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Abstract

This paper describes a method to detect and locate human faces in an
image given no prior information about the size, orientation, and view-
point of the faces in the image. This method uses a family of Gaussian
derivative filters to search and extract human facial features from the
image and then group them together into a set of partial faces using
their geometric relationship. A belief network is then constructed for
each possible face candidate and the belief values updated by evidences
propagating through the network. Different instances of detected faces
are then compared using their belief values and improbable face candi-
dates discarded. The algorithm is tested on different instances of faces
with varying sizes, orientation and viewpoint and the results indicate
a 91% success rate in detection under viewpoint variation.

1 Introduction

Recognizing a human face in a scene is becoming an area of immense interest in
the computer vision community. Clinical evidence suggests that the human brain
has specific neural hardware to perform face recognition (Tranel et.al. [11]), indi-
cating that face recognition is an important task for humans. Moreover, the fact
that human can robustly recognize faces in a large variety of conditions (different
illumination, viewpoint, expression, etc.) poses an interesting and challenging task
for us to build an efficient model for computational face recognition.

The possible applications of automatic face-recognition systems are in criminal
identification, security monitoring and man-machine interfacing. In all of these
applications, face detection and localization is the first step of a solution. One
major difficulty of a face detection algorithm is the lack of a priori information
about the scale, orientation, viewpoint, etc. of the face in the image. A small
difference in, say, the viewpoint of the subject leads to a great difference in the
image structure and thus makes the problem extremely hard. Previous work on
face detection (Govindaraju [4], Yang and Huang [12], Leung et.al. [6]) have been
unable to cope with significant changes in viewpoint. In this paper, we will at-
tempt to address the issue of detecting a human face in an image given no prior
information about the size, orientation and viewpoint of the face.



2 Feature Detection

A natural first step in detecting a human face in an image is to detect features
that are unique to the structure of the human face. Methods have been proposed
to detect features such as the eyes and mouth (e.g. Yuille et.al. [13]) as they have
a very rich and unique image structure. However, the image structure of these
features changes very rapidly even with a small change in viewpoint. Hence, we
must seek to look for coarser features that will remain invariant under different
viewpoints and orientations.

2.1 Gaussian Derivative Filters

Filters built from Gaussian and derivatives of Gaussian have been a popular choice
in many applications (Canny [2], Leung et.al. [6]). This family of filters have high
signal-to-noise response and good localization capabilities.

We observe that one of the Gaussian derivative filters used in Leung et.al. [6]
performs remarkably well as a low-intensity bar detector (also called ridge detectors
or line detectors). This filter and its surface plot are shown in figure 1. This
filter is a second derivative of Gaussian in one direction, and is a Gaussian in the
orthogonal direction. The length of the filter is also elongated at three times the
width, giving it better orientation selectivity.
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Figure 1: (a) Gaussian derivative filter. (b) Surface plot.

The second derivative of Gaussian detects bars of low intensity, and the Gaus-
sian smoothes out any intensity variations in the orthogonal direction. This makes
it an excellent detector for the brows, eyes and the nose. Also, the 3:1 elongation
of the filter corresponds approximately to the length-width ratio of the eyes and
nose, thus obtaining maximal response when the scale and orientation of the filter
matches that of the features.

A simple thresholding and non-maximal suppression operation on the convolu-
tion output will then enable us to extract the position of features. The convolution
output of the filter (of a matching scale and orientation) with two face images and
the detected features are shown in figure 2.



Figure 2: Original image, convolution output and detected features of two face
images. We observe that the facial features are detected even for a profile view.

2.2 Steerable-Scalable Decomposition

An efficient way of searching for the features under different scale and orientation
is to decompose the filter into a set of ”steerable-scalable” basis filters (Perona
[8]) and then interpolate the results to obtain the filter response at any scale and
orientation. Although this decomposition is not exact, a larger number of basis
filters can be used to improve the accuracy of the interpolated response. Perona
had shown that for a 3-octave 1% approximation error (1% is the specified tolerable
error, actual error measured is 2.5%), the number of filters required is 16 (rotation)
x 8 (scale) = 128 filters. If a 10% approximation is allowed, the number of filters
decreases approximately by a factor of 4 to 32.

Using the steerable-scalable decomposition technique, we can convolve the in-
put image with a fixed set of basis filters and then interpolate the output to obtain
the response at different scales and orientation. Since all the features that we want
to detect have roughly the same size and orientation in a single image, we would
obtain many high responses when the correct size and orientation is found.

Depending on the application, some prior information is usually known about
the scale or orientation of the faces in the image (e.g. the face is always upright
in ID type photographs). Hence, in such cases, it may be more efficient or more
accurate to perform an exhaustive search using a set of Gaussian derivative filters
at the expected scale and orientation. To improve the efficiency of search, we
should fix the scale of the filter to the smallest allowable by the sampling theorem
and instead vary the scale of the image by sub-sampling the image at the coarsest
scale. Subsequently, the scale is refined until we have covered the range of scales
desired.



3 Geometric Grouping of Features

The feature detection process results only in a set of points that could be the actual
features. We cannot use a full graph matching technique as in Leung et.al. [6]
because it would be difficult or impossible with the number of features that we
have detected. Moreover, it 1s usual for some of the facial features to be occluded
when looking at the subject from a different viewpoint. We thus propose a way of
grouping the feature points into partial face groups using affine invariants.

3.1 Affine Invariance

For most applications including ours, the subject is sufficiently far away from the
viewer such that the depth variation in the face is small compared to the distance
between the face and the camera. Under this condition the weak-perspective
approximation [9] holds and we will have three affine invariants.

If we represent the human face as a plane and its six features (eyebrows, eyes,
nose and mouth) by line segments (figure 3(a)), we can verify that the affine
invariants exist for different viewpoints of the face. Figure 3(b) shows the views
of our face plane under different affine transformation :
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Figure 3: (a) The face plane. (b) Different affine transformations of the face.

3.2 Grouping Features into Partial Face Groups

Under large changes in viewpoint, some of the features will be occluded (e.g. the
left brow and left eye are occluded in a right profile view). In such circumstances,
we may only see four of the six features in a face. Therefore, we represent the face
as a set of partial face groups (or PFGs) shown in figure 4. At large changes in
viewpoint, some of these PFGs will still be detected depending on which viewpoint
is being taken.

We replace each detected feature with a line that corresponds to the longitudi-
nal axis of the feature, based on a region-connectivity analysis of the thresholded
convolution output (Ballard and Brown [1]). For every group of four line segments
in the image, we can derive length vectors 11, 15, 13, 14, separation vectors di, da,
and cross vectors ci2, €21 to be used in our grouping. The geometric relationship
between these vectors in a PFG are shown in figure 5.

From the affine invariants, we obtain the following constraints to group a PFG:
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Figure 4: (a) Top partial face group (PFQG). (b) Left PFG. (¢) Right PFG.

(a) Top PFG (b) Left and Right PFGs

Figure 5: Geometry of partial face groups (PFGs).

1. The length vectors 1; should be parallel to 15, 13 parallel to 1.

2. The magnitude of the separation vectors |d; | and |dz| should be proportional
to the scale of the filter used.

3. The ratio of magnitude |d;| to magnitude |dz| should be constant.

4. The component of the cross vectors 12, ¢21 in the direction of the separation
vectors di, dg should be a constant multiple of |d;|, |ds| respectively.
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The component of the cross vectors cis2, ¢21 in the direction of the length
vectors 1y, 15 should be a constant multiple of |1;|, |12| respectively.

Each pair of line segments is examined to see if the first three constraints are
valid. If they are, then this pair is labelled and stored as a valid pair. Each valid
pair is then compared with other valid pairs to see if the last two constraints are
violated. If they are not violated then these four line segments are grouped into a
PFG. The constants used in the last three constraints are different for each PFG
and are obtained from averaging measurements in a prior set of face images.

After we formed a PFG, we assign a certainty value to it based on the filter
response of each feature and the errors in the geometric constraints. This certainty
value is normalized to a value between 0 to 1 and is assigned as follows:

certainty = (Normalized sum of filter response of each feature in the PFG)
x (1 - Normalized sum of error in the geometric constraints)



4 Probabilistic Reasoning

We will now use the PFGs we obtained as evidences to determine the probability
of the presence of a face. Rather than just summing up the evidences in an ad-
hoc fashion, we propose to model the face as a belief network (also called causal
networks or influence diagrams) and propagate the evidences through the network
to obtain the belief of the presence of a face.

4.1 Modelling the Face as a Belief Network

A belief network is a way of representing the conditional independence relationship
between a set of variables and gives a concise specification of the joint probability
distribution. A belief network is a directed, acyclic graph, or DAG, where the
nodes represent a set of random variables and the links represent the influence of
a parent node over a child node (Russell and Norvig [10]).

The belief network formalization also includes an inference mechanism that
allows us to recompute the “beliefs” in the nodes based on the combination of evi-
dences propagating through the network. An elegant propagation solution for trees
is discussed in Pearl [7] and a solution for general networks is given in Lauritzen
and Spiegelhalter [5].

We model the human face as a DAG consisting of one parent node and three
child nodes (figure 6). The conditional probability table for each node is shown
beside the node. There are only two possible values at each node, i.e. Present or
NotPresent. Hence the columns in the conditional probability table must sum to
one. The uncertainty in the presence of the node is modelled by a virtual child
node at the node. We specify the values in the conditional probability table based
on our knowledge about the relationships in the system.

B P(R)[P('R)

T 0.85| 0.15

F 0.20| 0.80 virtual
node

R \%
,,,,,, certainty
value

Figure 6: The face modelled as a belief network.

The advantage of using a belief network is that each piece of evidence can be
computed independently (and thus in parallel) and the evidences are combined in
a non-ad hoc manner. It is easy to expand the network to include other nodes
without having to re-specify the conditional probabilities of the existing links.

4.2 Propagating Evidence in the Belief Network

We will now describe and apply Pearl’s [7] method for propagating probabilities
in trees to compute the belief of the presence of a face in out belief network. For



the DAG shown in figure 6, let A be the variable at a particular node, and A can
have values a; where j = 1, 2, ..., m for all m possible values of the variable A.
In our case A can have only two values, hence a; = 1 and as = 0. Let each node
also contains the belief P(a;) for each possible value a;.

Evidence is propagated by means of passing a numerical value from a node to
its adjacent parent node or child node. The value passing from a child node to
a parent node is always called a A message, and the value from a parent node to
a child node is always called a 7 message. We define Aga(a;) as the A message
propagating from the child B to parent A for the value a; and map(a;) the =
message propagating from the parent A to child B for the value a;.

When a node is instantiated, its belief P(a;) for value a; is set to 1. It will
then send A messages to all its parents and = messages to all its children. However,
if a node is not instantiated but receives a A message, it would update its belief
P(a;) and sends new A messages to its parents and m messages to its children. If
however a m message is received, it would update its belief P(a;) and sends only
new 7 messages to its children.

The new belief at a node B with parent A and child C is given by P’(b;) =
aX(b;)w(b;) where

A(bi) = [TAcs(bi) (Product of all the A messages from B’s children)

m(h;) = E P(bilaj)map(a;) (Sum of the all the 7 messages from B’s parent

j
x its conditional probability)

« is a normalizing variable so that all the P/(b;) at node B sum to 1.

The uncertainty in the evidence of a node B can be modelled as a virtual node
which is attached as a child to node B. When evidence is found from the image
but with uncertainty, the virtual node is instantiated instead of node B itself. This
causes the virtual node to send A messages containing the certainty value to node
B, causing a propagation of values through the network.

5 Results

A face candidate is formed from the combination of all the PFGs supporting it. A
face in the fronto-parallel view will have up to three PFGs supporting it, and thus
will be represented by six feature points. A profile view has only one supporting
PFG and thus only four feature points. If two face candidates formed in this
way share a common feature location, the candidate with the lower probability is
discarded immediately.

Figure 7 shows all the possible faces detected for a particular case where the
viewing angle is large. The candidates are ranked in decreasing order from left
to right, with associated probability values of 0.7245, 0.5526, 0.2386, and 0.2060
respectively. The results indicate a good discriminating margin between the correct
and incorrect faces. The discriminating margin becomes very high for fronto-
parallel views, but gets quite weak in the presence of cluttered background.

We test the algorithm using images of a face at different scale, orientation and



Figure 7: Possible candidates of faces detected, ranked from left to right.

viewpoints on a simple background. A total of 33 images of different orientations
and viewpoints were used, covering an azimuthal angle of +90°, vertical tilt of
+45°, and angular rotation of £45°. Of the 33 images, 3 failed completely, giving
a 91% success rate in detection for different viewpoints. In 5 of the remaining test
images, two or more faces are detected. We consider these as successful detection
because we want to be more conservative in detecting faces. Extra candidates can
be eliminated by means of other types of constraints (such as motion). Figure 8
shows some of the results of the test.

Figure 8: Different viewpoints of a subject against a simple background.

We test the algorithm further on different subjects against complex back-
ground. Figure 9 shows the results. The algorithm works very well when all
the six facial features can be seen and there is relatively little background clutter.
For a smiling face (top row, middle image), the corner of the mouth is detected
instead, though the face as a whole is still detected. Other facial expressions may
cause the feature detector to miss a feature and the algorithm to fail.

Figure 10 shows some failed cases. The algorithm fails when the contrast in
the image has gone too low due to shadows (left image) or when there is too much
background clutter (right image). Also, the algorithm will fail when only three out



Figure 9: Different subjects against a complex background.

of four features needed to group a PFG are present (e.g. very thin or no eyebrows).

Figure 10: Some failed cases.

6 Conclusion

In this paper, we presented an algorithm which is capable of detecting and localiz-
ing human faces in an image given no prior information about the scale, orientation
and viewpoint of the faces. The proposed algorithm detects features from the im-
age, groups them using affine invariance, propagates them as evidences in a belief
network, and compute the probability of each candidate being a face. The al-
gorithm is shown to work well for fronto-parallel view of faces and is also able
to cope with large viewpoint changes. The problems of occlusion, variations in
illumination and facial expression were not dealt with in this paper.

7 Future Work

The algorithm that we have proposed is only able to give a rough indication of the
presence of a face. It is unable to reject incorrect faces or localize features well.



Therefore, our main future direction of work will be to apply motion constraints
to evaluate if a face deforms affinely over time.

We will also apply deformable template matching techniques (e.g. Yuille

et.al. [13], Cootes and Taylor [3]) to accurately localize the features after our
initial estimate is known, identifying and verifying each feature accurately.
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