greatly enhanced by the increased
quantizing resolution in Case 2, resulting in a more than 20% increase in the number of
successes per cycle.

8.3 Evaluation function and policy learnt

The evaluation function V(@) learnt are shown in Figures 5 and 9. Since the input state-
space is four-dimensional, the graphs show the expected return as a function of joint
positions #; and 62 with 01 and 02 both fixed at 0.5 rad/s. There are two possible joint
configurations by which the destination can be reached, i.e. two solutions to the inverse
kinematics, when 6, = 3.14, 3 = —0.87 and 6, = 4.01, 6, = 0.79. These correspond to
the two peaks indicated by (1) and (2) respectively in the evaluation function surfaces
shown. Peak (2) is higher than peak (1), indicating that the agent was able to reach
the destination with the joint configuration corresponding to peak (2) more often (thus
receiving more reward) during training.

The learnt policy can be seen from the mean py(@) and po(x) functions in Figures 6
and 10 and standard deviation oq(x) and oy(a) functions in Figures 7 and 11. As in the
case of V(z), these functions are shown against joint positions 6y and 6,, with 6, and 6,
both fixed at 0.5 rad/s.

It is not obvious from these graphs that a sensible policy had been acquired by the
agent. Detailed analysis of two motions with different starting positions and different
final joint configurations presented in the next sub-section show that a good policy had
indeed been learnt. In general, puz(@) and o2(2) can be seen to quite high near the inverse
kinematic solutions. In most parts of the state-space, the final values of the four parameter

8This task is more difficult than those finding a solution from a fixed start position as described in

Sutton [10] and Thrun [12].

9The sum of the number of successes and collisions does not equal 5,000 since trials which exceed 100
steps are terminated, e.g. trials which begin with both links below obstacle A from where it is impossible
to reach the destination.
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functions are different from their starting values, indicating that a big proportion of the
input space had been explored.

Figure 12: The path taken by the robot in a 33-step sequence from a start point to the
destination.
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Figure 13: Variation in joint positions #; and 62 during the 33-step sequence.
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Figure 14: Variation in joint velocities 6, and 6, during the 33-step sequence.
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Figure 15: Variation in joint torques 7, and 75 during the 33-step sequence.
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Figure 16: Variation in expected return V' during the 33-step sequence.
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8.4 Detailed analysis of two motions

Two detailed studies of the ability of the robot to move from different start positions in
the workspace to the destination are now presented. In these examples, the quantizing
resolution of joint positions in the CMACs is 0.125 rad, i.e. Case 2 above. The strategies
learnt are quite sophisticated and frequently involve backing-up motions which position
the joints away from the obstacles before an advance towards the destination is made.
Although there are two joint configurations by which the destination can be reached, the
agent was able to select the final configuration which required fewer steps from the start
position.

8.4.1 Motion 1

Figure 12 shows the path taken by the robot from a start position between obstacles B
and C in the top right area of the workspace. The changes in the positions, velocities and
torques at the joints are shown in Figures 13, 14 and 15.

Angular positions The position profile that is achieved is smooth. Both joint angles
61 and 63 (see Figure 1 for a description of the angles referred to by 61 and #2) decrease
in the first 15 steps in a backing-up motion, with 8, decreasing faster than 6;. Once the
end of link 2 has moved below obstacle B, 6, remains constant between the 22nd and 25th
steps while 6, is increased. Finally, when the destination is within reach, 6 increases and
the end of link 2 reaches the destination at the end of the 33rd step.

Angular velocities The joint velocities are consistent with the the behaviour described
above. Both joint 1 velocity 01 and joint 2 velocity 0, are negative in the first 15 steps.
Then 01 becomes positive and 9, is nearly zero between the 22nd and 25th steps. Finally,
both 6; and 6, are strongly positive just before the destination is reached despite the first
reinforcement rule in the reinforcement schedule described in Section 7. (see Section 9.3
for a discussion)

Torques Let 7 and 7y refer to the torques applied in joints 1 and 2 respectively. Both
71 and 79 are negative at the start to cause the robot to move from rest. After that,
71 and T are nearly zero between the 5th and 15th steps in order to maintain fairly
constant joint velocities. Then, 7y becomes positive to accelerate link 1 towards the
destination, but in the 29th step 7 becomes strongly negative to decelerate link 1 to
rest and prevent overshoot. Meanwhile, 75 has become positive to cause 3 to increase
slightly towards the destination. In the last few steps before the destination is reached,
71 oscillates quickly between strongly positive and strongly negative to hasten arrival at
the destination while preventing overshoot which would cause the end-effector to miss the
destination completely. 19

Expected return The expected return (Figure 16) increases steadily in the first 20
steps. The dip in expected return at the 22nd step corresponds to the moment when the
end of joint 2 nearly touches obstacle B, indicating ‘danger’ of collision. Subsequently,
the expected return increases until a second dip occurs in the 28th and 29th steps. This

1T he torques in the final step should be ignored because no action is initiated and the current trial ends
once the destination is reached.
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dip reflects the ‘danger’ of missing the destination through overshoot and prompted a
corrective action in the form of a strongly negative 7 to prevent a further increase in 6.
Finally, the lower of the two peaks, i.e. peak (1), in the evaluation function surface shown
in Figure 9 is reached at the destination. !

Figure 17: The path taken by the robot in a 44-step sequence from a start point to the
destination.
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Figure 18: Variation in joint positions #; and 62 during the 44-step sequence.

"The last dip in V should be ignored as reward is awarded to states from which an action leads to
the goal. The goal state itself does not initiate any action and is never awarded a reward. However, V
is not zero at the goal state due to its proximity to states with high expected return - this is a result of
generalization in the CMAC.
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Figure 19: Variation in joint velocities 6, and 6, during the 44-step sequence.
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Figure 20: Variation in joint torques 7, and 75 during the 44-step sequence.

Expected Return

25
Steps

Figure 21: Variation in expected return V' during the 44-step sequence.
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8.4.2 Motion 2

Figure 17 shows the path taken by the robot from a start position below obstacle C in the
right area of the workspace. The changes in the positions, velocities and torques at the
joints are shown in Figures 18, 19 and 20.

Angular positions As in the previous example, the position profile that is achieved
is smooth. This task does not require a backing-up motion and advancement towards
the destination is achieved with joint 1 angle #; increasing steadily most of the way after
staying constant for several steps in the beginning to allow joint 2 angle 6, to increase so
that link 2 will not collide with obstacle C. 3 increased steadily in the first 25 steps and
remained nearly constant from the 26th to the 40th step, although it increased slightly in
the 34th step to avoid collision with the bottom left corner of obstacle B. From the 41st
step till the end, 85 decreased rapidly to enable the end-effector to reach the destination,
once it had passed obstacle B completely.

Angular velocities Joint 1 velocity 6, starts off from zero and then remains positive
throughout the motion. Joint 2 velocity 6, is positive from the 1st to 25th step before
decreasing to zero for several steps and then increasing to a positive velocity again in the
34th step to move further away from the bottom left edge of obstacle B. Once clear, 0,
becomes negative so that the end-effector can reach the destination. The magnitude of
the joint velocities just before reaching the destination are again undesirably high. (see
Section 9.3 for a discussion)

Torques The torque in joint 2 7 starts positive to drive link 2 away from the bottom
of obstacle C. The torque in joint 1 7 becomes strongly positive to drive link 1 in the
6th step; however, 11 is quickly reduced between the 7th and 11th steps to moderate the
motion of link 1 since link 2 is still not completely clear of a collision with obstacle C.
71 and 7 then oscillate about zero to maintain 01 and 02 generally constant before
becomes negative in the 26th step to decelerate link 2 to zero velocity. In the 34th step,
T9 becomes positive momentarily to avoid obstacle B while in the 35th step, 71 becomes
positive to quickly get past obstacle B. Finally, 7 becomes strongly positive in the 43rd
step and 79 becomes strongly negative in the 42nd and 43rd steps to hasten arrival at the
destination.

Expected return The expected return (Figure 21) increases steadily all the way with-
out decreasing unlike the previous example. This is due to the fact that this motion is
relatively straightforward and no ‘dangerous’ state was entered. The motion can be viewed
as climbing from the start position to the higher peak of the evaluation function surface
shown in Figure 9.

9 Discussion

9.1 Exploration strategies

There is a trade-off between exploiting the existing policy to maximize known rewards or
experimenting with untried actions that have potentially negative consequences but may
eventually lead to a better policy.
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In the experiments, Williams’ [14] stochastic hillclimbing approach was used with gaus-
sian probability density functions to perform exploration in order to find the appropriate
torques at each state. However, this method only performs exploration in the early stages
of learning when the standard deviations in all states are large. Once the appropriate
torques that lead to increasing expected return have been found, the standard deviations
in those states decrease and further exploration is discouraged. In a static and time-
invariant environment, this is desirable in order to preserve a good learnt policy. However,
it is a severe limitation in changing environments which require continuous exploration
and reevaluation of existing policies. Thrun [12] proposed several directed exploration
strategies including a recency-based technique in which states which have not been visited
recently are selected.

9.2 Positions of destination and obstacles

In the experiments, the destination and obstacles were fixed and the agent had to learn
how to reach the destination from different starting positions. If the positions of the
destination and obstacles are changed, the policy that the agent had acquired needs to be
modified.

Several simulations were run in which the destination was changed after the agent had
learnt a policy which enabled it to reach a particular destination. Results showed that
adapting to the new circumstances was either impossible or would take a very long time.

The agent can also be made more versatile if it acquired the ability for local naviga-
tion. The choice of joint positions and velocities as inputs to the agent was to enable
the performance of the learning algorithm in solving the task to be investigated without
depending too much on the source and representation of the inputs. However, this means
that the evaluation function and policy learnt are only valid for the size, orientation and
positions of objects that existed during training. This limitation can be removed if inputs
are taken from a rangefinder or camera so that when the exact location of objects are
changed but perceptual input is similar, the agent can generate the same action.

9.3 Torques and velocities

The graphs in Figures 14, 15, 19 and 20 show that the velocities and torques of the joints
were very high just before the destination was reached compared to earlier parts of the
motion. This is undesirable in a real physical system and a smooth velocity profile that
reaches zero at the destination is preferred.

Another point of concern is the oscillatory nature of the torques produced even when
the motion was in parts of the workspace having no obstacles nearby. This wastes energy
and can cause ‘chattering’ in a real physical system.

The first effect can be attributed to the TD procedure itself. Although the exponential
component of the first reinforcement rule in the reinforcement schedule awarded a higher
than normal payoff if the destination was approached with moderate velocities, its effect
was swamped by the contribution of the discount factor v. The presence of the discount
factor encouraged the agent to generate actions which enabled it to reach the destination
in as few steps as possible so that a higher return can be attained.

It may be possible to reduce the second effect by having additional reinforcement based
on the minimization of the following quadratic measure, known as the minimum torque
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change criterion [13]:

tr s (dTi\ 2
Cr= / < Z> dt
™= J 2
=1
An improved reinforcement schedule that takes into account stability and energy con-
siderations can also be incorporated.

9.4 Monolithic vs Subsumption architecture

The architecture of the agent described in this report is monolithic in the sense that the
task was not decomposed into simpler behaviours. Mahadevan and Connell [4] present
results which indicate that a subsumption approach, where the agent is organized as a set
of task-achieving modules and each behaviour is learnt separately, was superior to learning
the entire task as one behaviour.

The results described in this report show that good performance in a moderately
difficult task can be obtained with a monolithic architecture. However, a subsumption
approach may be required in a more complicated robot control task, e.g. locating objects
and obstacles or maintaining a smooth velocity profile and stability of the system, in
addition to obstacle avoidance and moving to a destination.

10 Conclusion

We have demonstrated how reinforcement learning can be used in an integrated method
for controlling a multi-linked manipulator. The agent was able to learn the appropriate
torques that should be applied at each joint to enable the end-effector of the manipula-
tor to reach the destination, starting from an arbitrary position in the workspace. The
manipulator was also able to avoid collisions with obstacles.

The values of the evaluation function and policy parameters in different parts of the
input space were approximated and stored using CMACs. Tt was seen that the quan-
tizing resolution of the input variables by the CMACs significantly affected the level of
performance of the agent.

The learning algorithm in the form of a combination of reinforcement learning and
stochastic hillclimbing algorithms was effective, enabling the agent to generate the se-
quence of real-valued torques necessary to perform the required task.

A Derivation of Robot Dynamics Simulation Model

The dynamics model of the two-linked manipulator used in the simulations described in
this report are derived in this section.
A.1 Lagrangian approach

The equations of motion of the robot were derived using a Lagrangian in terms of the
kinetic and potential energies.

d (0L(6,8)\ OL(8,8)
dt( a0 )_ o0 (11)

L=K(6,0)—V() (12)
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where

Ix"(é,@) is the system kinetic energy
V(0) is the system potential energy

f2x1 is the position of the robot in terms of the 2 joint angles
241 is the velocity of the robot in terms of the 2 joint velocities
Tox1 are the torques required in the 2 joints for equilibrium

A symmetric matrix M(8) i.e. M(6) = MT () which is a function of 6 can be found
such that the kinetic energy

K(0,0) =0T M(0)8 (13)
giving )
OLO.6) _ 510y
Bl

Hence, Equation 11 degenerates to

d

E(?M(G)G)— o =T (14)

2M (6)4+ f1(6,6) £2(6,6)
where f1(6,8) = 202(M(6)) and f,(6,0) = 220D giving
2M(0)6 + f(6,0) =7 (15)

where f(0,0) = fl(é,H) — f2(9,0). Equation 15 can be rearranged such that the angular
acceleration € at each joint is obtained when the applied torques and joint positions and
velocities are known.

A.2 Model of robot with two joints

The two joints i.e. shoulder and elbow joints are revolute joints and the links move in
the same plane as shown in Figure 1. The links of the robot were modelled as two simple
beams with uniformly distributed mass and centers of gravity (1) and ). Two point
masses were also considered: (3) to account for the mass of the end-effector and (@) for the
mass of the motor driving the elbow joint.

In the following discussion, distance l; refers to @) -®B), I3 to B @) and I3 to B ~@);
vy refers to the velocity of joint (B) and # is the unit vector L to B -@).

Kinetic energy of link 1:

m

k L Gl
V=g ) G

1 .

Kinetic energy of link 2:

l2
mo
k =
2 21, /0

= 57722[%0% + Emzl%(;% + 57712[1[20.10.2 COS 02

vg + 160 |2 di
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Kinetic energy of point mass (3):

1 .
ks = 5™M3 | vg + la027 |2

1

2

1 . .
*mglfef + 577’&31%9% + ma3l115601605 cos 0,

Kinetic energy of point mass (4):

k4 = —mMy | QB — l3é2’fb |2

2

= —mdf@% + §m4130% — m4lll30102 COS (92

2

Putting into the form of Equation 13, kinetic energy

K(6,6) =

where mqy; =
miy =
mo1 =

mg2 =

0’T mi1 m19 COS 02 0
Mo cos B9 M99
1 1

1 1

1/1
3 <§m21112 + malyly — m4l1ls>

mi2
1 1 1

The potential energy V() is calculated as follows

1 1 .
V(g) = —§m111g cos by — mag(ly cos by + 512 cos(0y — 03)

— mag(lh cos by + Iz cos(01 — 02)) — mag(ly cos by cos Oy — I3 cos(0; — 02))

= —7nq COs 01 — Ny COS(GI - 02)

1
where n7 = llg(§m1 + mg + ms3 + my)

1
ng = 129(57712 + m3) — mylzg

Thus, the Lagrangian L can be evaluated from Equation 12.

A.3 Equations of motion

The functions f1(6,6) and f5(6,6) were evaluated by differentiating M(6) and the La-

grangian as shown in Equation 14.

Finally, rearranging Equation 15 gives:

b, =

maz[T1 + n1sin by + ng sin(fy — 63) + 2m129% sin @3] — mqz cos Oz[T2 — ngsin(fy — 62)]

2[m11m22 — (m12 COS 02)2]

(16)

mag cos Bz[T1 + nysin by + ngsin(fy — 63) + 2m129% sin @] — mq1[T2 — ngsin(6y — 02)]

6, =

2[(m12 COS 02)2 — m11MQ2]
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The masses and lengths used were:

my = 05kg g = 9.81m/s?
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