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Abstract

This paper describes a method to find initial estimates
of face location in an image where the orientation and
viewpoint of the faces are not known. Features such
as eyes, nose and mouth are detected from the image
using quadrature phase filters and grouped into po-
tential face candidates. Affine invariants are used in
grouping to overcome the problem of variation in view-
point. An efficient searching algorithm is proposed to
group these features based on the constraints in the
geometry. Each face candidate is then evaluated us-
ing a belief network which assigns probabilities to each
face candidate and rejects improbable ones. A result
of 93% accuracy in detecting viewpoint variations is
obtained.

1. Background and Motivation

Human face recognition has been an interesting prob-
lem attempted by numerous researchers over the years.
There are many important applications such as crimi-
nal identification, visual surveillance and human com-
puter interfacing which continuously provide the drive
and motivation for research in this area.

Most human face recognition algorithms have as-
sumed that the location of human face in the image is
known, or that the face can be easily extracted from
the background. However, this is not true of most ap-
plications. Hence, face detection and localization still
remains as an important problem to be solved.

Recent work on face detection are attempted using
various techniques: neural networks (Rowley et al. [9]),
shape statistics (Leung et al. [5]), bandpass filtering
(Graf et al. [3]), ellipse fitting (Jacquin and Elefthe-
riadis [4]), and colour (Wu et al. [11]). The neural
networks and shape statistics approach works only for
fronto-parallel faces with little variation in viewpoint.
The methods based on bandpass filtering and ellipse
fitting works only for head and shoulder images with
very little background clutter. Wu et al. ’s method
of using colour and fuzzy logic works for more general

scenes but it cannot cope with different hair colour, or
when the skin coloured regions in the image doesn’t
form an elliptical shape of a face.

Yow and Cipolla [12]’s work on face detection un-
der different viewpoints makes use of Gaussian deriva-
tive filters to detect features. This technique has been
shown to work well but it has the problem of having
too many false candidates and being unable to reject
false candidates. In this paper, we describe the use
of quadrature phase filters in feature detection which
can significantly improve the robustness of the system
and reduce the number of false detection. A new and
more efficient method of grouping feature points is also
proposed by a new vector representation of the partial
face groups.

2. Feature Detection

In Yow and Cipolla [12], the usefulness of Gaussian
derivative filters in detecting facial features under dif-
ferent viewpoints was shown. These Gaussian deriva-
tive filters, corresponding to low-intensity bar detec-
tors, are able to detect the facial features even though
the subject is being viewed from a very large angle
from the front. Features from a profile view can be
detected too.

However, these filters are not too robust as the facial
features often produce a weaker response to these de-
tectors in comparison with some features in the back-
ground. A high threshold applied to the filter response
to eliminate background features might cause us to lose
the facial features as well. A low threshold will let too
many background points pass through to the grouping
stage, increasing the computational load of the system
and the false alarm rate.

To improve robustness, we use a pair of filters in
quadrature phase instead of just a single filter for fea-
ture detection. The Gaussian derivative filter and its
Hilbert transform is used (see figure 1). The quadra-
ture phase filter extracts additional phase information
about the features in the image and this additional in-
formation can be used to give a stronger response at



the desired features.
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Figure 1. The Gaussian derivative filter and its
Hilbert transform, shown at different orientations.

We use the Gaussian derivative filter and its Hilbert
transform to produce an oriented energy output Ey =
G?% + H} where 0 is the orientation of the filter. The
convolution output of the filter at orientation 8 is Gy,
and the convolution output of the Hilbert transform
is Hy. Freeman and Adelson [2] have made use of this
oriented energy approach in conjunction with steerable
filters to detect fine edges in an image.

However, the peaks in the energy response Ejy corre-
sponds to the edges in the image instead of the center
of the facial features. Hence, we cannot seek for the
maximum response using Ey alone. We observe that
the Gaussian filter gives us a peak in the center of the
features, and at those locations the energy response is
sufficiently high too. Hence, we perform non-maximal
suppression in the response Gy, and at the same time
we ensure that the feature points exceeds a certain
threshold in the energy response as well.

Faces of different scale and orientation are detected
using a family of Gaussian derivative filters and their
Hilbert transforms at different scales and orientations.
Since the facial features all lie in the same orientation
and have approximately the same size, the filter of the
right scale and orientation will generate many strong
responses in (Gy and thus Ejy.

Figure 2. The image, filter output Gy, energy out-
put Fy, filters used, features detected using GGy only,
and features detected using Gy and Fjy.

Figure 3. The output as in figure 2 for a different
viewpoint. We can see a significant reduction in
the number of features to be processed by the next
stage of the algorithm.

Figure 2 shows the image, filter output Gy, Ey, filter
used, extracted features using Gy only, and extracted
features using both Gy and Fy. Figure 3 shows the
output of the same operations but of a face at a dif-
ferent viewpoint. A very low threshold is used in the
non-maximal suppression stage to allow weak features
to be retained. We can see from the figures how much
background points can be eliminated by introducing
the quadrature phase filter.

The advantage of using Gaussian derivative filters
is that it can be decomposed into a set of steerable-
scalable basis (Freeman and Adelson [2], Perona [7]),
thus it can be efficiently implemented to search the
image at various scale and orientation.

3. Affine Invariant Grouping

After the feature points are detected, it is necessary to
group them into potential face candidates. Under the
weak perspective assumption (Roberts [8]), the face
can be considered as a plane with the features lying
on the plane. The geometric distances between the
features will also vary affinely under different scales,
orientations and viewpoints.

Under different viewpoints, some of the facial fea-
tures will be occluded (e.g. an eyebrow and an eye
will be occluded when in profile view). Hence, in
order to cope with different viewpoints, features are
grouped into partial face groups (PFGs) which con-
sists of groups of four features shown in the top of
figure 4. Under different viewpoints, at least one of
these partial face groups will be seen in the image.

To do an exhaustive combinatorial search of all
groups of four points would be computationally expen-
sive, if not impossible. Hence we exploit the knowledge
of the geometry of the facial features (the mouth is be-
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Figure 4. (Top) The different partial face groups
(PFGs) used to group the features. (Bottom) The
vectors associated with each partial face group.

low the nose, the nose is below the eyes, etc.) and the
scale and orientation information (from the quadrature
phase filters) to reduce the search space.

The basic idea is that the features should be ordered
in the direction perpendicular to the longitudinal di-
rection of the features. In this way, the ordering of the
features will indicate the distance from the top of the
head. Hence, there is no need to examine groups that
have their feature positions in the reverse order.

We define two unit vectors, longitudinal vector 1 and
the normal vector n which are respectively parallel and
perpendicular to the longitudinal axis of the Gaussian
derivative filter that was used to produce the convo-
lution output. These define the coordinate vectors for
the image. For every group of four feature points, we
derive three vectors, vy, vo and v3 as shown at the
bottom of figure 4.

The feature points which are detected from the pre-
vious section are sorted in order of increasing values
of the coordinate in the normal n direction. If we
define the vectors vy, vo and vz such that they will al-
ways point from the lower n coordinate to the higher
n coordinate, the possible combinations of four points
are greatly reduced. Moreover, by examining the total
length along the n direction of a group of four points,
we can immediately discard the group of points if the
total length of the group exceeds the length of a hu-
man face at the appropriate scale. In this way, the
combinatorial search is further reduced.

The affine invariants under the weak-perspective
assumption determine certain geometric relationships
between the vectors vi, vy and vz for the different
partial face groups. The contraints used to group the
features are shown in table 1.

In table 1, s is a scale factor determined by the scale
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Table 1. The geometric constraints used for group-
ing features.

of the Gaussian derivative filter used in the convolu-
tion. ki, ks, k3, k4, ks, ke and k7 are constants which
are obtained from averaging measurements in a prior
set of face images.

If any of the constraints are violated, the PFG is
discarded immediately. If two or more valid PFGs
overlap, they are combined to form a face candidate
consisting of six points if the feature positions are co-
herent.

4. Belief Network Reasoning

Due to the fact that many false features may be de-
tected, many of the face candidates that is obtained
may be false. Therefore, it is necessary to perform
some reasoning process to reject the false face candi-
dates.

A belief network (Russell and Norvig [10]) is utilized
to propagate evidence and evaluate belief in the face
candidates. The human face is modelled as a direct,
acyclic graph (DAG) consisting of one parent node (the
face candidate) and four child nodes (each of the four
partial face groups). As partial face groups are de-
tected from the image, the total belief in the presence
of a face is updated. A diagrammatic representation
is shown in figure 5.

An elegant evidence propagation algorithm is given
by Pearl [6] in which no ad hoc adjustments or un-
founded assumptions of conditional independence is
made about the system. This method is superior to
simply adding up the initial probabilities of the par-
tial face groups.

The likelihood that a partial face group obtained
from the previous section is part of an actual human
face, can be measured from the strength of the filter
response of each feature and the geometric errors in
the grouping. The initial probabilities of each partial
face group are thus obtained by summing the normal-
ized filter response and the inverse of the normalized
geometric errors in each PFG in the grouping stage:
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Figure 5. The face modelled as a belief network.
Each of the child node will propagate evidence to the
parent node depending on whether the associated
partial face group (PFG) is present.

R; is the filter response of the ith feature.
€j is the jth geometric error in the PFG, and
k1 and ko are normalizing constants.

Letting a; be the possible values that a node A can
take, A be the message passing from a child node to its
parent, and m be the message passing from a parent
node to all its children, The new belief at a node B
with parent A and child C is given by:

P'(b;) = aA(b)w(b;)

where

A(b;) = [T Acp(b;) (Product of all the A messages

from B’s children)
m(bi) = >_ P(bilaj)map(a;) (Sum of the all the 7

J
messages from B’s parent x its conditional probabil-
ity)

« is a normalizing variable so that all the P’(b;)
at node B sum to 1.

The advantage of using a belief network is that high-
level knowledge is built into the system through the
conditional independence relationship. The evidence
in each variable can be evaluated independently (and
in parallel) and combined in a non ad-hoc manner us-
ing Pearl’s algorithm.

5. Results

The algorithm is tested on a subject against a sim-
ple background at different viewpoints. The up-and-
down ‘nodding’ viewpoints are tested at —45°, 0° and
+45° vertically. The left-to-right "turning’ viewpoints
ranges between £90° at 45° interval. Three different

scales and three different orientations are also used.
Of the 135 test images, 9 failed completely, giving a
success rate of 93%. Some of the results are shown in

figure 6.

Figure 6. Results of algorithm on a single subject
against a simple background. Different scale and
orientation are also used. A detection rate of 93%
is achieved for the 135 images at different scale,
orientation and viewpoints.

The algorithm is further tested on different subjects
against complex background. The size of the faces are
kept more or less constant but the viewpoint of the
subject is allowed to vary. 2 images of 10 different
subjects were used of which 3 failed. Some of the re-
sults are shown in (figure 7). The results show that
the algorithm is able to detect faces at large angles
of viewpoint against a cluttered background. The al-
gorithm is also not affected by partial occlusions such
as the subject wearing spectacles. However, as the al-
gorithm groups features purely due to geometric con-
straints, features detected from the background clutter
may turn out to be in the geometrically correct posi-
tion. This will cause false faces to be detected.

The failed cases are shown in figure 8. The main
reason that cause the algorithm to fail is when features
detected in the background falls into geometrically cor-
rect position, and that these features have stronger re-
sponses compared to the actual features. The use of
quadrature phase filters have significantly reduced the
number of falsely detected features but when the size
of the face is small compared to the image, the num-
ber of background features detected will still be large
compared to the facial features.

6. Discussion and Future Work

The main advantage of this algorithm is that it is ca-
pable of detecting face locations within a large range of
viewpoints, especially when all six facial features can
be seen. For larger angles, some partial face groups
can still be detected but it will be harder to eliminate
false partial faces from actual ones.



Figure 7. Results of algorithm on various subjects
against complex background. Faces with large angle
of viewpoint are also detected (bottom left).

Figure 8. Some failed cases. Features are falsely
detected due to background clutter or failed to be
picked up by the feature detector. Other types of
constraints (such as motion) will be needed to reject
false faces.

Although the Gaussian derivative filter provides
some invariance to illumination, the algorithm will in
general fail for extreme illumination conditions. Also,
occlusions and different facial expression are not ad-
dressed in this paper.

To eliminate false faces, other types of contraints
(such as motion) will be needed. We will study the
use of deformable templates (Yuille et al. [13]) and
active shape models (Cootes and Taylor [1]) to verify
each feature detected. We will also make use of higher
level features will be used to improve the perceptual
grouping stage.
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