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ABSTRACT

The HTK large vocabulary speech recognition system has
previously shown very good performance for clean speech.
This paper describes developments of the system aimed at
recognition of speech from the ARPA H3 task which contains
data of a relatively low signal-to-noise ratio from unknown
microphones. It is shown that a two-phase approach can be
effective. The first phase is to derive an initial set of mod-
els that are more appropriate for the current conditions than
using models trained on clean speech. This is done using ei-
ther single-pass retraining with multiple microphone data or
parallel model combination which combines HMMs trained
on clean data with estimates of convolutional and additive
noise. The second stage provides more detailed environmen-
tal and speaker adapatation using maximum likelihood linear
regression which estimates a set of linear transformations of
the model parameters to the current conditions. Experiments
are reported on both the 1994 ARPA CSR S5 (alternate mi-
crophones) and S10 (additive noise) spoke tasks as well as
the 1995 ARPA CSR H3 task. The HTK system yielded the
lowest error rates in both the H3-P0 and H3-CO0 tests.

1. INTRODUCTION
This paper describes the development of the HTK LVCSR

system, which gives state-of-the-art performance under clean
speech conditions, [11], to non-ideal acoustic environments,
with a focus on recognition of data from the 1995 ARPA H3
task. This data has a relatively low signal-to-noise ratio and
is also from unknown microphones.

A two-phase approach is adopted to producing a system ap-
propriate for the current environmental conditions. Firstly,
an initial set of models are derived that should be more ap-
propriate than the clean model set for the environmental con-
ditions under test. This first stage uses either single-pass re-
training (SPR) [2] with data from multiple environments or
uses parallel model combination (PMC) [1, 2] which combines
estimates of convolutional and additive noise to compensate
an HMM set trained on clean speech.

The second stage requires more data from the new environ-
ment but can produce more detailed environmental compen-
sation along with speaker adaptation. This phase uses maxi-
mum likelihood linear regression (MLLR) [5, 6] which, in its
original form, estimates a set of linear transformations for the
Gaussian mean parameters. Recently [3] we have extended
the MLLR approach so that the Gaussian variance parame-
ters can also be compensated. While MLLR produces good
results with only a modest amount of data from the new

speaker /environment, if more data is available it is able to
provide more precise adaptation.

This paper gives an overview of the HTK LVCSR system and
briefly describes the approaches to deriving the initial models
for a new environment. A description of MLLR including the
extensions for variance compensation is then given. The ap-
proach for environment compensation is evaluated first using
the 1994 ARPA CSR S5 (alternate microphones) and S10
(additive noise) spoke tasks. Finally the HTK system for
1995 ARPA Hub 3 evaluation is described in detail.

2. CLEAN SPEECH SYSTEM

This section gives an overview of the clean-speech HTK
LVCSR system. The system uses state-clustered, cross-word
mixture Gaussian context-dependent acoustic models and a
back-off N-gram language model. More details of the system
can be found in [11].

In the standard system, each speech frame is represented by
a 39 dimensional feature vector that consists of 12 mel fre-
quency cepstral coefficients, normalised log energy along with
the first and second differentials of these values. Cepstral
mean normalisation (CMN) is applied. For use with PMC,
the front end is slightly modified: the zeroth cepstral coef-
ficient replaces log energy; no CMN is performed and the
regression-smoothed differentials are replaced by simple dif-
ferences. We have also investigated the use of a PLP-based
[4] cepstral parameterisation (see Secs. 5 and 6).

The HMMs are built in a number of stages. First, the
LIMSI 1993 WSJ pronunciation dictionary is used to generate
phone level labels for the training data. Then in turn single
Gaussian monophone HMMs; single Gaussian cross-word tri-
phone models and single Gaussian state-clustered triphones
are trained. The clustering is decision-tree based [13] to allow
for the synthesis of triphone models that don’t occur in train-
ing. After clustering mixture Gaussians are estimated by it-
erative “mixture-splitting” and forward-backward retraining.

The acoustic training for the clean-speech system consisted of
36,493 sentences from the SI-284 WSJ0+1 data sets. These
data were used to build a gender independent triphone HMM
set with 6,399 speech states, with each state having a 12 com-
ponent Gaussian mixture output distribution. This system
(the HMM-1 system of [11]) was used as the basis for the S5
and S10 experiments.

The full HTK LVCSR system also uses more complex acous-
tic models which take account of the preceding and following



two phones (quinphone context) and also the position of word
boundaries. The gender independent version of this HMM
set (the HMM-2 system of [11]) had 9,354 speech states with
each state characterised by a 14 component mixture Gaus-
sian. Gender dependent versions of this system are trained
by using the data from just the relevant training speakers
and updating the means and mixture weights.

The HTK LVCSR system uses a time-synchronous decoder
employing a dynamically built tree structured network de-
coder [8]. This decoder can either operate in a single pass
or it can be used to produce word lattices which compactly
store multiple sentence hypotheses. The lattices contain both
language model and acoustic information and can be used for
rescoring with new acoustic models, or for the application of
new language models.

3. INITIAL MODEL DERIVATION

This section describes two methods for providing initial mod-
els that better match a new environment than clean speech
models. Both methods require very little data from the new
environment.

3.1. Single-Pass Retraining

Single pass retraining operates by use of a stereo database
in which there are paired speech samples, one clean and the
other for an approximation to the new environment (“sec-
ondary channel”). Given a mixture Gaussian HMM system
trained on clean speech, and assuming that the frame/state
(Gaussian mixture component) alignment is identical for the
clean and the secondary channel data, SPR first finds the a
postertor: probability of mixture component occupation us-
ing the clean speech models and the clean speech vectors.
Using this clean speech alignment, the Gaussian parameters
are updated using the corresponding observations from the
secondary channel.

SPR is here used to train an initial system from stereo data
that contains multiple second channel microphones. This
gives a system that is better matched to the new environ-
ment than using a clean model set and serves as a suitable
initialisation for further MLLR-based adaptation.

3.2. Parallel Model Combination

PMC attempts to estimate the parameters of a matched
HMM system given the clean speech models, a model of addi-
tive interfering noise and the frequency response of the chan-
nel difference between clean speech training conditions and
the test environment. It is assumed that speech and noise
are independent and additive in time and (linear) frequency
domains and that a Gaussian or mixture Gaussian model is
sufficient to describe the noise process in the log spectral or
cepstral domains. Although HMM modelling is performed in
the cepstral domain, compensation is performed in the linear
spectral and log spectral domains by using the appropriate
transformations.

There are a number of different PMC approximations and im-
plementations that have been investigated [2]. However one
of the simplest and most efficient is Log-Add PMC which

updates just the mean HMM parameters. This method es-
sentially assumes that that the speech and noise models have
zero variance. If a compensated Gaussian mean component
in the log spectral domain is denoted as fi; then

fri = log(exp((Hi + pi) + exp(fii))

where H; is the channel difference between training and the
new environment, u; is the clean speech mean and ji; the
noise mean in the log spectral domain. The means of the 1st
and 2nd differentials can be compensated in a similar way.

4. MAXIMUM LIKELITHOOD LINEAR

REGRESSION

MLLR was originally developed for speaker adaptation [5, 6]
but can equally be applied to situations of environmental
mismatch. MLLR estimates a set of transformation matri-
ces for the HMM Gaussian parameters which maximises the
likelihood of the adaptation data. The set of transformations
is relatively small compared to the total number of Gaus-
sians in the system and so a number of Gaussians share the
same transformation matrices. This means that the trans-
formation parameters can be robustly estimated from only
a limited amount of data which allows all the Gaussians in
the HMM set to be updated. For a small amount of data (or
very robust transformation estimation) only a single global
transformation is used. As more data becomes available more
specific transformations can be estimated.

Originally transformations were estimated only for the mean
parameters but we have recently extended the approach so
that the Gaussian variances can also be updated [3]. In the
systems described here, MLLR is used to fine-tune a system
to the environment/speaker after either the application of
PMC or use of SPR with secondary channel data. This sec-
tion gives a brief overview of the basic MLLR theory for both
the mean parameters and the variances.

The means and variances are adapated in two separate stages.
Initially new means are found and then given these new
means the variances are also updated. The HMMs are mod-
ified such that

L(0Op|M) > L(Og|M) > L(Og|M)

where for the models M have just the means parameters up-
dated to fi1, ..., finm; the models M have both the means and
the variances 3y, ..., ¥ updated and Or is the adaptation
data.

Or = {0(1)5 0(2)5 vee 10(T)}

4.1. MLLR Adaptation of the Means

The aim of MLLR is to obtain a set of transformation ma-
trices that maximises the likelihood of the adaptation data.
The transformation matrix is used to give a new estimate of
the mean, where

and W,, is the n x (n + 1) transformation matrix (for n
dimensional data) and &,, is the extended mean vector

Em=[1 m pa 1"



In order to ensure robust estimation of the transformation pa-
rameters the transformation matrices are tied across a num-
ber of Gaussians according to a regression class tree [6]. This
tree contains all the Gaussians in the system and statistics
are gathered at the leaves (which may each contain a num-
ber of Gaussians). The most specific transform that can be
robustly estimated is then generated for all the Gaussians in
the system.

A particular transformation Wm is to be tied across R com-
ponents {m1,...,mg}. For the Gaussian output probability

density functions considered, W may be found by solving

T R T R
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where
L (1) = p(gm(7)|M, O7)

and ¢m(7) indicates Gaussian component m at time 7. For
the full covariance matrix case the solution is computation-
ally very expensive [3]. The solution for the diagonal covari-
ance case is computationally tractable and described in [5].
Each transformation can be a full matrix or constrained to
be block diagonal or diagonal.

4.2. MLLR Variance Adaptation

The Gaussian variance vectors, or in general covariance ma-
trices, are updated using the following transformation

3 =BT’H,.Bn

where I:Im is the linear transformation to be estimated and
B.. is the inverse of the Choleski factor of anl, o)

s '=c,Cct
and
B.. =C;}

In a similar fashion to the means the variances transformation
is shared over a number of components, {m1,...,mg}. It is
simple to show that the maximum likelihood estimate is

H, =

3 O, | 2 L (7)(0() = i, )o(7) = )7 | G,

M=

> L. (1)

r=1

where [i,, is the mean previously calculated. It can be seen
that the variance transformation matrix will be full, yield-
ing full covariance matrices for each component. A diagonal
transformation for the variances may be obtained by simply
zeroing the off-diagonal terms and this is still guaranteed to
increase the likelihood. A diagonal variance transformation
is used in all the experiments reported in this paper.

The mean transformation matrix is a function of the compo-
nent variance. Thus by altering the variance, the maximum
likelihood estimate of the mean transformation will also be
altered. While an iterative scheme could be used it has been
found that a single update of the means and variances is, in
practice, sufficient.

5. S5/S10 EXPERIMENTS

In this section the performance of the above techniques on the
1994 ARPA CSR Spoke 5 (S5) and Spoke 10 (S10) evaluation
data sets is explored. S5 and S10 are 5k word tasks and use
a standard 5k trigram language model. All results have been
generated using the official NIST scoring software. In all
cases, for ease of experimentation, the model sets used are
based on the HMM-1 set and the more sophisticated HMM-2
model sets were not used. All results quoted are the result of
full decoding passes and do not use word lattices generated
by different systems. Further details of these experiments
can be found in [12].

In all systems that use initial PMC compensation, the chan-
nel mismatch, H;, was estimated in the manner described in
[1] using a 30-component Gaussian mixture model and the
first sentence from each speaker.

5.1. S10 Experiments

S10 concerns additive noise: the test data comnsists of clean
data with car noise added at different overall SNRs. The
experiments here use the S10 level 3 evaluation data which
had an A-weighted SNR of 10dB, which was the lowest SNR
available. The data consists of 113 sentences from 10 speak-
ers. PMC used a noise model built using the background
noise sample provided with the dataset.

The performance using the uncompensated clean models on
this data is very poor giving a 54.3% word error rate, while
the the error rate on the corresponding clean data with the
standard MFCC parameterisation is 5.8% and 6.7% with that
used with PMC. The use of Log-Add PMC reduces the error
rate to 10.7%.

Updating | Updating | Word Error (%)
Means Variances
X X 10.7

Vv X 9.3
Vv V4 8.9

Table 1: Unsupervised incremental MLLR on PMC Log-Add
S10 system.

Table 1 shows that the use of MLLR further reduces the error
rate of the PMC-compensated system. Note that MLLR is
being applied in incremental adaptation mode and therefore
only the final sentence for each talker will gain full benefit.
The incremental unsupervised adaptation reduces the error
rate by about 17% with variance adaptation contributing 4%.

These systems would have been valid S10 evaluation systems.
The best result (8.9 %) represents a 27% lower error rate than
the best value reported in the 1994 evaluation for S10 level 3
(12.2% [9]).

5.2. S5 Experiments

The S5 data consisted of 200 sentences from 20 speakers.
For each speaker one of 10 alternate microphones was used.



The set included tie-clip microphones, stand-mounted micro-
phones and a hand-held microphone. The A-weighted SNR
was typically 20dB.

In this case, PMC-compensated models and models trained
on secondary channel data using SPR were compared as the
initial models for incremental MLLR. The secondary channel
data is from the SI-284 training set and it was recorded using
a selection of 13 different microphones and low noise condi-
tions. None of the microphones used for the SI-284 secondary
channel data are of the same type as used in the test data.
Preliminary investigations had shown that a perceptual lin-
ear prediction (PLP) [4] speech parameterisation was more
robust to mismatched environments than standard MFCCs,
so a PLP-based secondary channel version of the HMM-1 set
was trained by SPR.

For the S5 PMC-based experiments, both the channel distor-
tion and the background noise was estimated using the first
sentence from each speaker.

Model Baseline Incremental MLLR
Set Means | Means+Vars
Clean 17.4 12.1 —
PMC Log-Add 10.3 8.6 8.0
PLP 2nd channel 9.0 7.4 7.1

Table 2: % Word error rates for S5 data.

Table 2 shows that if clean models are used the channel dis-
tortion causes a large increase in error. It should be noted
that even though the standard system includes CMN;, in the
presence of background noise it is not particularly effective.
Both PMC and particularly the PLP 2nd channel system re-
duce the error rate significantly over the clean model result.
Incremental MLLR adaptation again provides improvements
with variance compensation further decreasing the error rate
by about 5%. The use of incremental adaptation means that
the results would have been valid as S5 evaluation systems.
The 7.1% word error rate for the secondary channel system
with mean and variance MLLR compares favourably to the
best 1994 S5 evaluation result (9.7% [9]).

6. NOV’95 H3 EVALUATION
SYSTEM

This section describes the H3 test and the HTK system used
for the 1995 H3 evaluation. The ideas developed in the previ-
ous sections were built upon and multiple iterations of adap-
tation performed in a number of separate passes through the
test data. The detailed results of each of these passes is given
as well as information on the language models used.

6.1. Test Data

The Nov’95 ARPA H3 task was to recognise speech data
read from US newspaper articles published in August 1995.
The data was not filtered (unlimited vocabulary test). The
speech was collected in a noisy environment with simulta-
neous recording from a number of far-field microphones as

well as a close-talking microphone. For each speaker one far-
field microphone was chosen as the test material for H3-PO,
and the same speech captured by the close-talking micro-
phone used for the H3-CO test. Each of 20 speakers read
15 sentences from one news article. The test was defined so
that data for each speaker (or session) could be processed
as a block (“transcription mode”). This permits multiple
unsupervised adaptation passes through the data. The A-
weighted SNR of the H3-P0 data from each speaker varied
from about 7dB to 23dB.

6.2. HTK H3 System

The HTK system developed for the tests had two paths: one
for high SNR signals typical of the H3-CO data and one for
low SNR data typical of the H3-PO data. First the data for
a session was classified as either high or low SNR and then
processed accordingly. Both paths included similar process-
ing: the main difference being that the HMMs used for high
SNR were trained using the Sennheiser SI-284 training data
and the low SNR data used models trained using the sec-
ondary channel data. Gender independent versions of both
HMM-1 and HMM-2 [11] systems were trained for both paths
using the PLP representation by SPR from the corresponding
clean MFCC based systems. Furthermore gender dependent
HMM-2 high SNR models were also trained.

The language models were trained on a total of 406 mil-
lion words of text from the 1995 reprocessed CSRNAB1 text
training corpus, the 1994 development text corpus, and the
H3 and H4 text data sets. All texts predated August 1 1995.
For the H3 and H4 texts 889 additional abbreviations were
expanded in the text training data. A word list with 65,478
entries was derived from the most frequent words used in
a subset of the data and back-off bigram, trigram and 4-
gram language models built [7]. The OOV rate of the test
data (accounting for the official mappings used in scoring)
was 0.56%. Pronunciation information came from the LIMSI
1993 WSJ Lexicon augmented with pronunciations generated
by a text-to-speech system, along with some hand-generated
corrections.

Decoding operated on a session by session basis in a num-
ber of stages. All stages used the dynamic network decoder
[8] which allows single-pass decoding, lattice generation and
lattice constrained decoding. All adaptation stages compen-
sated both means and variances by MLLR and used block
diagonal MLLR matrices for the means. This was found to
be more robust than the use of full matrices when multiple
unsupervised adaptation passes are used.

First, two preliminary passes were performed on the data us-
ing the HMM-1 models with tight pruning to give a rough
initial transcription. The first of these used the original mod-
els and the second uses global MLLR adaptation (i.e. a single
transformation for all Gaussians) and the trigram language
model. Using the transcriptions from the second preliminary
pass, global MLLR adaptation was again performed. These
models were used to generate word lattices using a bigram
language model. The use of these preliminary passes had
been found to be vital to generate high quality lattices suit-
able for subsequent recognition passes.



The bigram lattices were expanded to trigram and using the
HMM-1 models with more specific MLLR adaptation, the
final HMM-1 output was derived. This was then used to
adapt the HMM-2 models using 4-gram lattices.

For the high SNR path, the gender of HMM-2 models for
subsequent passes was found using the likelihoods from forced
alignments of the final HMM-1 output with the male and
female model sets—gender independent models were used if
there was inconsistency within a session.

Finally the 4-gram lattices were iteratively rescored using
the HMM-2 models. The final HMM-1 transcriptions and
global adaptation (with a separate transform for silence) were
initially used and then on each subsequent iteration a larger
number of regression classes were created. There were 5 such
HMM-2 passes for the low-SNR data and 3 passes for the
high SNR data. The final pass gave the system output.

6.3. Evaluation System Results

Table 3 shows the scored output of the system at various
stages of processing. It can be seen that there is a substantial
decrease in word error rate between the first two preliminary
passes (Prelim. 1 and Prelim. 2) which leads to a much im-
proved lattice word error rate in the lattice generation stage.
The final HMM-1 output uses a number of transformation
matrices (the previous stages use global adaptation). If this
stage had been the final output of the system both the H3-P0
and H3-CO systems would have given the lowest error rates
in the Nov’95 H3 evaluation. The use of the HMM-2 set of

Processing LM H3-PO | H3-CO
Stage Type Data Data
Prelim. 1 tg 33.27 12.59
Prelim. 2 tg 21.06 9.60
Lattice Gen. bg 22.12 10.88
Lattice Gen. tg 17.20 7.88
Final HMM-1 tg 16.17 7.61
Global HMM-2 fg 14.49 6.81
HMM-2 thresh. a fg 14.24 —
HMM-2 thresh. b fg 13.81 —
HMM-2 thresh. ¢ fg 13.71 6.68
Final HMM-2 fg 13.50t 6.631

Table 3: % Word error rates on Nov’95 H3 data at various
stages of processing. t denotes the systems actually used for
the Nov’95 H3 evaluation.

models along with the 4-gram language model decreases the
error rate by about a further 15%. The last line of Table 3
gives the actual HTK results in the Nov’95 H3 evaluation
which were the lowest error rates in both the H3-P0 and H3-
CO tests. All the results use the adjudicated transcriptions
and map files.

There are a number of stages of processing with the HMM-2
model sets and in each step the number of transformation
matrices is increased. The decrease in word error using mul-
tiple transformations with the HMM-2 models on the H3-P0
data is 7% —this becomes just a 3% reduction (to 14.11%) if

the intermediate stages of adaptation are not performed.

6.4. Effect of Adaptation Type

Table 3 shows the result of using the HMM-2 models with
the 4-gram evaluation lattices with either no adaptation or
mean-only MLLR. Although the lattices were derived using
mean and variance MLLR, we expect the figures to be an ac-
curate estimate of the error rate since the lattices are large.
Also it should be noted that the grammar scale and word-
insertion penalties were not tuned for these contrasts. The

| Adaptation | H3-P0 Data | H3-C0 Data |

None 22.12 8.54
Means 15.22 7.11
Means+ Vars 13.50 6.63

Table 4: % Word error rates on Nov’95 H3 data with different
types of adaptation.

use of mean and variance adaptation gives a large decrease
in error rate: 39% on H3-P0 and 22% on H3-C0 data, while
mean adaptation alone produces reductions of 31% and 17%
respectively. These percentage decreases in word error rates
due to MLLR for the H3-P0O data are nearly double those
given for the S5 data because of the increased mismatch be-
tween the secondary channel training data and the H3 test
data and also the use of multiple iterations of transcription
mode adaptation. Variance adaptation is particularly im-
portant for noisy data since noise reduces the speech vari-
ance. Mean and variance MLLR provided a fairly consistent
improvement (relative to mean MLLR) across speakers: for
both H3-P0 and H3-C0 only 2 speakers gave more errors with
the addition of variance adaptation.

6.5. PMC Initial Models

The actual evaluation system used initial models trained by
SPR on secondary channel data and a PLP data parame-
terisation. Although it wasn’t feasible to re-run the entire
evaluation system using PMC initial models the two prelimi-
nary passes were re-run using this data. The noise estimates
were obtained from the noise samples provided. The results
are given in Table 5. It can be seen that the PLP secondary

| Stage | PMC-based | 2nd channel |
Prelim. 1 37.54 33.27
Prelim. 2 22.98 21.06

Table 5: % Word error for the two H3-P0 preliminary passes
with either secondary channel or PMC initial models

channel system has about 11% fewer errors for the initial pass
and 8% fewer errors for the second preliminary pass. It would
be expected from these results that if the complete system
was run that the difference between the PLP based system
and a PMC-based one (which has the advantage of not need-
ing secondary channel data) would be rather less than 10%.



6.6. Effect of LM Training Data

After the evaluation a set of perplexity measurements were
made on the financial data from August 1995, a subset of
which was used as the evaluation data prompts. The per-
plexities of LMs trained using all the available training data
and various subsets of the data were compared. These mea-
surements are shown in Table 6. All these language models
used the same word list which had an OOV rate of 0.7%, and
used the same cut-off values. It can be seen that the addition

| LM Training Data

| bigram | trigram | 4-gram |

NAB1+dev94 222 141 129
NAB1+dev94+H4 221 136 122
NAB1+dev94+H3 203 121 107

NAB1+4dev94+H3+H4 206 120 105

Table 6: Test set perplexities for language models trained on
different data subsets.

of the H3 data to the older data (NAB1 and dev94) produces
worthwhile reductions in the perplexity but the addition of
the H4 data was much less useful. It should be noted that,
as expected, as more data is added the perplexity reduction
due to the 4-gram language model increases.

6.7. Cache Language Models

The final system lattices have been rescored using an adap-
tive language model. For each utterance, the previous best
hypothesis of each of the remaining fourteen sentences in that
session were used to construct rare-word unigram and bigram
caches of the type described by [10]. The set of words in the
unigram cache was supplemented by words sharing the same
stem. The recognition output was produced using an A*
search of the lattices from the final acoustic pass with LM
probabilities from the caches (updated with the sentence hy-
pothesis so far) dynamically interpolated with the standard
N-Gram LM scores. It can be seen from Table 7 that the use

| Cache | H3-P0 Data | H3-C0 Data |

No 13.50 6.63
Yes 13.27 6.42

Table 7: % Word error rates on Nov’95 H3 data with and
without using a final cache language model pass.

of a cache has improved the word error rates by about 0.2%
absolute (an average of 2% relative improvement). The im-
provement is limited by the quantity of LM adaptation data
and the fact that the final lattices are rather small. However
the results still represent the lowest error rates that we have
achieved on the H3 data.

7. CONCLUSION
The development of the HTK system for the 1995 ARPA H3

evaluation has been described. A combination of techniques
have been shown to be effective and the resulting system gives

state-of-the-art performance on data with both additive noise
and channel effects.
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