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Abstract–There has recently been widespread interest in the use of multiple
models for classification and regression in the statistics and neural networks
communities. The Hierarchical Mixture of Experts (HME) [1] has been suc-
cessful in a number of regression problems, yielding significantly faster training
through the use of the Expectation Maximisation algorithm. In this paper we
extend the HME to classification and results are reported for three common
classification benchmark tests: Exclusive-Or, N-input Parity and Two Spirals.

INTRODUCTION

Traditional Neural Network architectures such as the multi-layer perceptron have
proved successful as universal function approximators and have been used in many
different problems ranging from pattern classification to control engineering. Whilst
there is undoubtably further valuable work to be done on such architectures, such
as improving training methods, there is a considerable incentive to look in other
directions for new architectures. Such architectures ideally would be statistically
motivated and have parameters which are easily interpretable; they would also allow
training speeds to be increased, since the gradient descent algorithm used in tradi-
tional back-propagation is typically too slow for solving real-world problems in real
time.

Motivated by such concerns, a number of researchers have investigated methods of
function approximation incorporating ideas from the fields of statistics and neural
networks. One recurring trend in such work is the use of separate models to approx-
imate different parts of a problem. The general approach is to divide the problem
into a series of sub-problems and assign a set of function approximators or ‘experts’
to each sub-problem. Different approaches use different techniques to divide the
problem into sub-problems and to calculate the best solution to the problem from
the outputs of the experts. The architecture described in this paper, the Hierarchical
Mixtures of Experts (HME) [1], employs probabilistic methods in both the way it
divides the input space and the way it combines the outputs from the experts.

The paper is organised as follows. The HME architecture is described, along with the
use of the Expectation Maximisation (EM) algorithm [2] which is used to estimate
its parameters. The extension of the HME to classification is discussed, including the
required modifications to the training algorithm. The results obtained on two classi-
fication simulations are presented: N-input Parity and the ‘Two Spirals’ problem.

HIERARCHICAL MIXTURES OF EXPERTS

The HME is based on the principle of ‘divide and conquer’ in which a large, hard
to solve problem is divided into many smaller, easier to solve problems. There are
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Figure 1: Hierarchical Mixture of Experts

several alternative strategies for tackling such problems. The simplest approach is to
divide the problem into sub-problems having no common elements - a ‘hard split’ of
the data. The optimum output of the experts assigned to each sub-problem may then
be chosen on a ‘winner-takes-all’ (WTA) basis. Classification and Regression Trees
(CART) [3] are based on this principle. Alternatively, the outputs of the experts may
be combined in a weighted sum with weights derived from the performance of the
experts in their partitionof the input space; this is the principle behind Stacked Gener-
alisation [4]. The most advanced method is to divide the problem into sub-problems
which can have common elements - a ‘soft split’ of the input space into a series of
overlapping clusters. The outputs can be chosen either using WTA or stochastically.
The HME combines the ideas of soft splits of the data with stochastic selection of the
outputs of the experts by the use of a gating network. A two-level HME architecture
with a common branching factor of two at each level (a ‘binary branching’ HME)
is shown in Figure 1. In the general architecture, multiple levels and branching fac-
tors are possible. In its basic form, the HME employs a fixed architecture which is
pre-determined before training commences. The tree consists of non-terminal and
terminal nodes which we denote by a set of indicator variables

�
Z � . Non-terminal

node (1) is thus denoted z1 and consists of gating network GN(1). Terminal node
(1, 1) is denoted by z11 and consists of expert network EN(1,1). A general HME
with i levels of gating networks and branching factors b0, b1, …, bi � 1 is denoted by
HME(i:b0, b1, …, bi � 1), thus Figure 1 is HME(2:2, 2). In the original HME each ex-
pert was linear and performed a regression task [1]. In this paper, each expert is
non-linear and performs multi-way classification.

Our general classification problem may be considered as follows. At time t during
training, we observe an input vector � (t) which belongs to class n. We construct a
target output vector � (t) with 1 in element n and 0 elsewhere. We wish to compute



the probability P(yn � � (t)) of the correct class n being returned given the input vector
at time t. 1 We do this by breaking the problem into a series of smaller problems. For
example, expert network EN(1, 1) computes P( � � � , z1, z11), the probability vector
of all classes given that we took the left branch of every split and ended up in
terminal node (1, 1). The top level gating network GN(0) computes P(z1 � � ), and the
second level gating network GN(1) computes P(z11 � � , z1). GN(1) weights EN(1, 1)
and EN(1, 2) to give the output of node (1),

µ1 = P( � � � , z1) =
b1�
j=1

P( � � � , z1, z1j)P(z1j � � , z1).

All these nodes are combined to give the overall output µ of the HME,

µ = P( � � � ) =
b0�
i=1

P(zi � � )P( � � � , zi)

=
b0�
i=1

P(zi � � )
b1�
j=1

P(zij � � , zi)P( � � � , zi , zij)

This process may be extended to any depth and may use arbitrary branching factors
at each depth. Unlike CART, the shape of the HME network is pre-determined
heuristically before training.

Expert network EN(1, 1) is a single layer network with ‘softmax‘ activation function
[5] whose jth output is

µ11j = P( � � � , z1, z11, Θ11) = exp(θT
11j � )

�
N�

k=1

exp(θT
11k � ) ,

where Θ11 is a parameter matrix, consisting of N independent vectors
�
θ 11k � . The

form of GN(1) is

P(z1 � � , Ξ1) = exp(ξ T
11 � )

�
b1�
i=1

exp(ξT
1i � )

where Ξ1 is the parameter matrix for this gate, consisting of b1 independent vectors
ξ1i. Therefore, the mathematical form of the gating and expert networks is the same,
with the difference that the gating network is classifying the experts over the input
space and the experts are classifying within the input space regions.

Training the HME

The HME is trained using the Expectation Maximisation (EM) algorithm, in which
‘missing data’ is specified, which if known would simplify the maximisation problem.
If we had information about which node had generated the data, we could update the
parameters for the gates and experts for that node. Thus the missing data for the EM
algorithm applied to HMEs is the set of indicator variables

�
Z � which indicate which

node generated each output, or alternatively which node is best suited to the portion

1. For simplicity of notation, we shall now drop the superscript t on the inputs, outputs and indicator
variables.



of the input space under consideration. The E-step of the EM algorithm reduces
to computing the expected values of the indicator variables which gives the set of
posterior probabilities

�
H � . The conditional posterior probability of node (1, 1) is

the probability that EN(1, 1) can be considered to have generated the data based on
both input and output observations, given that we are in non-terminal node (1). This
is given by

h1 � 1 = P(z11 � z1, � , � ) =
P(z11 � z1, � )P( � � � , z11, z1, Θ11)� b1

j=1 P(z1j � z1 � )P( � � � , z1j, z1, Θ1j)
,

where P( � � � , z11, z1, Θ11) is the probability of generating the correct output vector �
from EN(1, 1) given the input � . For 1-out-of-N classification, this is given by

P( � � � , z11, z1, Θ11) = exp

�
N�

k=1

yk log µ11k � = µ11n

where µ11k is the output for class k from EN(1, 1) and n is the correct class. In a
similar way, the conditional probability of node (1) is given by

h1 = P(z1, � , � ) =
P(z1 � � )P( � � � , z1)� b1

i=1 P(zi � � )P( � � � , zi)
.

For node (1, 1) the joint posterior probability, h11 is the product of the joint posterior
probability of node (1) and the conditional posterior probability of node (1, 1). In
a deeper architecture, the joint posterior probabilities are recursively computed by
multiplying the conditional posterior probabilities along a path from the root node
(0) to the node in question.

The M step reduces to a set of independent weighted maximum likelihood problems
for the experts and the gates. Thus the weight for GN(1), at time t, is the joint
posteriorprobabilityof this node, h(t)

1 , and the weight for EN(1, 1) is the jointposterior
probability of this node, h(t)

11. The target outputs for the gating networks are the
conditional posterior probabilities of the node in question, so that the targets for
GN(1) at time t are h(t)

1 � 1 and h(t)
2 � 1 for outputs 1 and 2 respectively.

Once the maximum likelihood problems of the M-step have been completed, the E-
step is repeated, computing a new set of posteriors

�
H � for all times t which become

the new weights for the M-step.

Solving the M-Step

Since each EN and GN is a simple network with a single layer of weights, we may
solve the maximum likelihood problems relatively easily. We update the parameter
vectors for each output of the networks independently, given the Generalised Linear
[6] assumption that the outputs are independent. The simplest method is to use
gradient ascent of the likelihood, which for parameter vector θ m

i at iteration m for
output i of an EN reduces to

θm+1
i = θm

i + λ
1� T

t=1 h(t)

T�
t=1

h(t) � (t)(y(t)
i � µ (t)

i )



where y(t)
i is the target for class i, µ (t)

i is the ith output of the EN, h(t) is the weight
at time t, T is the total time, and λ is a learning rate. These equations are the same
for the gating networks, with the output targets

�
y(t)

i � replaced by the conditional
posterior probabilities of the node in question.

An alternative maximisation method, and the one adopted in this paper, is to use the
Hessian or second derivative of the likelihood with respect to the parameter vectors:

θm+1
i = θm

i + λ

�
T�

t=1

h(t) � (t)µ (t)
i (1 � µ (t)

i ) � (t)T � � 1 �
T�

t=1

h(t) � (t)(y(t)
i � µ (t)

i ) � , (1)

where λ is once again a learning rate, which has typical values in the range 0. 4 to
1. 0. This method is equivalent to the Iteratively Reweighted Least Squares algorithm
(IRLS) of Generalised Linear Models [6].

Implementation Issues

Variation in M-Step Iterations. Although the basic EM algorithm dictates that the
M step should be iterated until convergence, the Generalised EM algorithm (GEM)
relaxes this constraint, requiring only an increase in the likelihood in the M-step. By
reducing the number of M-step iterations we can reduce the overall computation.
The power of the EM algorithm lies in the E-step which repeatedly computes new
weights based on the previous M steps. In our experiments the number of M step
iterations was typically set to between 1 and 3.

Learning rates. The IRLS algorithm in common with conventional gradient de-
scent algorithms, is sensitive to learning rates. Learning rates that are too large give
instability, manifested in step sizes that lead to an decrease in the overall network
likelihood. In practice we found that a learning rate of 0. 4 for both experts and gates
gave a good balance between learning speed and stability, although rates of 0. 8 have
proved stable with some initial conditions.

Saturation of expert and gating network outputs. If the output µ (t)
i in Equation

(1) of any of the networks becomes near to either 1 or 0, or if the weight h(t) is near
0, then the addition to the Hessian matrix for output i of that network at time t will
be very small. If this occurs for a large majority of the training set, the Hessian will
become singular and impossible to invert accurately. The solution to this problem
is to use threshold values for the outputs of 0. 9999 and 0. 0001 and a floor for the
weights of 0. 0001. In practice, these have to be tuned to prevent instability but have
no significant effect on accuracy until set to around 0. 9 and 0. 1.

Choice of initial parameter values. Two strategies are used to initialise the network.
The first is to start all parameter vectors of experts and gates at zero and give each
gate output a ‘kick’ so that the experts begin to separate in the input space and
compute different outputs. The second is to initialise all parameter vectors to random
values, in a range � r to +r. Typically, 0. 1 � r � 3. An alternative is to use random
weights for the expert parameters and zero initial weights for the gates, with the
choice of strategy varying with the problem. In our experiments we found that the
second option gave the quickest results which were most free from local maxima,
whilst the first and third options gave solutions which were drawn to local maxima
or failed to separate the experts at all.



SIMULATIONS

In this paper we follow the work of [7] in using strict methods when reporting
learning speeds and network performance. In particular we use a 40-20-40 threshold
criterion which dictates that an output is only correct if it is greater than 0. 6. We
define an epoch as one pass through the training set. Thus, one EM cycle may consist
of many epochs, depending on the number of iterations performed in the M-step.

N-Input Parity

The task of the N-input parityproblem is to compute the odd parity of N binary inputs.
The network must compute a ‘one’ if the input has an odd number of ‘one’ bits in
the input and a ‘zero’ if there are an even number. The special case of 2-input parity
is the Exclusive Or function (XOR) which was shown to be impossible for simple
single layer networks to approximate [8]. In this paper we show that the HME can
solve this problem efficiently using only three single layer networks, in the form of
one GN and two ENs. We also describe solutions for 3 to 8 input parity, with learning
times faster than conventional feed-forward networks. The performance of the HME
on the XOR problem using a varying degree of test thresholding and averaging over
100 trials per threshold is shown in Table 1. These results were obtained using a

Threshold Min Max Average Standard
Epochs Epochs Epochs Deviation

0.5 1 6 2.35 1.02
0.6 2 6 2.76 0.971
0.8 2 6 3.32 0.882
0.9 3 6 4.14 0.757
0.99 8 24 11.5 4.27

Table 1: Results for the HME on the XOR problem.

HME(1:2) with a total of 9 parameters. By way of comparison, conventional feed
forward networks, using a 2-2-1 structure can solve this problem at the 0. 6 threshold
in an average of 19 epochs of quickprop[7]. Using the delta-bar-delta rule, an average
training time of 250.4 epochs has been reported [9]. Using the HME, we reach the
0. 6 threshold in an average of 2. 76 epochs, and the 0. 99 threshold in an average
of 11. 5 epochs. Of all these trials of the HME on the XOR problem, none failed to
converge or had to be restarted. The results on the N-input Parity problem are shown
in Table 2. By way of comparison, the best performance reported on 8-input Parity
by a 8-16-1 back-propagation network is 2000 epochs of standard back-propagation
[10] and 172 epochs of quickprop. The table shows the average results over 50 trials.
The number of tests which failed to converge to the correct solution is shown as %
NC. Using the HME, N-input parity requires at least N experts. However, in ‘tight’
networks with around N experts, there is an increased chance of local maxima. This
effect may be seen in Figure 2 which shows the effect of different initial conditions
for a HME(1:4) on the XOR problem. Since we may solve the XOR problem using
only 2 experts, this network is over-specified and includes redundancy. The solutions
in the figure differ in the distribution of the data between the experts. Sub-figure 2(a)
is a solution in which the data is shared evenly between 2 experts with the remaining
2 experts inactive. In 2(b) the data is distributed again between 2 experts but with



N Parameters Architecture Min Max Average % NC
Epochs Epochs Epochs

3 12 (1:3) 3 11 4.85 0
4 18 (2:2,2) 6 13 10.4 20
5 51 (2:3,3) 11 26 16.2 10
6 60 (4:2,2,2,2) 12 29 18.8 20
7 111 (5:2,2,2,2,2) 14 26 23.5 10
8 51 (2:2,4) 50 102 42 90
8 111 (5:2,2,2,2,2) 15 57 34 50
8 210 (6:2,2,2,2,2,2) 13 56 36 33

Table 2: Performance of the HME on the N-Input Parity problem.

3/4 of the data in one expert and 1/4 in the other. In 2(c) the data is distributed over
3 experts with 1/2 going to one expert and the remaining 1/2 shared between the
remaining 2 experts. In 2(d) the data is distributed evenly over 4 experts. It is clear
that 2 (b) is an unsatisfactory solution which would not give good generalisation,
unlike (a), (c) or (d). In a series of 35 trials for HME(1:2), solution (a) occurred in
26 cases while (b) occurred in 9 cases. By using the HME(1:4), solution (c) occurred
23 times, (a) 8 times, (d) 3 times and (b) only once. Thus, we have reduced the
probability of solution (b) occuring by adding the extra 2 experts. For larger values

Figure 2: The effect of different initial conditions on a HME(1:4) for the XOR problem.

of N, behaviour of this sort may lead to local maxima which give us non-convergent
solutions. The net result of this is that we get many more non-convergent solutions
with tight networks, although there is a large advantage in terms of computation
when using such a network. By relaxing the network and using more levels, thus
introducing redundancy, we create many more possible successful configurations, as
seen by relaxing the XOR problem to using 4 experts instead of 2. Therefore the
number of non-convergent solutions is reduced, and those that do occur represent
states where only a small number of points remain misclassified. This effect may be
seen for 8-input Parity in Table 2. By increasing the network depth, thus increasing
the number of terminal nodes, we reduce the percentage of non-convergent solutions.



The Two Spirals Problem

The aim of the two-spirals problem is to train a network to discriminate between
two spirals in the 2-D plane. Each spiral has 97 points and coils three times around
the origin and around the other spiral, without overlapping. The learning set and the
evolution of the output of a binary branching HME with 10 levels is shown in Figure
3. The points in the test set are offset vertically from the points in the learning set
by 0. 1. The best solutions to the spirals problem have been obtained using Cascade
Correlation [11]. This is capable of approximating the problem in 1700 epochs
using around 140 parameters. Back-propagation networks have been used to solve
the problem [12] using a 2-5-5-1 network with shortcut connections between layers
in 20, 000 epochs using conventional gradient descent with momentum and 8, 000
epochs using quickprop, using a similar number of parameters. Using a conventional
2-5-5-1 network without shortcuts took 60, 000 epochs of quickprop.

Depth Number Training Set Testing Set M-step Total
of Tree of Parameters Correct / 194 Correct / 194 Iterations Epochs

10 3102 187 184 3 135
10 3102 185 184 1 140
5 111 161 159 1 30

Table 3: Results for the Two-Spirals Problem using binary branching HMEs.

The results in Table 3 demonstrate that the HME is capable of solving the two-spirals
problem to a high degree of accuracy. Although the experiments performed have not
resulted in a complete solution, the number of training epochs for the HME on this
problem are an order of magnitude less than Cascade Correlation networks and two
orders of magnitude less than conventional feed-forward back-propagation networks.
We suspect that the non-convergence of the HME is due to similar effects as those
proposed for the Parity problem. In terms of numbers of parameters, the HME may
appear to be using far more, since for a depth of 10 and common branching factor
of 2 there are 3102 parameters. This is misleading, however, since the number of
terminal nodes which actually remain active is a small fraction of the total number
of terminal nodes present.

CONCLUSIONS

We have described the application of the HME to classification and presented a
number of results on standard benchmarks. In common with the performance of the
HME on regression problems, we have found that it requires fewer epochs to learn
classification problems than conventional feed-forward networks. There are however,
a number of problems associated with the learning algorithm, including numerical
instabilities caused by the 2nd order M-step update and the existence of local maxima
within the solution sets. We have described solutions to these problems, such as the
use of thresholding of outputs and weights in the M-step, choice of learning rate and
initial conditions to avoid instabilities and local maxima. Future directions for this
work will focus on removing the need for matrix inversion by using some form of
approximation to the inverse Hessian in (1). The use of fast gradient descent methods
such as quickprop [7] would move the HME closer to true connectionist methods
and reduce the computational load of the M-step.



In addition we have described how the use of redundancy in the HME may reduce
the chance of local maxima. In these networks, the redundant experts are typically
inactive after a few epochs, which suggests that they could be ‘pruned’ using similar
techniques to those developed for CART [3] . Alternatively we may start with a small
network of, say 2 experts and grow the tree using CART principles. We anticipate
that the use of such ideas will improve the performance of the HME in terms of speed
and accuracy and allow us to extend the applications of classification HMEs to real
world problems.
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Figure 3: Learning set for the two spirals problem and evolution of the decision boundary for
a binary branching HME with 10 levels.


