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Abstract
This paper presents a novel approach for model-based real-
time tracking of highly articulated structures such as hu-
mans. This approach is based on an algorithm which ef-
ficiently propagates statistics of probability distributions
through a kinematic chain to obtain maximum a posteriori
estimates of the motion of the entire structure. This algo-
rithm yields the least squares solution in linear time (in the
number of components of the model) and can also be ap-
plied to non-Gaussian statistics using a simple but power-
ful trick. The resulting implementation runs in real-time on
standard hardware without any pre-processing of the video
data and can thus operate on live video. Results from ex-
periments performed using this system are presented and
discussed.

1. Introduction
Visual tracking of complex, highly articulated structures is
an important technology for several domains. In particu-
lar there has been much interest in tracking human motion
[9]. There are many applications including tasks such as
surveillance, motion capture and human-computer interac-
tion. The problem addressed by this paper is that of real-
time tracking an articulated structure in the view of one or
more cameras. The system is model-based [16, 12, 7, 4]
and uses a CAD model that comprises piecewise rigid com-
ponents with curved surfaces and known kinematic con-
straints.

Several tasks such as human-computer interaction re-
quire real-time performance. Attaining this is difficult and
there are relatively few examples of such systems. An ex-
ception is Pfinder [17] which does so by limiting its pro-
cessing to tracking coloured blobs in the image plane. Black
and Jepson [1] also use an image-based approach with mul-
tiple eigenspaces to recognise hand gestures. Cham and
Rehg [3] suggest that real-time performance is not possible
in three dimensions and use a two-dimensional scaled pris-
matic model. Hel-Or and Werman [8] use a fully articulated

three-dimensional model but use an O(N 3) algorithm to ob-
tain a least squares solution for the pose. Here we present an
O(N) algorithm which propagates statistics of probability
distributions along the kinematic chain to obtain the maxi-
mum a posteriori solution for the pose in real-time. Where
these statistics are Gaussian, the same least squares solution
is obtained. Further the algorithm can be adapted to oper-
ate iteratively with robust (non-Gaussian) statistics. Dela-
marre and Faugeras [4] also use an O(N) algorithm and
give timings which are essentially real-time, but make use
of a powerful (but comparatively expensive) pre-processing
technique (Geodesic active contours) which yields impres-
sive results.

In this work, we represent the pose of each component
of the model separately as an element of the group of rigid
body motions in three dimensions, SE(3). This is a redun-
dant representation and requires that the articulation con-
straints be explicitly represented, however it has the advan-
tages that it provides a symmetric representation and is not
reliant upon accurate localisation of some key component
to identify the pose of the remainder of the model. This is
by contrast to [13, 2] which use a minimal parameterisation
based on a tree structure. We make use of the exponen-
tial map [2, 15] connecting the Lie algebra of SE(3) with
the group to represent motions, and use the adjoint repre-
sentation of the group to transform quantities in the algebra
between different coordinate frames.

To obtain robust real-time performance in the presence
of noisy measurements, it is important to use a strong statis-
tical framework. MacCormick and Blake [14] use a refine-
ment of the Condensation algorithm [11] which partitions
the search space in order to reduce computational complex-
ity. This was extended by Deutscher et. al. [5] who used
coupled monte-carlo techniques to track highly articulated
human motion although the computational cost was pro-
hibitive for real-time application. Cham and Rehg [3] also
use a particle based method, but capture the structure of lo-
cal modes of the posterior distribution in each particle and
thus need fewer particles. The approach employed here is to
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use an iterative re-weighted least-squares technique which
allows the use of the fast O(N) algorithm with non-Gaussian
statistics.

For applications that deal with existing imagery, typi-
cally only a single view is available and several systems
have been developed which can handle this [3, 2, 13, 1].
The system described here can also operate using a single
view, although the performance is greatly improved when
more views are available. We use an edge-based approach
(as [7]). In our case the model is rendered first and match-
ing edges are then sought in the image rather than process-
ing the image to detect edges first and then matching those
to the model.

Currently, we only attempt to solve the motion problem
(where is each component at each time step) by contrast to
[12] who use data to refine the model in addition to comput-
ing pose.

2. Geometric representation
2.1. Pose
The system presented here represents the pose of an artic-
ulated structure with a matrix which describes the trans-
formation from the coordinates of each model component
to each camera. These matrices form the group of Eu-
clidean transformations on three-dimensional space, SE(3)
and have the form:

E =

[

R t
000 1

]

(1)

where R is an orthogonal 3 × 3 matrix with determinant 1
and t is an arbitrary 3-vector. For convenience, the bottom
row of these matrices (being constant) will be omitted for
the remainder of the paper. The internal camera parameters
for each camera are also stored and thus the projection ma-
trix for each component of the model into each camera can
be computed.

2.2. Structure
In order to construct models of structures with curved sur-
faces, a representation based on intersections of pairs of
quadrics is used. This is a convenient representation as
it permits the use of standard structures such as truncated
cones, cylinders and spheres as well as truncated ellipsoids
and hyperbolic surfaces.

These structures can be rapidly rendered by computing
the normalised image conic C for each quadric Q in the
view of a normalised camera with a Euclidean projection
matrix E. Each quadric can be transformed into camera
coordinates to give

Q′ = E−T QE−1 (2)
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Figure 1: Q1 is the quadric to be rendered and is clipped by
the (in this case degenerate) quadric Q2. Only the sample
points on the conic image of Q1 that correspond to points
inside Q2 are rendered (shown in bold).

If the transformed quadric is written as

Q′ =

[

A b

b
T c

]

(3)

then the conic can be computed as

C = Ac − bb
T (4)

The conic C can then be rendered by mapping a unit
circle (parameterised by θ) to C and generating a series of
sample points (to be used in tracking, see Section 3) from a
discrete set of θs. These are evenly separated with spacing
∆p by setting ∆θ = ∆p

dp/dθ . Each sample point generated by
this procedure is then checked for visibility (in front of the
camera, within the intersecting quadric and not occluded by
any other pair of intersected quadrics).

The articulated structures considered in this paper are
constructed from these primitives. The structures comprise
piecewise rigid components and each component is made
up of a number of these clipped quadrics. The quadrics in
each component share a common coordinate frame and are
all rendered using the Euclidean projection matrix for the
component.

The kinematic chain is represented by specifying a par-
ent for each component and listing the constraints that apply
between the two. These are described in more detail in Sec-
tion 4. Because two components may share the same parent,
the kinematic chain may form a tree structure, however ar-
ticulated cycles are not permitted.

2.3. Motion
The task of this system is to compute the Euclidean matrices
E for each component into each camera at each time step.



This problem can be reduced to computing a Euclidean mo-
tion matrix M such that

Et = Et−1Mt (5)

The matrices M give the transformation from the coordi-
nate frame of a component at time t to the frame at time t−1
(coarse manual initialisation is given for the first frame).
Because the motion is represented in the coordinate frame
of the moving component, the motion matrices are the same
for all stationary cameras viewing the scene and thus only
need to be computed once per component per time frame
regardless of the number of views. The matrices M can
be represented by points α in the Lie algebra of SE(3) by
means of the exponential map [2].

M = exp

(

6
∑

i=1

αiGi

)

(6)

where Gi are a set of generator matrices which form a basis
for the algebra. Because the time steps are small (40ms for
PAL video), the motion matrices are close to the identity
and thus α should be close to the origin. The tracking task
is then reduced to a six dimensional search for α for each
component at each time frame.

It should be noted that if a component contains just a
single quadric, it will appear in the image as a single conic
having just five degrees of freedom. Thus there will be (in
general) a one parameter family of solutions for α for this
component considered in isolation and this can only be con-
strained by considering the articulation constraints.

3. Statistical framework
The statistical formulation used in this approach defines the
probability of observing an image given a particular pose
of the model in terms of the presence of edges in the im-
age close to those rendered in the model. These edges
are detected by performing a 1-dimensional search from
each sample point in a direction normal to the rendered
edge. These measurements are assumed independent and
the probability of the image given a pose is the product of
the probabilities of each measurement.

3.1. Gaussian statistics
If these measurements were normally distributed then the
maximum a posteriori pose would be given by a least-
squares solution. Such a solution can be computed very
efficiently from the Jacobian of partial derivatives of each
distance measurement with respect to each motion param-
eter αi. If the distance measurements are small, an accu-
rate approximation to the Jacobian J can be obtained by
considering the edge-normal component of the motion of
the sample points with variation of αi which can be easily

Figure 2: Noisy edge measurements. The solid bar indicates
failure to detect an edge.

computed in closed form. This can be used to obtain a max-
imum a posteriori estimate of the motion parameters µ for
each component

µ = C−1JT
m where C = [JT J ] (7)

and m is the vector of distance measurements. The sum-
squared residual measurements S for a solution α is given
by

S = (α − µ)C(α − µ) + ||(m − Jµ)||2. (8)

This gives a probability distribution over the Lie algebra
(with two arbitrary constants a and b) of the form

p(α) = a exp (−b(α − µ)C(α − µ)) (9)

3.2. Non-Gaussian statistics
In practice, the measurement distribution is found to be non-
Gaussian by virtue of containing many more samples in the
tails of the distribution (see Figure 2). Such distributions
can be handled within the least squares framework by intro-
ducing a re-weighting function [10]. This function is evalu-
ated for each distance measurement m in m and is used to
scale m and the corresponding row of J . If the re-weighting
function is w(m), then the least squares procedure itera-
tively converges on a solution given by the probability dis-
tribution

p(m) = exp

(

−

∫ m

0

m′w(m′)dm′

)

(10)

This approach has the advantage that distributions other
than Gaussian can be modelled, convergence is fast and
each iteration requires just a linear solution. The real power
of this approach becomes apparent when complex systems
such as kinematic chains are considered since it is rel-
atively easy to propagate Gaussian statistics through the
chain and these can then be wrapped with a re-weighting
function to obtain an iterative solution to the desired statis-
tics. The re-weighting function used in this work is w(m) =
1/(c + |m|). This results in a distribution that behaves as a
Gaussian for m � c and a Laplacian for m � c.



4. Highly articulated kinematic chains
Pose statistics are now considered for kinematic chains.
Equation (9) gives independent probability distributions for
the motion parameters for each component of the model.
The model is not free to move arbitrarily, however, since the
articulation constraints must be respected. This means that
the desired solution is one which maximises the product of
the probabilities for the motion of each component and also
satisfies the constraints. This can be computed efficiently
(in linear time in the number of components) by propagat-
ing the statistics through the model. This is done by using
the constraints present between each adjacent pair of links
in the kinematic chain to obtain the maximum a posteriori
motion for the entire chain. This motion will provide the
least squares solution for the pose, subject to the kinematic
constraints.

This is achieved in two stages, shown in Algorithm 1.
First the joint distribution of each component’s motion and
that of its parent in the kinematic chain is considered. The
motion of the child component can be marginalised by al-
lowing it to take its modal value conditional upon the mo-
tion of the parent. By doing this, the statistics of the par-
ent component can be modified to incorporate those of the
child. This process is repeated up the kinematic chain until
the component at the top of the chain carries the propagated
statistics for the entire chain. Second, the maximum a pos-
teriori pose of each component is assigned, starting at the
top of the chain and propagating back down the chain.

4.1. Propagating statistics
It has been shown [6] that constraints corresponding to
slides, hinges and ball joints can be linearised and are ho-
mogeneous on the values of the motion parameters of the
two components α1 and α2 and thus have a simple form:

D12α1 + D21α2 = 0. (11)

Within α1-α2 space there is an embedded manifold of
motions which respect the physical articulation constraints.
Equation (11) corresponds to forcing the motion to lie in the
tangent space to this manifold at the origin (through which
the manifold must pass). For a ball joint positioned at x, y, z
in the coordinate frame of component 1, the constraint ma-
trix D12 is:

D12 =





1 0 0 0 −z y
0 1 0 z 0 −x
0 0 1 −y x 0



 (12)

The motion α2 is represented in component 2’s coordinate
frame which is different to that of component 1. If these co-
ordinate frames were the same then D21 = −D12. Thus if
α2 is transformed into component 1’s coordinate frame us-
ing the adjoint representation of the transformation between

Algorithm 1 Statistical propagation on a kinematic chain
for i = 1 · · ·n − 1 do

Let p = i’s parent
Marginalise αi and update µp and Cp using (21), (22)

end for
assign αn = µn

for i = n − 1 · · · 1 do
assign αi using (19)

end for

these coordinate frames the constraint in (11) becomes

D12α1 − D12 Ad(E−1

1
E2)α2 = 0 (13)

(where E1 and E2 are the Euclidean projection matrices of
components 1 and 2). Thus

D21 = −D12 Ad(E−1

1
E2). (14)

Given α2 it is possible to obtain the value of α1 which
satisfies the constraints (11) and minimises the sum-squared
residual (8). This can be computed by introducing Lagrange
multipliers λ for the constraints and solving

2C1(α1 − µ1) + DT
12λ = 0 (15)

giving α1 = µ1 −
1

2
C−1

1
DT

12λ (16)

So D21α2 + D12µ1 −
1

2
D12C

−1

1
DT

12λ = 0 (17)

and λ = 2
[

D12C
−1

1
DT

12

]−1

(D21α2 + D12µ1) (18)

α1 = µ1 − C−1

1
DT

12

[

D12C
−1

1
DT

12

]−1

(D21α2 + D12µ1)
(19)

The total sum-squared error for components 1 and 2 can be
written as

S1,2 = (α1−µ1)C1(α1−µ1) + (α2−µ2)C2(α2−µ2)
(20)

(discarding the constant terms). By substituting the optimal
value for α1 from (19), S1,2 can computed as a function of
α2. This gives new values for µ2 and C2 which take into
account the optimal pose of component 1.

µ′

2
= µ2 − C−1

2
DT

21

[

D12C
−1

1
DT

12 + D21C
−1

2
DT

21

]−1

(D12µ1 + D21µ2)

(21)

C ′

2 = C2 + DT
21

[

D12C
−1

1
DT

12

]−1

D21 (22)

This propagates the statistics of component 1 through the
articulated joint into component 2. The process can be re-
peated, propagating the new statistics for component 2 into
the next component up the chain until the statistics for all
components have been propagated into the root of the chain.



Figure 3: Tracking the wooden mannequin in a single view. Solid lines represent failure to find an edge on the search path

At this point, the final value of µ for the root of the chain
represents the maximum a posteriori value for the motion
parameters α of this component, taking into account the
measurements of the entire articulated structure. Equation
(19) can then be used to propagate the maximum a posteri-
ori estimate for the pose of the entire structure back down
the kinematic chain so that the maximum a posteriori pose
of the entire chain is obtained.

As mentioned previously, this entire process is wrapped
within a iterative re-weighting scheme so that the iterative
behaviour of the system is equivalent to propagating the cor-
rect non-Gaussian statistics along the kinematic chain. Al-
though the use of non-Gaussian statistics results in an iter-
ative algorithm (with each iteration involving execution of
Algorithm 1), this system only performs one iteration per
video frame. Where the motion is large, a single iteration
is found to provide a sufficiently good solution to permit
tracking to continue and where it is small, the algorithm
converges very rapidly.

4.2. Coercing the constraints
Because the manifold corresponding to poses of the model
which respect the articulation constraint is curved and the
process outlined above is only correct to first order, the re-
sultant pose will contain a quadratic error which violates
the constraints. Thus at each stage, it is necessary to re-
move this error and ensure that the constraints are met ex-
actly. Since the error is very small, it is possible to achieve
this very simply by running down the kinematic chain and
coercing the constraint in a non-symmetric manner. This is
done by computing the logarithm of the matrix describing
the transformation between each pair of components and
projecting its coefficients into the right null space of the
constraint matrix D12.

Find a s.t. exp
(
∑

i aiGi

)

= E−1

2
E1 (23)

a
′ = a − DT

12

[

D12D
T
12

]−1

D12 a (24)

The Euclidean projection matrix E1 can then be rebuilt to
exactly satisfy the constraint by

E1 = E2 ∗ exp
(
∑

i a′

iGi

)

(25)

5. Experimental Results
Two humanoid models have been used for experiments
tracking a wooden mannequin and a human. The models
are similar and both have 18 degrees of freedom. The model
of the mannequin is quite accurate and fits well, while the
model of the human is only approximate.

5.1. Mannequin
An experiment was performed to track the mannequin in the
view of a single camera. Because of difficulty in moving the
mannequin by hand without causing catastrophic occlusion,
a series of incremental movements were performed with the
tracker turned off. After each movement, the tracker was
operated for approximately a quarter of a second (about
6 frames) before the next movement was made. Results
from this tracking sequence are shown in Figure 3. The sin-
gle camera tracking system runs in real-time at PAL video
frame rate (25Hz).

5.2. Human
For the human tracking experiment, views from three syn-
chronised cameras were used. Single view tracking was
found to be much less effective on this task due to a rela-
tively poor fit between the human and the model. Figure 4
shows a number of frames from a tracking sequence in this
experiment.

6. Summary and Conclusions
A novel method for fast tracking of highly complex artic-
ulated structures has been presented. The algorithm runs
in real-time at 25 Hz for a single view and 10Hz for three
views. The maximum tolerable speed of motion that this
algorithm can handle is limited however, particularly in the
human case due to inaccuracies in the CAD model. Future
work will consider methods for extending the framework to
compute the structural parameters of the model.



Figure 4: Tracking a human in three concurrent views (cameras distributed vertically).
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