Token Passing: a Simple Conceptual Model for Connected
Speech Recognition Systems

S.J. Young
N.H.Russell
J.H.S Thornton

Cambridge University Engineering Department

July 31, 1989

Abstract

This paper describes a simple but powerful abstract model in which connected
word recognition is viewed as a process of passing tokens around a transition network.
The advantages of this unifying view are many. The various apparently different
connected word algorithms can be represented within the same conceptual framework
simply by changing the network topology, the application of grammatical constraints
is straightforward, and perhaps most importantly, the entire structure is independent
of the actual underlying pattern matching technology. To illustrate the power of this
conceptual model, the paper concludes by describing some work done under the UK
Alvey-sponsored VODIS Project in which the Token Passing paradigm enabled the
One Pass algorithm to be straightforwardly extended to include the generation of
multiple alternatives and context free syntactic constraints.

1 Introduction

In a recent paper, Godin and Lockwood [1989] investigated the One Pass (OP) [Vintsyuk 1971,
Bridle et al 1982] and Level Building (LB) [Myers & Rabiner 1981] connected word algo-
rithms in some depth and eventually showed that when syntax constraints were applied,
the two algorithms were essentially identical. Godin and Lockwood’s paper is based upon
the conventional formulation in which within-template matching is viewed as finding a
minimum cost path through a matrix of local distances whereas between-template match-
ing is viewed as extending a path from one template to the next. The problem with
this viewpoint is that it is rather specific to DTW technology and although the OP and
LB algorithms are fundamentally similar, the actual code used to implement them is
nevertheless different. Thus, for example, given a Level Building DTW-based connected
speech recogniser, it will not, in general, be entirely straightforward to convert it to a One
Pass Hidden Markov Model (HMM) recogniser. More crucially, since within-template and
between-template matching are treated differently, extending the higher level processing
to include, say, more complex grammatical constraints is not trivial.

This paper describes a simple conceptual model of connected word! recognition based

'the term word here denotes the basic recognition unit used which may be a word but could equally
well be a diphone, phoneme, etc.

on Token Passing within a transition network structure. With this model, which is equally
applicable to DTW and HMM recognition, it will be shown that the OP and LB algorithms
are just simple topological variants. Furthermore, because the model is so simple, it is
easy to extend to include the generation of alternative solutions and more complex high
level control mechanisms.

The paper is organised as follows. The general Token Passing model and its relationship
to the various existing algorithms is described in section 2. In section 3, some extensions of
the model to include context free grammar constraints and the generation of alternatives
are described. Finally, in section 4, the application of the model in a working laboratory
system is presented along with some experimental results on the use of multiple alternatives
and various modes of grammatical constraint.

2 The Token Passing Model

2.1 Isolated Word Recognition

Consider first isolated word recognition. In the Token Passing model, each vocabulary
word is represented by a word model which is a finite state network of the form shown
in Figure 1. Associated with each pair of connected states ¢ and j in a word model is
a lransition cost p;;, and associated with each state j is a local cost function d;(t). The
unknown speech signal is assumed to be in the usual form of a sequence of vectors x; ...x1
and occupation of state j at time ¢ implies that the cost of matching the associated speech
vector x; is d;(1).

Each possible sequence of states through the model i = g, ¢, ..., i, where g is the
initial state, represents one possible alignment of the model with the speech signal. The
total cost S(i) of this alignment is given by

T

S() =Y (pip_yir +di (7)) (1)

T=1

In speech recognition, the similarity between a model and the unknown speech is assumed
to be inversely proportional to the minimum cost alignment. Let s;(¢) be the minimum
cost alignment between the segment x; .. .x; of the unknown speech and the model starting
in state 79 and ending in state j. By the principle of optimality, this cost can be computed
by the recursion

sj(t) = min {s;(t — 1) + pij} +d;(1) (2)

thereby giving an efficient way of computing the required minimum value of S(i), that is
Sin(§) = min {5;(T)) 3)

where j is any allowable final state of the word model.

All of the above is entirely straightforward and well-known. Indeed, the similarity
between this model and a hidden Markov model is particularly self-evident. However,
the distinction is maintained here purposefully to emphasise that token passing is not
restricted to HMM’s. This is discussed further in section 2.2

o
Speech
Vectors

Figure 1: Structure of a Word Model

Equation 2 would normally be evaluated by representing s;(¢) as a matrix as shown in
Figure 2, and calculating the matrix elements column by column. This style of evaluation
is the basis of the Godin and Lockwood paper. The central point of this paper, however,
is that an alternative style of evaluation based on token passing leads to much simpler and
more powerful generalisation.

Let each state of a word model be capable of holding a moveable token where each
token, for the moment at least, holds a single alignment cost so that at time ¢, the token in
state j holds the value s;(t). In terms of these tokens, the algorithm implied by equation 2
can be reformulated (somewhat informally) as follows:

Initialisation:
FEach model initial state holds a token with value 0;
All other states hold a token with value oco

Algorithm:
for t:=1to T do
for each state ¢ do
Pass a copy of the token in state ¢ to all connecting
states j, incrementing its s value by p;; + d;(t);
end;
Discard the original tokens;
for each state 7 do
find the token in state ¢ with the smallest s
value and discard the rest

end;

end;

Termination:

Examine all final states, the token with the smallest s value
gives the required minimum matching score.

L, L.
+d. (t
(0) S ()
tT +p”
S'(_) Choose
Max
A
%wﬁm

\»_/ : »Time

Compute column at time t
from column at timet-1

Figure 2: Matrix of Partial Alignment Costs

This token passing algorithm is illustrated in Figure 3. It corresponds to a time syn-
chronous search strategy in which the alignments represented by the tokens are each
advanced by one frame of the input for every cycle of the main loop. Notice here that the
possibility of having multiple initial and final states has been allowed, this is not necessary
for isolated word recognition but will be needed later.

2.2 Relation to DTW and HMM-based Pattern Matching

As noted above, the correspondence between the token passing model and hidden Markov
models is obvious and direct. For a HMM with transition probabilities @;; and output
probabilities b;(x), if each transition cost p;; is set equal to —loga;; and each local cost
d;(t) is set equal to —logb;(x) then equation 2 becomes

55(1) = max {si(t — 1) + log ;) + log b (x) (4)

and s;(¢) now denotes the maximum log probability of the model being in state j after
generating the sequence x;...x7. Equation 4 is the standard Viterbi decoder equation
for a HMM [Levinson et al 1983].

For DTW, each state of the word model is associated with a frame of the reference
template and a topology similar to that shown in Figure 1 is assumed. In this case,the
transition costs p;; are set equal to fixed penalties of H for the case ¢« = j and V for
the case + = j — 2. As shown in Figure 4, H denotes an additive horizontal penalty and
V' denotes an additive vertical penalty designed to penalise paths through the distance

propagate and
update tokens at
each time frame

keep best token
arriving at each
state

Figure 3: Basic Token Passing Algorithm

matrix which stray too far away from the diagonal. Each local cost d;(t) is set equal to
d(j,t) the local distance between frame j of the reference template and frame ¢ of the
unknown. Equation 2 now becomes

.S]‘(t—l) +H
si)=mind sia(t—1) 0 ¢ +d(t,]) (5)
S st —1) 4V

and s;(t) now denotes the partial minimum accumulated distance between the first ¢
frames of the unknown and the first j frames of the reference. Equation 5 is the stan-
dard asymmetric Dynamic Programming decision rule used in one form or another by all
connected word algorithms.
The fact that both DTW and HMM-based recognition share similar formulae has been
noted by others [Bridle 1984, Juang 1984]. DTW is effectively a special case of HMM
recognition.

2.3 Connected Word Recognition

Given the token passing framework outlined in section 2.1, the extension to connected
word recognition is trivial. The individual word models are simply connected together
into a looped composite model as shown in Figure 5. The same token passing algorithm
still applies although it is now effectively implementing the One-Pass (OP) algorithm.
The transition costs associated with the external arcs of the looped model can be used
to reflect the relative frequencies of each word occurring if this is known, or made equal
otherwise.

Ref

Frame [oca Distance ~ Optimal
A d(t.j) Paih .
Asymmetric
3 Decision Rule
+H
j =
j-1 Y
j-2
t-1 t
P Test
1 2 3 e T Frame

Figure 4: DTW Recognition as a Path Search Problem

one

E‘@Q‘“%

two

QBpg]
_/

<

tokens

Figure 5: Connected Word Recognition by Token Passing

In practice, of course, for connected word recognition, we wish to know the identity
of the best matching word sequence not just the overall alignment cost. To cater for
this, the basic token passing algorithm is extended as follows. The tokens themselves are
now assumed to hold a path identifier as well as the partial alignment cost s. This path
identifier is simply a pointer to a record of word boundary information which will be called
a Word Link Record (WLR). At each time t, the following steps are taken in addition to
those listed in the basic algorithm above

for each token propagated via an external arc at time ¢ do
create a new WLR containing
<token contents, t, identity of emitting word model>;
change the path identifier of the propagating token to
point to this new record
end

This extension to the algorithm is illustrated in Figure 6. As can be seen, its effect is
that during token propagation, potential word boundaries are recorded in a linked list
structure such that on completion at time T, the path identifier held in the token with
the minimum alignment cost can be used to trace back through the linked list to find the
best matching word sequence and the corresponding word boundary locations.

one
000
//’ two_\'&) tokens
7 [oooa]l
\\ three \/
0000
S : z : — ES
- / ;
j‘ path id changed to
k y: point to new WLR
S before token is
1 f“/ propagated
P
. s :;i:' s s 2[5 | score
oy S S B o A= | pathid Word Link
-3 “‘}{}R t-2 7t f t | time Records
two !‘-, ’-‘___‘ thred ,/j one § Lone | mode id
W"‘ “‘-’-,_ PeT
Ny N N e AT

Figure 6: Recording Word Boundary Information

-~

2.4 Relation to Existing Connected Word Algorithms

As already noted, the basic looped composite model shown in Figure 5 and reproduced
again in Figure 7(a) corresponds directly to the One Pass (OP) algorithm. The Level
Building (LB) algorithm is implemented by connecting the models in a left to right se-
quence as shown in Figure 7(b). Comparing this with the equivalent OP algorithm it is
clear that the OP algorithm is much more efficient since both time and space complexity
are proportional to the number of word model instances. Also, it is interesting to note that
the LB algorithm as originally defined by Myers calculates all 1-length sequence matches,
then all 2-length sequence matches, and so on, whereas the token passing implementation
shown in Figure 7b calculates all levels in parallel. This implies that the nested loops in
Myers’ algorithm can be reordered; Godin and Lockwood [1989] show that this is indeed
possible.

(a) One Pass

(b) Level Building

Figure 7: The One Pass and Level Building Topologies

Figures 8(a) and 8(b) illustrate that the application of finite state (or regular grammar)
syntactic constraints in the token passing scheme is achieved trivially by connecting the
word models together in such a way that only the required word sequences are allowed.
Once syntax constraints are applied, the distinction between the OP and LB algorithms
disappears since the choice of topology now depends more on the requirements of syn-
tax than on preferences for one algorithm over another. Thus, although the syntax in
Figure 8(a) could be said to be OP-like whereas that in Figure 8(b) could be said to be
LB-like, the real distinction is whether the more precise constraint offered by (b) is worth
the extra computation and memory implied by the 4-fold increase in word model instances.
The OP and LB algorithms can therefore be viewed as different special cases of the Token
Passing algorithm with Finite State syntax constraints.

@

from Manchester

ll London
[from |

(b)

ll
[Manchester_]

Manchester

Figure 8: Styles of Syntax Control

2.5 Word Model Abstraction

In the preceding sections, it has been shown that the token passing approach allows both
the OP and LB connected word algorithms to be implemented using a single algorithm
simply by choosing an appropriate network topology. Furthermore, the individual word
models apply equally well to both Dynamic Time Warp and Hidden Markov Model tech-
nologies.

A crucial aspect of the token passing view is that the way the individual word models
contribute to the overall recognition process is determined entirely by the flow of tokens
into them and all the book-keeping necessary to record word boundary positions and word
identities depends only on the flow of tokens out of them. Thus, it is clear that any internal
processing carried out within a word model can be separated from the between-model
processing. Hence, it is possible to view word models as abstract units which take tokens as
input and produce tokens as output. In the following section, this abstraction will be used
to simplify the description of more complex connected word algorithms where the actual
operation of the word models is represented simply by a procedure step_word_models(t)
which means that one cycle of the main loop of the algorithm given in section 2.1 is
executed.

In the token passing scheme, each token effectively represents a minimum cost partial
alignment of a sequence of word models against that part of the unknown speech which
has currently been seen. The propagation of a token from one word model to another
corresponds to adding that further model to the sequence, and viewed like this it is clear
that controlling the flow of tokens between word models corresponds to the implementation
of grammatical constraints.

Thus, as shown in Figure 9, treating word models as abstract pattern matching units
enables a standard interface to be defined between the high level processing components

High
Level
Control

Standard
Interface etc

Figure 9: Separation of High Level Control from Low Level Pattern Matching

(syntax constraints, parsing, dialogue control, etc) of a system and the low level pattern
matching. The existence of this standard interface allows a speech recognition architecture
to be built which is essentially independent of the underlying pattern matching technology
used since it does not matter how the step_word_models procedure is actually implemented.
Externally, all that is required is that at time ¢ each word model consumes the token at its
input representing the best match between some sequence of models and the segment of
input speech from 1 to t—1, and then outputs a token representing the best match between
some sequence of models ending with that model and the segment of input speech from 1
to t. As an example, this approach was taken in the Alvey VODIS project [Young 1986,
Young et al 1988]. The initial VODIS architecture was built around word models based
on DTW matching and implemented in hardware but follow-on work has concentrated on
HMM-based word models with minimal change to the overall system.

3 Extensions to the Model

In any continuous speech recognition system, proper use of syntactic constraints is vital
to achieving acceptable recognition performance. These constraints are usually applied
a priori by limiting the connections between word models as described above. The net
result of applying syntactic knowledge in this way is that the system computes the best
matching sequence of word models that conform to the regular grammar implied by the
finite state network of word model connections. For certain types of application where the
input language is small and users can be trained to adhere to it, this basic scheme works
very well. However, where more ambitious grammars are needed or where users cannot
be trained to speak within the prescribed syntactic forms (such as in a database inquiry

10

system for use by the general public), there are problems.

A regular grammar covering a large input language may fail to provide sufficiently
tight constraints. This is particularly true when the input language is actually specified in
terms of context free rules (which are much more intuitive to the application designer) and
then compiled automatically into an approximately equivalent finite state network. Since
any finite state (i.e. regular) grammar whose language includes all the strings of some
desired context free language must in general also include many strings not in the context
free language, compilation will inevitably imply a weakening of constraints. Thus, there
may be some advantage in being able to apply context free constraints directly within
connected word algorithms.

However, systems which rely on strong a priori syntactic constraints are not robust
against speakers who stray outside of the prescribed grammar. An alternative approach
is therefore to extend the basic connected word algorithm to generate a lattice of word
alternatives rather than the single best matching sequence. Syntactic knowledge can then
be applied in an a posteriori parsing phase rather than by a priori constraints giving more
flexibility in the design of error recovery strategies.

In this section, the implementation of direct context free constraints and the generation
of alternatives will be described. Although these two mechanisms appear to be mutually
exclusive, this is not, in fact, the case. Generating multiple alternatives in combination
with strong a priori syntactic constraints simply means that all the alternatives will be
grammatically correct. Subsequent semantic/pragmatic processing may, however, still be
able to benefit from the availability of alternatives. Furthermore, with multiple alterna-
tives, it is important to be able to focus the generation process on those parts of the
utterance that are most likely to contain important information. This can be done easily
in conjunction with a direct context free constraint mechanism since each non-terminal
of the grammar dominates a definite substring of terminals. Hence, a specification of the
number of alternatives to allow can be associated with each non-terminal. There is no
corresponding entity in a finite state grammar making it much more difficult to control
the generation alternatives.

In fact, the optimal combination of the two mechanisms seems to be to use a weakened
set of context free rules for the a priori constraints, generate multiple alternatives and then
use the full set of rules for a posteriori parsing. This is discussed further in the Section 4.

3.1 Direct Context Free Grammar Constraints

For the direct context free grammar constraint mechanism described here, it is assumed
that the allowed input language is defined by a set of extended BNF production rules
[Wirth 1976]. In order to apply context free grammar constraints within the token passing
scheme, these grammar rules are compiled into a set of linked syntax networks of the form
illustrated by Figure 10.

The nodes of each syntax network are of three types: links, terminals, and non-
terminals. Link nodes are used to store tokens and are the points where recognition
decisions are recorded. Terminal nodes correspond to word models and non-terminal
nodes refer to separate sub-syniax networks representing the RHS of the corresponding
grammar rule. Neither word models nor subsyntax networks are shared and hence there is
a unique instance of a word model or sub-syntax network for every reference to a terminal

11

Fragment of Context Free Rules
journey #nb=2# = toplace [fromplace | when]
toplace =to place
place #nb=3# =London|Leeds|York]...

Compile

IR ,, Link Node Processing
to place _ Collect Propagate
/, ' "‘ . Exit Entry
L Tokens Tokens

Word Link Records

- b
7
+
.

i . R
1Y + -
(o) (Lo)] Word Models

Figure 10: Implementing Direct Context Free Constraints

12

or non-terminal in the rules. Notice that this implies that recursive rules, whose expansion
would require infinitely many instances, cannot be allowed. The extended BNF formalism
for the grammar rules, however, allows loops and branches to be included and these can
be handled within the constraint scheme without any difficulty so there is little real loss
of expressive power.

The three types of node are combined in such a way that every arc connects either
a terminal or a non-terminal to a link node, or wvice versa. Each syntax network has
exactly one entry, one exit and zero or more internal link nodes. Every terminal and
non-terminal node will have exactly one arc leading into it, whereas each link node may
have any number. Link nodes can thus be viewed as filters which remove all but the best
(ie lowest cost) tokens passing through them.

Given the above representation of the context free grammar constraints, implementa-
tion of connected word recognition using the token passing framework is relatively straight-
forward. The basic idea is that tokens propagate through the networks just as in the finite
state case, however, when a token enters a non-terminal node it is transferred down to the
entry node of the corresponding sub-syntax, and when a token enters a terminal node it
is transferred to the entry node of the corresponding word model. Similarly, when tokens
reach the exit of word models and sub-syntaxes, they are transferred back up to the node
which owns them. This flow of tokens is illustrated in Figure 10. The dotted line across
this figure corresponds to the Standard Interface shown earlier in Figure 9. The flow of
tokens across this interface will be such that the sequence of word models visited by any
token will conform to the context free grammar rules.

In more detail, the algorithm for connected word recognition with context free grammar
rule constraints is as follows:

Initialisation:
Store a token with cost s = 0 in the entry node of the top_level syntax;
Store a token with cost s = oo in all other link nodes

Algorithm:

for t:=1to T do
Propagate_entry_tokens(top_level);
Copy tokens from all terminal nodes into the entry nodes
of the corresponding word models;
Step_word_models(t);
Copy the tokens from exit nodes of all word models back to
the corresponding terminal nodes;
Propagate_exit_tokens(top_level)

end;

Termination:

The token stored in the exit node of the top_level syntax
gives the required best matching word model sequence.

The two procedures which handle token propagation Propagate_entry_tokens and Prop-
agale_exit_tokens are recursively defined as follows:

13

Propagate_entry_tokens(s: syntax):
for each link node [in syntax s do
for each node n following [do
Copy token in [into n;
if n is non-terminal then
Copy token in n to entry node of
corresponding sub-syntax;
Propagate_entry_tokens(n)
end
end;
Store a token with cost s = oo in [

end;

Propagate_exit_tokens(s: syntax):
for each link node [in syntax s do
for each node n preceding [do
if n is non-terminal then
Propagate_exit_tokens(n);
Copy token in exit node of sub-syntax n back to
corresponding non-terminal node
end;
Filter_tokens(n,)
end;
Record_decisions()
end;

If the context free grammar is stochastic then each arc of the syntax networks will
carry a transition cost exactly the same as within the word models. The token propagation
procedures must then be modified to add these costs to the tokens as they are propagated.

The procedure Filter_tokens is called once for each node n preceding a given link [. It
simply examines the token in [and if the cost of the token in [exceeds that of the token
in n then the token in [is replaced by the token in n. The procedure Record_decisions is
called once for each link [after all token filtering has been completed. It simply creates a
WLR for the token in [(see Section 2.3) and changes the path identifier of that token to
point to the new WLR.

On completion of the above algorithm, the exit node of the top level syntax will hold
a token whose path identifier points to a WLR corresponding to the last word in the
recognised sequence. Tracing back from this WLR to preceding WLR’s via their path
identifiers then yields the actual recognised word sequence.

3.2 Generating Multiple Alternatives

Obtaining multiple alternative word matches in the basic Token Passing scheme is achieved
by recording the N-best (i.e. lowest cost) tokens emitted at each syntactically distinct word
boundary instead of just the best. Note, however, that only the best token is actually
propagated as before. Since the total cost at each potential word boundary is recorded
in the Word Link Records, the cost for each individual word n can easily be determined

14

by subtracting the cost at word boundary n — 1 from the cost at word boundary n. On
completion of the recognition processing, the WLR’s can be converted to a lattice of
alternative word matches and then processed by a Chart parser [Winograd 1983]. This
process is illustrated in Figure 11.

Record N-best tokens emitted at each word boundary

Convert to a Chart l

/BN TN

Figure 11: Recording Multiple Word Matches

To generate multiple alternatives with the system of direct context free constraints
described above, it is only necessary to modify the Filler_tokens and Record_decisions
procedures. The Filter_tokens procedure now maintains a list of up to N tokens for each
link node [. For each terminal or non-terminal node n preceding [, the token in n is only
added to the list for [if there are not already N lower cost tokens stored in [. After
all processing by Filter_tokens for link node [has been completed, the Record_decisions
procedure creates a WLR for each token stored in [/ linking them together by an additional
alt field. It then discards all tokens except the best and changes the path identifier of that
best token to point to the corresponding WLR. The number of tokens saved at a link node
can be set individually for each corresponding rule enabling the generation of alternatives
to be focussed on the semantically rich regions of the input. Thus, for example, in Figure
10 the parameter nb attached to the non-terminals journey and place indicate that the
best two alternatives for a journey and the best three alternatives for a place should be
saved.

The Word Lattices generated by the above procedures do not necessarily include the N-
best matching sequences since the Token Passing system (in common with the conventional
One Pass algorithm) is such that a word match is available for every possible end-point

15

but not every possible start-point. This is an intrinsic feature of the algorithm which
is essential to its efficiency. When tokens enter the same node, they compete and only
the best is propagated. If the actual N-best matching sequences are required then word
matches must be computed for every possible start and end point. The N-best sequences
can then be found by dynamic programming [Young 1984]. Such a procedure is, however,
computationally expensive. Although sub-optimal, the procedure described here is very
cheap to compute and, in practice, does appear to generate useful alternatives.

4 An Example Application

The preceding sections have described the Token Passing approach to the design of con-
nected word recognition systems and have shown how it can be extended to generate
multiple alternatives. In this section, an application of Token Passing in the design of
a Voice Operated Database Inquiry System (VODIS) will be briefly described and some
experimental results presented to indicate the relative advantages of the various possible
combinations of a priori and a posteriori syntactic processing.

4.1 The VODIS Project

The UK Alvey-sponsored VODIS project was a three year collaborative venture between
British Telecom, Logica and Cambridge University Engineering Department. The project
was not concerned with recognition algorithm development per se, rather it was concerned
with those aspects of voice-based system design which arose from its intended use as
a telephone-based conversational question/answer system for the general public. The
example application area tackled was that of Train Timetable Inquiries.

Figure 12 shows a block diagram of the final VODIS architecture. The central control of
the VODIS system resides in a frame-based Dialogue Controller (DC) [Young & Proctor 1989].
The DC operates in cycles asking the user questions and processing the replies until his
or her query is fully understood.

The system’s knowledge of syntax and semantics is in the form of Context Free Gram-
mar rules stored in the Rule Database. At the start of each recognition cycle, the DC
activates two distinct contextually relevant rule subsets in the Rule Database. One of
these subsets is used to apply a priori syntactic constraints to the subsequent pattern
matching and the other is used for the a posteriori parsing.

The actual speech recognition takes place at two levels: word level and phrase level.
At the word level, the input speech is matched frame synchronously with the word models
using the DTW variant of the basic Token Passing scheme described in section 2. To
handle interword pauses, each word model has been augmented to include an optional
preceding looped silence state. Also, each word model has a fixed cost per frame Wildcard
connected in parallel with it to place an upper limit on the cost of a match. At the phrase
level, the flow of tokens between word models is controlled by transition networks built
automatically from the grammar and multiple alternatives are recorded as described in
section 3.

Once the input speech has been consumed, the recorded word boundary informa-
tion in the WLR lists is converted to a Chart of word alternatives and processed by a
Chart Parser. This Chart Parser is a modified form of the standard Bottom-Up algorithm

16

Database

Dialogue
Controller

Input m

Rules

Speech
Output
Subsystem

Context Free
Grammar
Rule

Database

Chart
> Parser
Activated
Parser
Rules
Word
T Lattice
Phrase-Level
—> Matching
Activated
Recognition
Constraint
Rules Path
Scores
Word-Level
Matching

Figure 12: VODIS II System Architecture

Speech
Input

17

[Winograd 1983] in which the concept of an active edge and an agenda has been dispensed
with. Instead, inactive edges are built and vertices are processed in a fixed right to left
order. When a complete parse is required (i.e. all syntactically valid interpretations are
wanted), this modified algorithm is functionally identical to the standard algorithm but
executes an order of magnitude faster and uses less memory.

When the full chart has been built, it will consist of a large number of arcs (or edges in
Chart Parsing terminology) spanning segments of the input. The Parser initially assigns
a cost to each terminal edge equal to the matching cost computed by the corresponding
word model. Each higher level spanning edge is then assigned a score equal to the sum
of the edges that it subsumes. That is, for an edge labelled with non-terminal X which
subsumes a sequence of edges Y1 Y5 ...Y,, corresponding to the syntax rule X = Y¥1Y;...Y,
[see Figure 13(a)] the cost Sx assigned to edge X is given by

N
Sx = Sy, (6)
=1

In practice, the situation shown in Figure 13(b) is the more usual case where matches for
only a subset of the constituents of X have been found. For cases such as this, a constant
cost per input frame p is added for all frames for which there are no spanning arcs, that
is, if only the edges Y; to Yj have a cost below the Wildcard threshold then

=7 =7

k k
Sx =3 Sy +p (T(X) - ZT(S@-)) (7)

where T'(A) denotes the length of the edge labelled with A.

The value of p is chosen such that it is greater than the average cost per input frame
for a correct word match and less than that for an incorrect one. This method of dealing
with unexplained segments of the input is one of many that have been investigated and,
as well as being the simplest, it is also the most effective.

Once costs have been assigned to all edges in the chart, the lowest cost phrase structures
built in the parsing process are extracted. In doing this, the parser does not insist that an
edge spans the entire input. For example, in Figure 13(c) both W and X are possible syn-
tactic interpretations of the input. The cost for X is computed using equation (6), that is
Sx = S2°_, Sy,, whereas the cost for W is computed using equation 7 with T'(X) set equal
to the total number of frames in the input M, thatis Sy = S 7, Sy, +p (M -y, T(YZ))
This procedure ensures that syntactically valid segments of the input which match well but
which cannot be made part of a fully spanning syntactic interpretation are not ignored.

Finally, semantic interpretation is performed by stripping the final parse tree of seman-
tically irrelevant branches and then matching it against slots in the frame-based Dialogue
Controller.

4.2 Effects on Performance of Syntactic Constraints

The separation of the rules in the VODIS system has allowed the effects on recognition
performance of the balance between a priori and a posteriori processing to be investigated.
The first version of VODIS and the one used for full-scale user trials [Cookson 1988]

18

(b)

(©

W=Y,Y;Y,

X =Y, Y,Y5Y, Y

Figure 13: Example Edge Configurations in Chart

19

employed conventional finite state syntax constraints. This system worked very well with
users who knew the preprogrammed syntax rules but performance dropped rapidly with
naive untrained users and the system was forced to adapt rapidly to an isolated word
style of interaction. The later version described above allows the rules used for a priori
constraints to be weakened whilst still retaining a full set of grammar rules for the a
posteriori parsing and semantic interpretation.

To investigate the effects of syntactic constraints, the performance of the system was
measured with the following different constraint mechanisms

FState Finite State a priori constraints derived from the context free task grammar as
used in the original VODIS system.

CF Context Free a priori constraints derived directly from the task grammar.

WeakCF Context free constraints derived from a set of weak rules, consistent with the
task grammar, which enforce function word-content word ordering but no higher
level structure. A Wildcard is placed between phrasal rules to account for unknown
words.

Null No a priori constraints.

In all cases, the parsing and semantic interpretation were identical. In the FState case, no
alternatives were generated and only fully spanning syntactic interpretations of the input
were allowed. In all other cases, 3 alternatives were recorded at all semantically important
nodes and 2 alternatives were recorded otherwise.

The test material consisted of 20 syntactic sentences (the S set) which conformed to
the task grammar and 20 non-syntactic sentences (the NS set) which did not conform but
were semantically similar. The latter NS set were extracted from transcripts of real British
Rail enquiries, hence although they were grammatically unusual, they were nevertheless
realistic. Note also that as well as being ungrammatical, 40% of the vocabulary used was
unknown to the system.

The results are presented in Tables 1 and 2 for two speakers IC and ST who read each
of the sentences as realistically as possible. The DTW recogniser was trained individually
for each speaker. The performance is given in terms of slot recognition rate rather than
word recognition rate since this is the only meaningful quantity which can be measured for
this type of system. A full definition of a slot lies beyond the scope of this paper since it is
intrinsically recursive and closely tied to our method of Dialogue Control implementation.
However, a slot corresponds roughly to a single item of information in the utterance,
hence, by way of example, the sentence ”I want to leave from Peterborough at about nine
to travel to York” has 5 slots:

1. leave (— as opposed to arrive

2. about (— as opposed to before or after
3. time(digit(nine)))) - the time

4. fromplace(Peterborough) — departure place

5. toplace(York) — destination place

20

Spkr | Test | FState | CF | WeakCF | Null
IC S 82 85 82 72
ST S 93 92 92 90
IC NS 10 34 45 41
ST | NS 18 31 54 51

Table 1: Percentage Slot Recognition Rate (Best alternative only)

Spkr | Test | CF | WeakCF | Null
IC S 92 89 82
ST S 94 97 97
IC NS | 38 49 48
ST | NS | 33 57 54

Table 2: Percentage Slot Recognition Rate (Best 2 alternatives)

In all cases, recognition rate is calculated as N./(N;+ N;).100 where N, is the number of
slots correctly recognised, N; is the total number of slots and N; is the number of insertion
errors.

From Table 1 it can be seen that for the syntactic S set of sentences, there is little
difference between conventional finite state (FState) constraints and direct context free
(CF) constraints. For the non-syntactic NS set, however, there is a dramatic drop in
performance for both, with the FState case being the worst. In this case, the better
performance of the CF case is mainly due to the more sophisticated parsing made possible
by the availability of alternatives. When the a priori constraints are weakened as in
the WeakCF case, there is little change in performance on the S set but a considerable
improvement in the NS case. For no constraints at all as in the Null case, performance
is less sensitive to ungrammaticality but it always falls below that of the WeakCF case.
Hence, the strategy of using weak @ priori syntactic constraints in conjunction with full a
posteriori parsing on a lattice of alternative word matches appears to offer the most robust
strategy for this type of conversational speech system.

Table 2 shows the effects of including the second best global interpretation of the input
in the slot matching algorithm. In this case, the same overall pattern of results emerges
but there is a small but significant improvement in every case. Thus, depending on the
design of the Dialogue Controller, the generation of semantic alternatives may also be
useful.

5 Conclusions

This paper has described a simple conceptual model of connected speech recognition based
on Token Passing. The advantages of this approach are firstly that it allows low level pat-
tern matching to be abstracted in such a way that there is a clean interface between word
level and phrase level processing. This has the great practical benefit of enabling the higher
levels of a speech recognition system to be independent of the actual pattern matching
technology used. The second main advantage of the Token Passing view is that it is very
straightforward. In our view, most of the characteristics of connected word algorithms

21

discussed by Godin and Lockwood [1989] are largely self-evident from the Token Passing
viewpoint. Furthermore, reasoning about complex extensions is considerably simplified
and as examples of these at the phrasal level, the incorporation of direct context free
grammar constraints and semantically focussed multiple alternative generation have been
described.

Finally, some performance issues with regard to the use of syntactic constraints have
been presented. Using the VODIS system as a model, the relative effects of tight and weak
a priori syntax constraints have been investigated. Where users are likely to use input
forms whose syntax lies outside of the preprogrammed task grammar, performance drops
dramatically with conventional tight a prior: constraints. However, a combination of weak
a priori syntactic constraints and full a posteriori parsing on a lattice of alternative word
matches appears to be much more robust. The availability of semantic alternatives gives a
smaller performance improvement but may still be worthwhile if the Dialogue Controller
can be designed to exploit it.

Acknowledgement

The VODIS Project was funded by the UK Alvey Directorate and was a collaborative
venture between British Telecom Research Laboratories, Logica UK and Cambridge Uni-
versity Engineering Department. The assistance and support of the cooperating partners
is gratefully acknowledged.

References

[Bridle 1984] Bridle JS. Stochastic Models and Template Matching: some important rela-
tionships between 2 apparently different techniques for ASR. Proc IOA Autumn
Conf, Vol 6, Pt 4.

[Bridle et al 1982] Bridle JS, Brown MD, Chamberlain RM. An Algorithm for Connected
Word Recognition. Proc ICASSP, pp899-902, Paris, France.

[Cookson 1988] Cookson S. Final Fvaluation of VODIS. Proc 7th FASE Symposium
(Speech 88), pp1311-1320.

[Godin & Lockwood 1989] Godin C, Lockwood P. DTW Schemes for Continuous Speech
Recognition: a Unified View. Computer Speech and Language, Vol 3, No2,
pp169-198.

[Juang 1984] Juang B-H. On the Hidden Markov Model and Dynamic Time Warping for
Speech Recognition - A Unified View. AT and T Technical Journal, Vol 63, No
7, ppl213-1243.

[Levinson et al 1983] Levinson SE, Rabiner LR, Sondhi MM. An Introduction to the Appli-
cation of the Theory of Probabilistic Functions of a Markov Process to Automatic
Speech Recognition. BSTJ, Vol 62, No 4, pp1035-1074.

22

[Myers & Rabiner 1981] Myers CS, Rabiner LR. A Level Building Dynamic Time Warp-
ing Algorithm for Connected Word Recognition. IEEE Trans ASSP, Vol 29, No
2, pp284-296.

[Vintsyuk 1971] Vintsyuk TK. Element- Wise Recognition of Continuous Speech Composed
of Words from a Specified Dictionary. Kibernetica, Vol 7, No 2, pp133-143.

[Winograd 1983] Winograd T. Language as a Cognilive Process: Volume 1. Addison-
Wesley, pp116-127.

[Wirth 1976] Wirth N. Algorithms+ Data Structures = Programs. Prentice-Hall, Series in
Automatic Computation, Englewood Cliffs, New Jersey.

[Young 1984] Young SJ. Generating Multiple Solutions from Connected Word DP Recog-
nition Algorithms. Proc IOA Autumn Conf, Vol 6, Pt 4, pp 351-354.

[Young 1986] Young SJ. Designing a Conversational Speech Interface. Proc IEE, Vol 133,
Pt E, No 6.

[Young & Proctor 1989] Young SJ, Proctor CE. The Design and Implementation of Di-
alogue Control in Voice Operated Database Inquiry Systems. Computer Speech
and Language, in press.

[Young et al 1988] Young SJ, Russell NH, Thornton JHS. Speech Recognition in VODIS
II. Proc ICASSP, Vol 1, S10.9, pp441-445, New York.

23

