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Abstract

Whena sceneis viewed from two differentviewpointsthereare often re-
gionswhichareonly visiblein oneof thetwo views. Theseoccludedegions
giveimportantinformationaboutdepthdiscontinuitiesn theimage.Whena
backgroundine is obscuredy a foregroundobject,it formsa T-junctionin
theimage,andthesgunctionpointscanbe usedto detectocclusion.

Two algorithmsare presentedn this paper The first algorithm uses
thetrifocal tensorto automaticallyiocateT-junctionsvisible in threeviews,
whilst the secondapplicationusesjunction pointsto obtaina constraintfor
thedetectionof planarsurfaces.

1 Introduction

The stereacorrespondengeroblemis oneof the oldestproblemsin computewision, yet
a generalandrobust solutionremainselusive. One of the major difficulties for stereo
matchingis the presencef occlusion althoughsignificantadvanceshave beenmadeby
computingan occlusionmapwhilst computingthe correspondenci, 10, 5, 9]. These
algorithmsallow thesmoothingconstrainto besuspendedearocclusionshowever, they
only determineocclusiorby finding regionswherematchingunderthecontinuityassump-
tion fails. This oftenleadsto boundariesvhich are eitherinaccurateor very dependent
on algorithmparametersAnotherrecentdevelopmenthasbeenthe useof model-based
stered13], which emplgys a usersuppliedmodelto constrainthe matchingprocess By
specifyinga model,the useridentifieswherethe occlusions creasesanddiscontinuities
will occur Thematchingalgorithmcanthenreliably extractthebas-reliefstructureof the
model.

The major cueto occlusionis the analysisof binocular junction points which were
introducedo thevisioncommunityby Malik [11]. Thiswork is extendedsothatjunction
pointscanberepresentefbr arbitraryprojective camerasandusingthis representation,
anew constraintthetrifocal junction point constraint will be presentedThis constraint
is usedin analgorithmto automaticallydetectingjunction pointsin images.Finally the
conceptof anocclusionpseudo-junctiomwill beintroduced.Thesejunctionsareformed
by theintersectiorof ary two linesin theimage,andthis will leadto a pseudo-junction
planarity constraint wherebyplanarsurfacesn animagecanbe detectedusingonly two
matchedines.
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2 Review

Occlusiomccursvhenanobjectcloserto theviewerobscuresibackgrounabject. Since
thereis adifferencan depthbetweerthetwo objects the positionof the occludedregion
will be dependenbn the cameraposition. In figure 1 the regionsoccludedby the fore-
groundobjectare shadedwith two patternsto shav in which view they are occluded.

Background object

Left Camera Right Camera

Figurel: A foregroundobjectobscuringa backgroundcause®cclusion.

It will not be possibleto matcha point on the backgroundobjectif it is occluded
in eitherof the views. A point which is occludedin only oneview is saidto castan
occlusion shadow into the otherview[15]. This corresponddo the diagonallyshaded
regionsin Figurel, which arealsocalleda half-occludedegions[2].

It hasbeenshownn that,in humanstereopsispcclusionplaysanimportantrole in the
perceptionof depthdiscontinuities. Thesecanbe seenin the knife edge discontinuities
of NakayamandShimojo[12]. In particular binocularlyviewed T-junctionpointshave
beenshavn by AndersonandJulesz[1] to give importantcluesto determiningwhether
edgedelongto theforegroundor backgroundbjects.

3 Describing Occlusion Junctions
It wasshowvn by Malik [11] thatthe angleof thelinesforming anocclusionjunctionare

relatedto the horizontalandvertical disparity This definition assumeshatthe images
underconsideratiorarerectified,andthatthe epipolarlinesareparallel.
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Figure2: An occlusionjunction(asdefinedby Malik)
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In this paperthe effectsof occlusionjunctionsin uncalibratedmageswill beinvesti-
gated.Sincethe epipolarlinesarenot alwaysparallel,expressinghe occlusionjunction
asahorizontal(alonganepipolarine) andaverticaldisparity(perpendiculato theepipo-
lar line) is not always meaningful. The occlusionjunctionwill be consideredsimply as
theintersectiorof theoccludingandoccludededgeswhich areexpressedistwo straight
lines(seeFigure?).

P =1 AL (1)
B =1E AL (2)

This definitionmakesno assumptioraboutthe natureof theepipolarlines. In the special
caseof rectifiedimageswith two lineslying on fronto-parallelplanesjt canbeshavnto
be equialentto thatusedby Malik [11] (SeeAppendixA).

Sincethe occlusionjunctionhasnow bedefinedindependentlypf the epipolargeom-
etry, we canuseary two cameraselatedby a fundamentamatrix. Theonly difficulty is
thatthereareno constrainton the motion of aline in two views. Hencebothlinesthat
form the junctioncouldmove in ary direction,sothereis no constrainton the occlusion
junctionin two views. Hencej’ andj® canbeary two pointsin thetwo images.

4 Detecting occlusion junctionsusing three views

It wasshown in the previous sectionthat thereare no constraintson the motion of the
occlusionjunctionin two views. For this reasorit is necessaryo considera third view.
Thetrifocal tensor[8] canbe usedto projecta line from two views into a third view. In
particular thetwo linesforming thejunctioncanbetransferedo thethird view :

L= lgjlnggk 3)
13 = 15,15, T} (4)

The occlusionjunction will now be given by the intersectionj®> = 13 A 13. This can
be usedby an automaticalgorithmto detectjunction pointsin the first two images,by
hypothesisinga match,andprojectingit into thethird view. The hypothesisanthenbe
verifiedby checkingto seeif ajunctionactuallyexistsatj®.

4.1 Algorithm

Junctionpoints are detectedby segmentingeachof the sourceimages,andidentifying
pointswherethreesegmentsmeet. This hasproved morereliablethanusing Canry [4]
edges,as the non-maximalsuppressiorbreaksjunctions. Straightlines were fitted to
eachof the junction pointsandall combinationsof the junctionsin the first andsecond
imageswereprojectednto thethird view. A junctionpointwasacceptedf the pointwas
predictedo within 3.0 pixels,andthe anglesof the predictedanddetectedinesagreedo
within 10 degrees.Any junction point which couldnot sustaina straightline for 5 pixels
wasrejected.
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Figure3: Thetrifocal junction point constraint. Figures(a) and (b) shav straightlines
fittedto ajunctionpoint. Figure(c) shavs thelinesprojectednto thethird view.

Figure4: Automaticallymatchedunctionpoints.

4.2 Results

The junction points which were detectedby the algorithmare shavn in figure 4. Six
pointswere detectedfive of which obey the trifocal junction constraintandonewhich
is anoutlier (CPU case). Of the five correctlymatchedpointsonly threerepresentrue
junction points, asthe remainingtwo representigid pointsin space. Theseare easily
rejectedasthey obey theepipolarconstraintwhile the occludingjunctionsdo not.

In a secondmagesequencef Neville’s Court, Trinity College, occludingjunctions
weredetectedn the pillars of the archway, andon the rooftop, wherethe roof occludes
thechimneys. Theseresultsareshowvn in figure5.

Figure5: Junctionpointsdetectedusingthe trifocal junction point constraint, from im-
agesof Trinity College,Cambridge.
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4.3 Discussion

The small numberof junctionsmay appear at first, to be surprising,howvever thereare
two factorswhich contributeto thisresult. Therequirementhatajunctionpointis visible
in all threeviews, andthatit lies on the sameedgesn all threeviews, meanghat most
junctionsarenot matchableln clutteredareasof theimagebothedgebasedcandsegmen-
tation basedalgorithmsfail to produceedgesof sufiicient lengthto fit accuratestraight
lines.

Thenext sectionof this papefintroducegheconcepbf apseudo-junctioasbeingthe
intersectiorof two matchedines. This enableghejunctionpointconstrainto beapplied
whereno explicit junctionis visiblein all threeimages.

5 Planarity constraint of two lines

5.1 Theocclusion pseudo-junction

In the previous section,it wasfoundthatit is difficult to matchjunction pointsin three
images,as the junction point movesa large distancein the image,for a small change
in cameraviewpoint. It wasalsoobsened, thatthe linesforming the junction could be
matchedindependently Henceevenif a junction point ceasedo be visible in all three
views, the locationof the junction canstill be locatedby extrapolatingthe two matched
lineswhichwerecomputediusingequations3 and4.

5.2 Theplanarity constraint

Considettwo linesin two viewsthatbelongto two differentsurfacespneforegroundand
onebackground.The intersectionof theselines will form a occlusionpseudo-junction,
andthis intersectiompointwill notobey the epipolarconstraint.If, however, theintersec-
tion doesobey theepipolarconstraintthenwe know thattheintersectiorrepresentareal
pointin spaceFromthis we canconcludethatthetwo linesarecoplanar

GMTFt =0 ()
(15 ATTFIZ ALR) =0 (6)

Equation5 will only be satisfiedif the pseudo-junctiopoint (j%,5) is the intersection
of two coplanariines (1%, 1} andi%,1%). This canbe representedsthe junction point
planarity constraint (equationg).

Thisconstrainwill only bereliableif thematchedinesarenotparallelto theepipolar
lines,andthattheir intersectiories within theimage.An alternateproofwhich doesnot
rely ontheuseof occlusionjunctionsis presentedn AppendixB.

Thecornventionalway of finding planarsurfaceds to usefour points,or lines,to com-
putea homography This, however, doesnot guaranteall pointswill obey the epipolar
constraintA homography(8 degreesof freedom)doesnot necessarilyepresena planar
surface(3 degreesof freedom).A furtheradvantageof usingtwo linesis thatthenumber
of iterations,requiredfor a RANSAC [7] solution,aresignificantlyreducedasonly two
linesO(n?) arerequiredasopposedo four pointsO(n*).
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5.3 Method

The algorithmconsidersall pairwisecombinationf matchedines. If the intersection
of thematchedineslies insidetheimage,thentheintersectiorpointis testedto seeif it
obeys the epipolarconstraint.If so,thenthesetwo lines areusedto computethe plane
normal(3 DOF) for thesurface.

Algorithm 1 Algorithm for finding coplanamgroupsof edges
for eachpairof edgedlo
if theedgesntersectwithin theimagethen
if theintersectiorobeysthe epipolarconstrainthen
Find all lineswhich agreewith theinitial pair of lines
Computethe planeequation(4-vector)for thetwo edges
Computethe homographyor this plane
Find all theedgeswhich agreewith this homography
end if
end if
end for

Eachsurfacenormalis computedlinearly from the endpointsof the two matched
lines, in two views. Thetwo projectve cameramatricesare P = [I |0] andP’ = [A|e€].
Therows of matrix A arelabelleda; ™, a7 andag”. The planeis representethy IT =
[d1 d2 d3 1], andtheimagepointsaregivenby p = [z y 1]T andp’ = [z’ ¥’ 1]T. The
linearsolutionto the planeequatiorwill now bederived:

Theplanetransferequation[6] : Ap'=(4—edD)p (7)
usingthethird row to solve for \ : A= (ag? —e3dT)p (8)
substitute :  p’(ag? — e3dT)p = (A — edT)p (9)

rearranging  (p'ag’ — A)p = (e3p’ — e)d”p (10)

selectingthefirst row : (”'22,%*‘;% =pTd (11)

Equation11 givesone constrainton the planevectord. With threeor more point
matchesaleastsquaresolutioncanbe obtainedfor the planevectord.

5.4 Reaults

The first experiment,to testthe algorithm, usestwo imagesof a calibrationgrid. Two
planesveredetectedseefigure6), andtheanglebetweerthetwo planeswvasfoundto be
89.91dgyreeswhichis arelative errorof 0.1%.

A secondsequencef uncalibrated?AL imageswascapturedusinga PULNIX cam-
era.Theimageswereprojectively calibratedusinga setof manualpoint matcheg3], and
matchededgeswereobtainedusingthe automaticedgematchingsoftwareby Pollardet
al. [14]. Theresultsof thealgorithmdescribedn Section5.3areshavn in Figures7 and
8. Figure7 shavs groupsof blacklineswhich agreewith planesn theworld, andFigure
8 shaws thetwo incorrectplanesfoundby thealgorithm.

A secondsequencef threeimagesof Fitzwilliam Museumwere capturedusinga
digital cameraandtheresultsareshavnin figure9.
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Figure8: Thisfigureshavstwo groupsof blacklineswhichwerefoundby thealgorithm
to becoplanarbut donotrepresentealplanesn thescene.

Figure9: Thefollowing surfacesof the Fitzwilliam Museum,Cambridgewerefoundto
be coplanarandaredisplayedusingblacklines.
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5.5 Discussion

To illustratetheimportanceof this algorithm,the numberof planecomputationsill be

considered.In a typical sequencevith 400 straightedges thereare 80,000unordered
pairs. After the planarity constrainthasbeenapplied,only about2,000possibilitiesre-

main. It is possibleto testeachof thesepossibilitieswithout having to resortto random
sampling.In comparisonto performan exhaustie searchof point matchesto compute
ahomographywould require400* = 2.56 x 10'° computations.

6 Conclusion

In this papertwo applicationf junction pointshave beeninvestigatedBy usinga sim-
ple representationf a junction pointastwo linesa trifocal junction point constraintwas
presentedThis wasusedto developanalgorithmfor the automaticdetectionof junction
pointsin threeimages. Trackingjunction pointsover mary views is not often possible,
but it wasobsenedthatin mary caseseventhoughthejunctionpointmaynotbevisible,
the lines associatedvith the junctionare visible. This leadto the conceptof an occlu-
sion pseudo-junctionwhich wasthe intersectiorof any two linesin animage. Pseudo-
junctionswereusedto definea planarity constraintfor two lines, andan algorithmwas
demonstratedhich usedthis resultto detectplanarsurfacesn realimages.
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A Derivation of the junction point motion of two lines

In this appendixthe expressiorfor the motionof a junction point from the anglesof two
lineswill be derivedusingthe projective line representatiofiseefigure 10). A junction
pointis representeadsthe intersectionof two straightlines. This is a moregeneralrep-
resentatiorthanwas usedby Malik [11], asit doesnot rely on rectifiedcameras.The
following proof shaws that this new representatiorcan be usedto derive Malik’s two
componendisparity(hg, vo)-

L R
I B yL | IL'_X | a
B
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/ () /N
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Figure10: Occlusionjunction (asdefinedby Malik)

1L = [sina —cosa O] (12)
15 =[sin8 —cosB 0] (13)
18 = [siha —cosa 0] (14)
1§ = [sin —cosB osinf] (15)

Thesewo linesin theleft andrightimagesntersectt (0; 0) and(hg, vo) (seefigure10).

—ocosasin %ﬁs&?ﬁ h
=181 = —osinasin 8 o %a_sﬁu)lﬁ I an
cosasin 3 — sina cos 3 1 1

This equationhasrelatedthe angle of the lines forming the occlusionjunction to the
horizontaldisparity andis the sameresultasobtainedoy Malik [11].
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B Alternate proof of planarity constraint.

ThematchegointsABCD areobtainedy intersectingwo imagelineswith two epipolar

lines. Thesefour pointsdefinea homographyH. In additionthe point E lying on the

intersectionof the two lines mustalso obey the homographyH. E will not necessarily
obey theepipolarconstrainseefigure11).

Epipolar Lines E Image 1 Epipolar Lines

\ line 1 line 2 \ line 1 line 2

Figure11: ThepointsABCD definehomographyH. PointE will only obey the epipolar
constrainif bothlinesarecoplanar

If thetwo lines are coplanarthey will definea planell = [m;..m4]. This planewill
inducea homographyr = Hpxyr ontheimagegivenin termsof the cameramatrices
PL =[I|0] andP® = [A]a4] (Wherea; denoteghei-th columnof P’'). A derivationof
this equationcanbefoundin Faugerag6].

Hn=7r4A—a4 [‘71'1 VP 71'3] (18)

Theepipolargeometryof thetwo viewsis describedy 2% Fz;, = 0, andthefunda-
mentalmatrix F' canbe expressedn termsof the projectionmatrix P® = [A | a4] by the
equationF’ = [a4]x A. It will now be shavn that homographiesf the form (18) must
satisfythe equationx? HI Fx;, = 0, which is the epipolarconstraintfor homography
Hy.

HiF = (mA—aq[m m 73])"([ad]xA)

ar] [ ] | | ™ | | |

ag agNa; agNas agNag| — |m2 af agNa; agNas ag/ag

T

a | | | m3 | | |
0 a; (agNaz) aj (agAajz)

ag(a4/\a1) 0 ag(a4/\a3) -0

al'(azAa;) al(agAay) 0

= T4

(19)

HIF is anantisymmetrignatrix (equationl9),sozZ HX Fzy, = 0 for all z, orin other
words, the epipolarconstraintis satisfiedfor all pointstransferedoy homographyHi,
whereHr is definedin termsof II.

Thisagumenthasshavn thatin generatheintersectiorof thetwo lineswill notobey
the epipolarconstraint.In the specialcasewherethe lines are coplanar all pointsobey
the epipolarconstraintandin particularso mustpoint E which is the intersectiorof the
two lines.



