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ABSTRACT

This paper describes the segmentation, gender detection and seg-
ment clustering scheme used in the 1997 HTK broadcast news eval-
uation system and presents results on both the unpartitioned 1996
development and the 1997 evaluation sets. The stages of our ap-
proach are presented, namely classification, segmentation and gen-
der detection, gender relabelling, and clustering of speech segments.
The evaluation audio stream has been segmented according to audio
type with a frame accuracy up to 95%. Further segmentation and
gender labelling gave up to 99% frame accuracy with 127 multiple
speaker segments. Experiments using two different segmentation
approaches and three clustering schemes are presented.

1. Introduction

The transcription of broadcast news requires techniques to deal with
the large variety of data types present. Of particular importance is
the presence of varying channel types (wide-band and telephone);
data portions containing speech and/or music often simultaneously
and a wide variety of background noises from, for example, live
outside broadcasts. Furthermore, if a transcription system is to deal
with complete broadcasts, it must be able to deal with a continuous
audio stream containing a mixture of any of the above data types.

To deal with this type of data, transcription systems generally use
a segmentation stage that splits the audio stream into discrete por-
tions of the same audio type for further processing. Ideally, seg-
ments should be homogeneous (i.e. same speaker and channel con-
ditions), and should contain the complete utterance by the partic-
ular speaker. Because of the large variety of audio types present,
the data segments should be tagged with additional information so
that subsequent stages can perform suitable processing. If possible,
non-speech segments should be completely removed from the audio
stream but it is important not to delete segments that in fact contain
speech to be transcribed. It is also desirable, particularly for im-
plementing speaker adaptation schemes, that data segments from a
particular speaker under particular audio conditions can be grouped
with other data of the same type.

This paper deals with the segment processing strategies employed by
the 1997 HTK broadcast news transcription system. The following
section gives a brief system overview which is followed by a detailed
description and evaluation. Results are shown on the 1996 DARPA
unpartitioned broadcast news development set ( BNdev96UE ) and
the November 1997 evaluation set ( BNeval97 ).

2. System Overview

The overall segment processing can be subdivided into audio type
classification, segmentation and finally clustering. The operation of
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Figure 1: Audio Classification and Segmentation Overview.
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the audio type classification and segmentation steps are shown in
Figure 1. The classification stage labels audio frames according to
bandwidth and discards non-speech segments, while the segmenta-
tion step generates homogeneous segments labelled with gender and
bandwidth. The clustering stage groups the segments into a rea-
sonable number of clusters, for use in subsequent adaptation stages.
Due to our specific recognition system setup [6], we are able to im-
prove gender labelling using the results of our first pass recognition.

In reality the classification process makes errors. Since misclassi-
fication of speech as non-speech is more detrimental than keeping
undetected non-speech segments, the design goal for segmentation
should be minimising loss of speech. Secondly, short segments are
not easy to classify or to cluster ( e.g. short interjections or con-
firmation by other speakers during a monologue ). Thus segments
should be confined to a duration between 0.5 seconds and 30 sec-



onds, where the lower durational range below three seconds should
be sparse. Nevertheless this implies that the system will generate
some multiple speaker segments.

The following sections present the audio type classification, segmen-
tation and clusterings stages in more detail.

3. Audio Type Classification

The aim of this stage is to classify each frame of a continuous audio
stream into three groups : S for wide-band speech, T for narrow-
band speech and M for music or other background not relevant for
recognition. Because the M-labelled segments are discarded, the
major design goal for this stage is not only minimum frame classifi-
cation error rate, but minimal misclassification of speech as music,
i.e. loss of speech.

The audio classification uses Gaussian mixture models (GMM) with
1024 mixture components and diagonal covariance matrices. Four
models are trained with approximately 3 hours of audio each. The
models used are S for pure wide-band speech, T for pure narrow-
band speech, MS for music and speech, and M for Music. The use
of a separate model for music and speech has been beneficial to de-
crease the loss of speech data. Using an additional model for various
other background noises present in the data (e.g. helicopter or bat-
tlefield noise) turned out to be impossible due to lack of training
data and the large diversity in the nature of the data. Moreover some
of the material contains background speakers or speech in different
languages, which adds to confusion with speech classes.

background speech
M BGS | BGO | MS T S
BNtrain97 206 13 71 213 | 270 | 4016
BNdev96UE 6 1 14 7 9 85
BNeval97 6 <1 <1 9 26 142

Table 1: Training and test material available in broadcast news (min-
utes) for music (M) background speaker (BGS), other background
(BGO), music and speech (MS), narrow-band (T) and wide-band
(S) speech.

The distribution of broadcast news data suitable for GMM training
can be seen in Table 1. The training data contains information about
the various speech data types (tagged FO to FX) and various back-
ground noise conditions. The F2 labelled segments are nominally
from telephone channels but they have been found to not necessarily
have narrow bandwidth and therefore a separate deterministic clas-
sifier was used to label training segments as being narrow or wide-
band. The classifier is based on the ratio of energy above 4kHz to
that between 300Hz and 4kHz.

Pure wide-band speech has been chosen for GMM training from all
conditions except narrow-band and F3 (speech with music) labelled
segments. A subset of appropriately-sized data was selected to train
the GMM s for S and T. The data selection criterion was based on
maximising the speech content measured as the ratio of the number
of frames aligned to speech phones (not silence) to the total num-
ber of frames in a segment. For training the MS model all segments
labelled as F3 have been used. The music model data was selected
using gaps between speech segments, where the background condi-
tion music was tagged. This is problematic, since signature tunes

| | %BG corr | %M corr | %Correct | %Loss ]

train/test 66.26 97.04 97.54 0.03
test only 33.41 39.71 83.91 1.05

Table 2: Table showing frame accuracies on arbitrary non-speech
detection (%BG corr), music detection (%M corr), overall and loss
of speech accuracy using unadapted GMMs on BNdev96UE plus
two additional shows. The test set is split into shows available both
in training and test and test only.

are the major type of music present. The same tune occurs repeat-
edly in each show, thus decreasing the generalisability of the model.
Secondly, in some cases various different background conditions are
labelled simultaneously, a fact which has not been taken into account
in our selection mechanism.

The acoustic feature vectors consisted of 12 MFCCs, normalised log
energy and the first and second differential coefficients of these. We
found that this representation was more effective than the PLP-based
features used in word recognition for data-type classification.

Each frame of data was labelled using a conventional Viterbi de-
coder with each of the four models in parallel and finally MS la-
belled frames are relabelled as S. An inter-class transition penalty is
used which forces decoding to produce longer segments. An addi-
tional penalty on leaving the M model should result in fewer mis-
classifications of speech, however the influence of this parameter on
loss reduction is rather limited.

Due to the problem concerning training data for background models
mentioned above, classification of music seems to give relatively
poor generalisation capability so that shows not available in training
seem to produce worse results for classifying music (see Table 2).

To reduce this effect, after an initial classification the models are
adapted to the current show using maximum likelihood linear re-
gression (MLLR) [3, 2] for adapting both means and variances using
first stage classification as supervision. MLLR transforms ( block-
diagonal for means, diagonal for variances ) for each model were
computed when more than 15 seconds of adaptation material was
available. For BNdev96UE this was done per show, but on the eval-
uation set this had to be done on all shows simultaneously, since
show boundaries were unknown. 15 iterations of MLLR were per-
formed using first stage classification transcription. This relatively
high number of matrix reestimations is required due to the high num-
ber of mixture components used. The results of adaptation (Table 3)
show an increase in classification accuracy as well as a decrease in
loss of speech frames.

Table 4 shows confusion matrices for the adapted models. Note that
although some of the data is labelled as noise (N), the classifier does
not attempt to explicitly identify noise. Thus, noise is distributed
amongst the recognition classes. Overall 65% of the non-speech is
discarded with only 0.5% loss of speech data. On BNeval97 the
behaviour is similar with slightly poorer overall performance. 70.4
% of non-speech has been discarded with only 0.18% speech being
lost.



BNdev96UE BNeval97
Baseline | Adapted | Baseline | Adapted
Frame Accuracy || 96.10% | 96.23% | 93.67% | 94.73%
Frames Lost 0.72% 0.48% 0.25% 0.18%
BG correct 62.72% | 65.65% | 59.20% | 70.40%

Table 3: Overall audio classification accuracy and percentage loss
of speech on the BNdev96UE and BNeval97 data sets. On the
BNeval97 only 0.18% of speech frames were lost, which is equiva-
lent to 20.18 seconds.

L I M [ s | T J I M[s [T ]
M ][ 8211 | 17.89 | 0.00 |[ M || 78.40 | 21.55 | 0.05
N || 15.27 | 84.22 | 051 || N || 41.74 | 54.60 | 3.66
S || 056 | 9824 | 120 ||'S | 022 | 9560 | 4.17
T || 000 | 119 | 9881 || T || 0.00 | 354 | 96.46
a) b)

Table 4: Confusion matrices for audio classification (%) using
adapted GMMs on a) the BNdev96UE data set and b) the evalua-
tion set BNeval97 .

4. Segmentation

The result of the audio type classification stage is a preliminary set
of segments labelled as narrow-band or wide-band speech. In this
segmentation stage both classes are treated separately, although the
same processing is used. The target is to produce homogeneous seg-
ments containing a single speaker and data type.

Segmentation and gender labelling is performed using a phone
recogniser which has 45 context independent phone models per gen-
der plus a silence/noise model with a null language model. The
output of the phone recogniser is a sequence of phones with male,
female or silence tags. The phone tags are ignored and phone se-
quences with the same gender are merged.

Silence segments longer than 3 seconds are classified as non-speech
and discarded. Sections of male speech with high pitch are fre-
quently misclassified as female and vice versa. This results in short
misclassified segments usually at the beginning or the end of sen-
tences. Even though long silence segments are relatively reliable,
short silence segments often cut into words. Hence, a number of
heuristic smoothing rules are applied to relabel short segments and
merge them into their neighbours.

L1 L2

| male | [femae] | sl |
| |
L1>12& L2<05

|

| male st

Figure 2: Smoothing rule example with span 3.

The smoothing rules use the label types as well as the absolute dura-

SegType | #seg | #MSseg | # Spkriseg | %Dmult | %GD |

Ref 439 0 1.000 0.0 100
CMU 491 144 1.318 8.9 -

S1 539 100 1.189 8.2 95.13
S2 553 64 1.108 2.8 97.07
a)

[ SegType | #seg | #MSseg | # Spkr/seg | %Dmult | %GD |
Ref 634 0 1.000 0.0 100
CMU 769 172 1.239 6.4 -

S2 749 127 1.173 1.6 96.32
b)

Table 5: Segmentation results on BNdev96UE (a) and BNeval97
(b) using various segmentation schemes. The number of segments
with multiple speakers (#MSseg), the average speakers per segment,
gender detection accuracy (%GD) and the percentage of multiple
speaker frames (%Dmult) are shown.

tion and the segment duration relative to the neighbouring segments
to decide which segments are to be merged and how. Figure 2 shows
an example of a rule to merge a long male-labelled segment with a
short female labelled segments before silence. The maximum span
of rules, i.e. the number of segments considered at once, is five. It
was found to be beneficial to use long span rules initially.

In total 42 rules have been used. Application of a rule is repeated as
long as the segmentation changes, then the next rule is used. After a
complete loop over all rules, the loop is repeated itself, until the seg-
mentation remains unchanged. An additional constraint is applied
to ensure the duration of segments between one and 30 seconds.
These conditions cause errors, since short utterances in a discussion
or confirmations can be shorter than a second.

The smoothing scheme based only on rules is referred to as S1 in the
tables.

This purely heuristic method has a number of disadvantages

e Erroneous grouping of segments not only results in incorrect
boundaries, but also wrong gender labels

e Many short silence tags are unreliable and hence have to be
merged with neighbouring segments

o Neighbouring speakers with the same gender could be indistin-
guishable, since short silences between may have been merged.

e Durational constraints might produce suboptimal splits

A possible solution to this problem is the use of segment clustering
in the smoothing process. At certain stages in the smoothing pro-
cess the locally available segments are clustered using a top-down
covariance based technique (see below). Segments which appear in
the same leaf node and are temporally adjacent are merged into a
single segment. The allocation of the gender label of the merged
segment is made according to the number of frames per gender la-
bel. Clustering is repeated, until segmentation does not change.

Silence segments are not involved in the clustering process, since
they are usually too short to give a good estimate of the covariance
matrix. The use of segment clustering improves gender labelling



and segmentation, but since it is embedded in the smoothing rules,
the problem of adjacent segments having the same gender label still
remains. It was observed that a high percentage of the correct seg-
ment boundaries are labelled as silence by phone recognition (over
85% on BNdev96UE). Taking advantage of this effect, all segments
are then split up again in the middle of silence segments clustering is
repeated. This final clustering stage also gives more control on split-
ting long segments into parts of approximate equal duration. This
smoothing and clustering scheme is referred to as S2.

Table 5 shows segmentation results and the improvements on the
number of speakers per cluster on the BNdev96UE and BNeval97
sets using both methods S1 and S2. Results are compared with the
segmentation given by the CMU software [4] distributed by NIST.
Table 6 shows the overall class confusion matrices incorporating
classification and segmentation stages.

| | M/sil [ Smale | Tmale | Sfemale | T female ]

M/N 67.43 20.65 0.00 11.77 0.15
S male 0.52 96.34 0.47 2.51 0.16
T male 0.00 0.40 99.36 0.18 0.06
S female 0.25 419 0.09 94.05 1.42
T female 0.00 0.00 0.00 0.00 100.00
a)
| || M/sil [ Smale | Tmale | Sfemale [ T female |
M/N 7850 | 13.94 0.55 6.96 0.04
S male 0.62 91.31 5.86 1.67 0.54
T male 0.00 1.88 84.55 1.01 12.56
S female 0.22 1.35 0.44 97.63 0.35
T female 0.00 5.06 5.62 0.50 88.82

b)

Table 6: Overall Confusion Matrix on BNdev96UE (a) and
BNeval97 (b) using method S2(%).

A general disadvantage of this method is that it is impossible to de-
tect speaker transitions between two speakers of the same gender, if
there is no intervening silence. However, as the results in Table 5
imply, that this is rarely a problem.

5. Gender Relabelling

The evaluation system setup [6] enables us to further improve gender
labelling. Segments of the above stage are decoded using gender
labels and bandwidth labels to select the appropriate model set for
further decoding stages. After decoding forced alignments on both
gender models are carried out. The gender label for each segment is
selected by the model set with highest log-likelihood. This improves
gender labelling accuracy by about 2% absolute( Tables 7 & 5).

| || #Seg Changed | % gender correct |

BNdev96UE S2 28 99.01 %
BNeval97 S2 31 98.61 %

Table 7: Table showing the number of segments changed and result-
ing accuracy on gender relabelling.

Recognition experiments using segments based on the S2 scheme

show for both BNdev96UE and BNeval97 show a significant im-
provement over CMU segmentation and the S1 scheme (Table
8). Segments have been decoded using gender independent wide-
band triphone HMM models and a trigram language model. For
the BNeval97 set, when narrow-band data coding and appropriate
HMMs are used, a further reduction in word error rate of 1.6%
absolute is achieved. Note that we also expect to get benefits in
adaptation due to the fact that the segments lie closer to our goal
of homogeneity. Detailed recognition results for the complete HTK
transcription system can be found in [6].

| || BNdev96UE | BNeval97 |

CMU 30.1 23.9
S1 29.2 -
S2 28.6 23.0

Table 8: Error rates using different segmentation schemes. Segments
have been decoded using gender independent wide-band models. Er-
ror rates have been computed using the 1997 scoring protocols.

6. Segment Clustering

The goal of segment clustering to group segments in order to opti-
mise subsequent adaptation performance. This requires a compro-
mise between the desire for homogeneity within clusters and the
need for clusters of sufficient size for robust unsupervised adapta-
tion.

Two speaker clustering schemes have been studied using the CMU
clustering software distributed by NIST [4] as a baseline for compar-
ison. The first scheme was used in our 1996 BN system [5]. This is
a bottom-up method in which each segment is modelled by a single
diagonal covariance Gaussian and segments are merged based on a
furthest neighbour divergence-like distance measure. Cluster merg-
ing stops when the number of frames in the smallest cluster exceeds
a threshold.

The second method represents segments by the covariance of the
static and delta parameters, and uses a hierarchical top-down clus-
tering process in which each node of the hierarchy is split into a
maximum of four child nodes. Segments are reassigned to the clos-
est node using an arithmetic harmonic sphericity distance measure
[1]. Splitting continues until no node can be split to produce nodes
satisfying a minimum occupancy criterion. At the end of the pro-
cess, all segments which were too small to compute a full covariance
robustly are assigned to the leaf node with the closest mean.

Table 9 compares the three speaker clustering methods in terms of
the percentage increase in log likelihood achieved by the subsequent
MLLR-based mean adaptation with a global MLLR transform for
each clustered group. A gender and condition independent model
set was used and the likelihoods are calculated on automatically
segmented BNdev96UE data. In each case, the clustering thresh-
olds have been adjusted to give similar numbers of clusters so that
measuring the increase in log likelihood provides a reasonably valid
comparison. As can be seen, all of the methods give fairly simi-
lar performance, and the final transcription system used the same
bottom-up clustering scheme used the the 1996 HTK broadcast news
transcription system.



| [ FWB | M-WB | M-NB |
CMU | 2.183 (45) | 2.500 (53) | 4.593 (13)
BDIV | 2.337 (46) | 2.442 (66) | 4.183 (14)
TCOV | 2.297(44) | 2.363 (53) | 4.189 (13)

Table 9: Percentage improvement in log likelihood after MLLR
adaptation using the CMU segment clustering (CMU), bottom-up
divergence-based clustering (BDIV) and top-down covariance-based
clustering (TCOV). Numbers in brackets are the actual numbers of
clusters formed. The three conditions tested are female wide-band
(F-WB), male wide-band (M-WB) and male narrow-band (M-NB).

7. Conclusions

The segment generation and clustering stages of the 1997 HTK
broadcast news transcription system have been described. It is
shown that the techniques used are reasonably successful in produc-
ing homogeneous segments and that the segments produced yield
improved word recognition performance compared to the standard
segmentation software distributed by NIST.
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