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ABSTRACT

Accuracy and speed are the main issues to con-
sider when designing a large vocabulary speech recog-
niser. Recent experience with the Wall Street Journal
(WSJ) corpus [5], has shown that high recognition
accuracy requires the use of detailed acoustic models
in conjunction with well-trained long span language
models. In this paper we present a two-pass decoder
architecture which extends an original [4] one-pass
design. The initial pass consists of a time syn-
chronous backward search in a pre-compiled network
using simplified acoustic models and a null gram-
mar. The forward pass can function as a stand-alone
one-pass decoder capable of using cross-word con-
text-dependent models and long span language mod-
els. The capabilities of this framework are empirically
examined In terms of recognition accuracy vs speed
on the Wall Street Journal database.

1. INTRODUCTION

Hidden Markov Models (HMMs) constitute the most
successful approach to automatic speech recognition.
Part of the success of the HMM framework is the
existence of an automatic supervised training algo-
rithm with mathematically proven convergence (the
Baum-Welch algorithm) and an efficient decoding
scheme used in recognition of unknown utterances
(the Viterbi algorithm). The conventional approach
to the recognition (decoding) of unknown speech ut-
terances is to apply the Viterbi search algorithm
to a pre-compiled network of HMM instances [6].
The representational ability of such static networks
makes them well-suited to small to medium vocab-
ulary tasks. However, as recognition tasks become
more complex, the size of the static network needed
grows dramatically especially if cross-word context is
included and longer span language models are used.

Decoding speech by simultaneously applying the
best knowledge sources is likely to result in more ef-
ficient pruning and achieve higher recognition accu-
racy. In this paper we compare the performance of
a one-pass decoder architecture and a multi-pass de-
sign. The structure of the single pass decoder allows
for the easy incorporation of lookahead information
with a view to further minimising the search effort.
As such, the multi-pass design can be built by ex-
tending the original one-pass decoder to incorporate
a preliminary backward pass.

The paper proceeds with the discussion of conven-
tional Viterbi decoding using static networks, its lim-
itations and possible ways of improving performance.
The design of a one-pass decoder architecture using
a dynamically constructed tree-structured network is
then presented. Section 4 outlines a multi-pass ap-
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Figure 1. Static network for Viterbi decoding with a
bigram back-off language model

proach that can be used to improve the performance
of the one-pass decoder. This is followed by imple-
mentational details of the backward search used as a
preliminary pass in the multi-pass decoder. Finally,
experimental results are presented showing the per-
formance of the one-pass decoder and the multi-pass
approach.

2. VITERBI DECODING

The standard method of implementing a Viterbi
search for decoding an unknown speech utterance
into words is to build a re-entrant network of HMM
phone instances (see Fig. 1). Words in the vocabu-
lary are constructed as a sequence of phones linked
according to the word’s pronunciation rules. Decod-
ing proceeds as a time-synchronous Viterbi search
through this pre-assembled network. In the work pre-
sented here, recognition is performed using the token
passing paradigm [7] where the best path to a par-
ticular instance in the network is described by a to-
ken held in that state. Partial paths are extended
by matching input frames against the phone mod-
els and propagating tokens with updated scores into
viable successors.

2.1. Network Structure

Current state-of-the-art systems use cross-word
context-dependent models and stochastic long span
language models. Incorporating such detailed knowl-
edge sources into the recognition process has begun
to show the representational constraints imposed by
static networks (Fig.1). For example, the use of a
trigram language model requires paths of different
two word histories to be maintained separately. For
a large vocabulary size static representation of such
a structure may prove impossible. Similarly, allow-
ing for cross-word context dependencies can lead to



a substantial increase in the size of the network.

Since the uncertainty in decoding speech is much
higher at the start of words than at ends, it follows
that the majority of the effort is spent on decoding
the first few phones of each word [3]. For large vocab-
ulary tasks, efficiency can be improved by building a
tree structured network in which words with common
initial phone sequences share corresponding acoustic
models. Although such a representation can be mod-
elled as a re-entrant structure, this will not easily
allow for the use of cross-word triphones or long span
language models.

2.2. Beam Search

The standard time-synchronous Viterbi search em-
ploys a breadth-first strategy where multiple paths
are extended in parallel by matching each input frame
in turn. The number of active phone instances for
each time frame is the most indicative measure of the
computational effort required to explore the present
search space. Beam search is the standard tech-
nique used to reduce the search during decoding. In
practical systems, variable width and multiple beam
schemes have proven more effective compared to a
single fixed threshold [2]. For example, the follow-
ing types of pruning are commonly found in current
state-of-the-art decoders.

e Model pruning threshold used to deactivate mod-
els outside the beam from the current best path.

e Word-end pruning beam used to restrict token
propagation out of word-end nodes. This is jus-
tified on the basis that a much higher degree of
uncertainty exists at the start of words than at
the end. This is further supported by the limited
dynamic range of the language model probabil-
ities when leaving a word, due to the heavy re-
liance on the back-off component of the language
model.

e Variable width pruning is a way of improving
performance based on a global measure such
as the total number of active phone models.
This has the effect of automatically reducing the
beamwidth once the limit is reached.

3. ONE-PASS DECODER

The key features of a successful one-pass decoder
are the ability to incorporate cross-word models and
long span language models whilst keeping storage and
computational requirements low. To do this it is nec-
essary to tree structure the recognition network and
to apply tight and efficient pruning. In order to al-
low for cross-word context and long span language
models, the decoder must be able to obtain context
at word and phone level in an efficient way. To make
such context explicit and easily available one has to
unfold the static network structure. To limit the
storage requirements for building such a structure,
the network must be grown on-the-fly and once in-
stances fall outside of the beam, the corresponding
nodes must be reclaimed.

Due to the tree structuring of the network and
the possibility that two words may have exactly the
same phonetic transcription (and consequently share
the same path of models), it is necessary to intro-
duce some point where the identity of the word be-
comes unique. This will also facilitate the process
of combining language and acoustic scores and allow
for an explicit application of word-end style pruning.
Consequently the recognition network consists of two
types of nodes.

o Word internal nodes - these nodes are linked to-
gether according to the phonetic transcription
of the words they represent. Such nodes have
an associated HMM instance chosen according
to surrounding phone/word context. The HMM
instance is used to compute the likelihood of the
current input frame and to hold tokens repre-
senting paths.

e Word-end nodes - these nodes uniquely identify
each word in the lexicon. Language model scores
are added during token propagation into word-
end nodes and the combined acoustic/language
model score is used for word-end pruning. When
operating as the second pass of a multi-pass de-
coder these nodes will have associated bitmaps
keeping track of started word followers.

Each node in the network has an associated language
model probability. This is added to the token like-
lihood to give a total score used for pruning. At
word-end nodes, the language model score is the ex-
act probability for the ending word given its prede-
cessors. However, for word internal nodes shared by
more than one word the language model score is an
exact upper bound (the maximum language model
probability of all words sharing that node). Using
the exact upper bound allows for the application of
tight pruning without any adverse effects on accu-
racy. No reliance is made on the back-off nature of
the language models so the computational load will
not increase as the size of the language model grows.
The decoder operates using the following algorithm:

create root node;

for each input frame {
compute frame likelihood;
propagate phone-internal tokens;
do model pruning;
propagate word-internal tokens;
do word-end pruning;
propagate word-external tokens;
prune network;

}

recover word sequence from best sentence-end node;

The network is constructed on the fly and nodes are
created only when they fall into the beam. Network
growth occurs during word-internal token propaga-
tion when a token is to be propagated from a node
without a follower. New nodes can also be created
during word-external token propagation. In this case,
a full new tree commences growing. Network prun-
ing maintains a minimal network structure and can
be summarised as follows.

e Forward pruning - nodes outside the beam with-
out predecessors will be permanently removed
from the network and associated storage will be
reclaimed. This procedure is performed by scan-
ning network nodes in a forward fashion.

e Backward pruning - nodes outside the beam
without followers will be removed and associ-
ated storage reclaimed. The predecessor node
will be updated to contain information sufficient
to recreate the node if it falls back into the beam.
This procedure is performed by traversing the
network in a backward fashion.

A maximum model pruning algorithm is also incor-
porated, whereby the structure of the network is ex-
amined before token propagation takes place and a
rough estimate is obtained of the potential network
growth. If this exceeds the maximum number of ac-
tive phone instances allowed, the pruning threshold
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Figure 2. Static tree structured network used in the backward pass

is automatically readjusted in order to reposition the
growth within the set limit.

4. THE BACKWARD-FORWARD
SEARCH

A variety of schemes have been proposed aimed at
reducing the computational effort required during
recognition. One approach attempts to speed up
recognition together with reducing storage by de-
composing the recognition process into several less
complex stages. Reduction in storage is achieved by
progressively applying more sophisticated knowledge
sources (acoustic}ianguage models) as the recogni-
tion moves from one stage to another [1]l Origi-
nally, it was thought that using all available knowl-
edge sources in a single pass would be too costly to
perform. However, our recent work in [4] has shown
that this is not necessarily the case.

In this section we discuss possible ways of further
improving the performance of the one-pass decoder.
In the one-pass decoder a new copy of the lexicon tree
is grown for each word-end node within the word-end
pruning beam. The tree structuring mechanism en-
sures that the number of immediate successors of an
active word-end node is relatively small even for the
cross-word context case. Since the search effort in
the recogniser is dependent upon the number of ac-
tive HMM instances and since no prior knowledge is
available about the utterance beyond the current in-
put frame, many models will be made active in order
to hypothesise all words as possible successors. Fur-
thermore, even with tree structuring, a larger lex-
icon will generate more dense trees with a poten-
tially high number of active phone instances. Many
of these models will fall out of the beam shortly af-
ter activation without any contribution to the overall
recognition of the utterance. Words ending with a
good acoustic score will always have to be expanded
even when they constitute a path which is not acous-
tically/grammatically consistent with the remaining
part of the utterance.

A two stage search has been implemented in an
attempt to solve these problems. The search is simi-
lar to the forward-backward search in [1], but it runs
the first pass in the backward direction, with a second
forward pass. In the simplest case, the backward pass
is used to construct a list of active word-begin nodes
for every time frame in the utterance. This list can
then be used during the main forward pass to control
the growth of new trees at surviving word-end nodes.

5. THE BACKWARD SEARCH

The backward search is built as a backward time-
synchronous Viterbi pass using a pre-compiled net-
work of phone instances. The network (Fig. 2) is
automatically generated at start up time from the
pronunciations in the dictionary. Since the aim is to
provide acoustic lookahead information, no language
model is used. This allows for tree-structuring the
network and thus significantly reducing computation.
Silence is enforced at the start and end of each utter-
ance. The output of the backward pass consists of a
list of words and associated scores for each time frame
of the input utterance. Separate pruning thresholds
are used to control the activation of word-internal
nodes and word-begin nodes. The word-begin prun-
ing beamwidth in conjunction with a top-N selection
scheme are used to adjust the number of words kept
for each time frame.

There are two issues that need to be considered [2].
The first issue is how accurate the first pass should
be. For example, using simplified acoustic models the
search will run very quickly, however, the word lists
will be either too long to constrain the second pass, or
in the case of tight pruning, the word lists will have
too many missing words resulting in unrecoverable
search errors. Rough acoustic models will require less
effort in the HMM’s output probability calculation,
however, pruning will be less efficient due to larger
variance. On the other hand, a search using more de-
tailed acoustic models (e.g. word-internal triphones)
will take longer to perform, resulting in shorter word
lists even for wide pruning beamwidths. The sec-
ond issue is how to use the information (scores and
word id’s) obtained in the backward pass. In order
to incorporate the acoustic lookahead information,
the forward pass needs to keep track of how many
words have already been started from every word-end
node in the network. This is achieved by associating
bitmaps of word identifiers with each word-end node.
Information from the backward pass can be used in
two ways. In the first case, the list of words is com-
pared with the bitmap of the word-end node under
consideration. Any words not already present are in-
corporated into the existing tree of followers. This
avoids the use of the somewhat unreliable acoustic
scores generated by the simplified acoustic models.
In the second case the word-end pruning strategy can
be performed according to the measure [1]

a(w,tﬁ)f(w,t) 1)



Backward | Type Error % | Time
none none 12.8 13.2
160/120 top 80 words 13.5 5.5
160/120 top 200 words 13.2 8.2
160/120 all words 12.9 11.2
160/80 B/F pruning 13.5 4.5
160/100 B/F pruning 13.0 5.2
160/120 B/F pruning 12.9 5.5
180/150 B/F pruning 12.8 6.6

Table 1. Nov 1993, WSJ 5K closed vocabulary test
results using 8 mixture monophones in the backward
pass and 8 mix word-internal triphones in the forward
pass with bigram back-off language model. Time is
given in minutes per sentence, and the numbers in for-
mat 160/120 give the HMM pruning threshold and the
word-end pruning threshold respectively for the back-
ward pass.

Backward | LM Error % | Time
none bigram 8.8 21.5
180/150 bigram 9.1 12.3
none trigram 6.9 19.3
180/150 trigram 7.5 12.0

Table 2. Nov 1993, WSJ 5K closed vocabulary test re-
sults using 8 mixture monophones in the backward pass
and 8 mixture gender dependent cross-word triphone
models in the forward pass.

where (w,t) is the backward Viterbi likelihood as-

sociated with the beginning of word w at time ¢, 57
is the likelihood of the utterance as computed in the
backward pass and a(w, t) is the forward Viterbi like-
lihood associated with the word-end node for w at
time ¢. The above pruning measure will result in
word-end nodes with higher likelihood scores start-
ing larger trees of followers than those with lower
likelihoods.

6. RESULTS & DISCUSSION

The set of experiments presented here attempts to
establish the usefulness of the multi-pass approach
when compared to the original one-pass design. The
multiple pruning schemes employed in the two passes
allow for a variety of experiments to be performed.
The results presented in this paper are concerned
with the problem of achieving the highest possi-
ble accuracy with minimal search effort i.e. no at-
tempt has been made to establish the performance of
the two systems when running at very low pruning
beamwidths as may be required in real time applica-
tions.

Experiments have been performed on the Novem-
ber 1993, 5K evaluation test data from the Wall
Street Journal task. The systems used training data
from the SI-84 data sets and pronunciations from the
Dragon Wall Street Journal Pronunciation Lexicon
Version 2.0. Standard bigram and trigram back-off
language models were used as supplied by MIT Lin-
coln Labs. The models were built using the HTK
Hidden Markov Model toolkit. The system employed
models with three emitting states, left-to-right topol-
ogy and continuous density mixture Gaussian output
distributions tied at the state level using phonetic de-
cision trees. As described above, both passes enforce
silence at the start and end of each utterance and
allowed optional silence between words. All experi-
ments were performed on a Silicon Graphics Indigo
R4000 workstation.

Table 1 presents results demonstrating the use of
simple word lists vs backward-forward pruning to
constrain the forward pass. These show that word
lists without acoustic scores are too coarse to preserve
the accuracy of the one-pass decoder at higher speeds.
When the acoustic likelihood from the backward pass
is used to derive the word-end pruning threshold in
the forward pass, 2 - 3 times improvements in speed
can be observed and minimal or no loss in accuracy.
The results in Table 2 show that the speed improve-
ment obtained using the backward pass reduces as
the accuracy of the forward pass increases. This can
be attributed to more efficient pruning as a result of
more precise acoustic/language modelling. The re-
sults also suggest that using more detailed models in
the forward pass will require further tuning of the
backward pass.

7. CONCLUSIONS

The multi-pass decoder architecture can provide a
speed up over the one-pass design. However, the rel-
ative improvements in speed decrease as the complex-
ity of the models used in the forward (detailed) pass
increases. Furthermore, improved acoustic/language
models in the forward pass are likely to require better
models in the backward pass which could offset the
speed gains even further. In general, the performance
of the multi-pass approach depends to a large extent
on the fine tuning of the backward pass. Experiments
are under way to establish the performance of the two
designs with a view to real-time system applications.
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