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ABSTRACT using gender-independent (Gl) triphone HMMs and a trigram lan-

This paper describes recent advances in the CU-HTK Broadcastduage model (LM) to get an initial transcription for each segment;
News English (BN-E) transcription system and its performance in the speaker gender for each segment is found automatically; the
the DARPA/NIST Rich Transcription 2003 Speech-to-Text (RT- Segments are clustered, and unsupervised maximum likelihood lin-
03) evaluation. Heteroscedastic linear discriminant analysis (HLDAgar regression (MLLR)d] transforms estimated for each segment
and discriminative training, which were previously developed in cluster. This is followed by generating a lattice for each segment
the context of the recognition of conversational telephone speech,using the adapted GD triphone models with a trigram LM and ex-
have been successfully applied to the BN-E task for the first time. panding these lattice using a word 4-gram interpolated with a cate-
A number of new features have also been added. These includedory trigram LM. The 1-best hypothesis from the lattice represents
gender-dependent (GD) discriminative training; and modified dis- the final system output. All acoustic model parameters were esti-
criminative training using lattice re-generation and combination. Mmated using maximum likelihood (ML) training.

On the 2003 evaluation set the system gave an overall word error ~ The audio segmentation aims to generate acoustically homo-

rate of 10.7% in less than 10 times real time x0T). geneous speech segments and discard non-speech portions such
as music. The data is first split into regions of wideband speech,

telephone speech, speech with music/noise and pure music/noise
using a Gaussian mixture model (GMM) classifier. The music is
Broadcast News transcription has been one of the most Cha"eng_dlscarge((jsgnc:] the speech with muilc/nmse tlreated as (;N'deﬁand
ing and interesting tasks in large vocabulary continuous speechSPe€ch- GD phone recognisers are then run to locate gender-change

recognition over recent years. Significant progress has been madJ?Oints and silence portions t‘.) e.nable.these regions to be split into
despite the many difficult problems for automatic transcription that smaller se_gment_s. Finally similar _a_d]acent segments are m‘.’rged
are inherent in this type of data. These problems include the pres-and Comb”.”ed W'th the GMM classifier output to produce the final
ence of various speaking styles (read, spontaneous and conversgegmentation V‘_"_th bandwidth and pu_tatlve gender Igbels.
tional); non-native speakers; background noise and/or music; and, 0" re_cognlyon,l ?ach frame of lhnput speech ;S reprelsen_ted
different audio channel characteristics (wideband and telephonePY @ 39 dimensional feature vector that consists of 13 (including
band). co) MF-PLP cepstral parameters ar_1d their flrst_ and sgcond differ-
This paper presents technical details and experimental resultsEntals- Ce;l)qstral mean “Ofm?'!sﬁ“o” (CMN) is l?pﬁl'ed. on each
for the various acoustic models developed for the RT-03 evaluation seg:nen(tj. The H'\/(leS were |n|t|aby t(;alned on all the Wldgbsnd
as well as the actual evaluation system. As the primary condition analyse training data. Narrow-band sets were estimated by us-

for the RT-03 BN-E evaluation required the system to operate in ing a version of the training data with parrow-band analysis (125-
less than 10 times real-time (&T), we focus on the design and 3750Hz). GD models for each bandwidth were generated. In test-

performance of systems running with that constraint. The main ar- ing, th_e reduced bandwidth models are used for transcribing data
eas of development include the use of HLDA; discriminative train- ¢lassified as narrow band.
ing using the minimum phone error (MPE) criterion; maximum a

1. INTRODUCTION

posteriori (MAP)-style MPE (MPE-MAP) training for GD mod- 3. BROADCAST NEWS DATA
elling; a complementary part of the system using a single pronun- ) o
ciation dictionary (SPRON); and system combination. 3.1. Acoustic training data

f The res,_t of tqt;%aﬁgr’\ilssrranged as fpllows_.rrl]:'irs_t afn l?ver\:jiew For acoustic model training, the BN-E data released by the LDC in
ol our previous -E system Is given. IS 1S Tollowe 1997 and 1998 was used. The 1997 data was annotated by the LDC

by a de§cr|pt|on Of. the data sets usgd in the experiments and t.herfo ensure that each segment was acoustically homogeneous but the
by sections that discuss the acoustic model training, adaptatlon,1998 data was transcribed only at the speaker turn level without

SPRON' and IangL_Jage quels, respectively. Finally the Completedistinguishing background conditions. In total, these amounted to
evaluation system is described and the results of each stage of proépproximately 143 hours of usable daf [

cessing are presented.

3.2. Development data
2. PREVIOUS 10xRT CU-HTK BN SYSTEM OVERVIEW

Three different data sets were used for system development. The
The previous HTK 1& RT Broadcast News system was developed first is the 1998 Hub4 evaluation data and consists of two 1.5-hour
in 1998 [L2, 18] and runs in a number of stages. The input au- data files éval98 ). This is the only test set which allowed mea-
dio stream is first segmented; a first recognition pass is performedsuring the performance by focus condition. The second is the Rich
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Transcription 2002 BN-E evaluation data set which is approxi- [ Fcond| Ratio] (@ [ () | (© [ (d) |

mately 60 minutes in lengtheyal02 ). Finally, six 30 minute FO 30.6% || 11.1| 10.2| 9.6 | 838
broadcasts were chosen from the last 2 weeks of the topic detection F1 19.3% || 20.1| 185| 17.1| 15.5
and tracking (TDT4) data of Jan. 2001, and transcribed manually F2 3.4% || 25.8| 22.6 | 22.6 | 19.6
in conjunction with other speech research sitks/03 ). F3 43% ] 20.9] 19.1] 1751 17.3
F4 28.2% || 20.1| 189 | 16.1 | 15.3
FX 13.5% || 35.0 | 30.5| 27.8 | 25.7

The following five sets of broadcast and newswire text corpora

were used for LM training:. [ Overall | 100.0% ] 19.6 [ 17.9] 16.2] 15.0 |

e Primary Source Media Broadcast News transcriptions (1992-

1999) & TDT2+TDT3 closed captions Table 1. %WER oneval98 with (a) ML, (b) HLDA, (c) MPE,
_ and (d) HLDA+MPE (FO: prepared speech, F1: spontaneous
* CNN show transcriptions (1999-2001) speech, F2: speech over telephone channels, F3: speech and mu-
e TDT4 closed captions sic, F4: speech with degraded acoustics, F5: non-native speakers,

e transcriptions from acoustic training data (1997 & 1998) & FX:all other speech).

acoustic transcriptions of Marketplace shows

e Los Angeles Times and Washington Post newswire service the optimisation of the HLDA projection. The nuisance dimen-
texts (1995-1998) & New York Times newswire texts (1997- sions which contain the least discriminant information are mod-
2001) elled explicitly using a global Gaussian distribution for all acous-

tic classes during transform optimisation and are eventually dis-

arded. Fisher-ratio values are used to select the nuisance dimen-
sions pJ.

The experimental results show that the use of an HLDA pro-
jection reduced the WER by 1.7% absolutesyal98 compared
with the ML model as shown in column (b) of Tallle Consistent
4. ACOUSTIC MODEL BUILDING improvements were observed in various poorly performing condi-

tions as well as for prepared broadcast speech (F0).

No data produced after 15th January 2001 was used to ensure th
training data pre-dated both tllev03 and evaluation sets. The
amount of language model training text is approximately one bil-
lion words in total.

The basic acoustic model was built using conventional ML with
the same front-end as in previous system. Decision tree cIustering4
was used to define cross-word triphone models with about 7000
states. Each speech state was modelled with a 16 component GausAPE training [L3] is an extension of our previous work on dis-
sian mixture distribution. criminative training in a lattice-based frameworld]. It tries to

The experimental results @val98 andeval02 in this sec- minimise an estimate of the training-set phone error rate computed
tion were obtained using a single-pass decoder with a 65k wordin a word recognition context. This phone error estimate is calcu-
trigram language model taken from the 1998 CU-HTK BN-E tran- lated based on lattices generated by recognising the training data.
scription evaluation systenil§]. The decoder operated within A bigram LM trained on the acoustic transcriptions is used with
about 5<RT, and no adaptation was used. a fast decoder setup to generate word lattices. In a separate pass

The overall word error rate (WER) @val98 with the basic these lattices were then aligned to find phone model boundaries
ML model was 19.6%. The detailed results broken down by the with the appropriate model set. The acoustic model log likelihoods
various focus conditions are given in column (a) of Table were scaled down using the usual language model scale factor dur-

An overview of the complete acoustic model building proce- ing training to increase the effective number of phone alternatives.
dure, described in the following sections, is illustrated in Figure  The I-smoothing scheme was used to improve the generalisation of

the discriminatively trained models which smoothes between the

2. MPE training

4.1. HLDA projection gliscriminative and the ML estimates where the degree of smooth-
ing depends on the amount of data availahlg.
HLDA is an extension of LDA without the restriction that within As shown in column (c) of Tablé, the MPE model reduced

class covariance matrices have to be identichl By the use of the WER by 3.4% absolute from the ML model. Moreover, MPE
an HLDA projection, an originati-dimensional feature space is trained models on top of the HLDA model, (d) in Tabllewas
divided intop-dimensionalsefuland [-p]-dimensionahuisance 1.2% absolute better than the MPE model on non-HLDA data, and
subspaces, and only tlisefulsubspace is used for actual classifi- both of them showed improvements over all F-conditions. There-
cation. fore, HLDA was used in all of the MPE based model sets described
In our experiments, a 52-dimensional feature vector was formedelow.

by augmenting the basic acoustic representation with 3rd order
derivatives, in addition to the usual first and second order deriva-
tives. Acoustic models were built using single-pass re-training in
the extended feature space. The HLDA transform is optimised in A MAP-style adaptation method for MPE training (MPE-MAP)
an iterative fashion using an EM algorithm (i.e. ML estimation). was introduced in14]. Using the concept of weak-sense auxiliary
Full covariance statistics were obtained from a system trained onfunctions, it is simple to extend the MAP scheme to incorporate
the non-transformed 52-dimensional feature vector and used fordiscriminative training criteria, and results in smoothing the usual

4.3. GD discriminative training



MLE Number of | Lattices WER
6976 clustered states, 16—-mix Gaussians| for MPE (%)
¢ HLDA fixed - 17.9
variable - 17.6
HLDA MPE fixed orig 15.0
52x39 HLDA matrix variable orig 14.8
¢ variable orig + re-gen| 14.4
] MPE-MAP | fixed orig 14.5
VarMix variable orig + re-gen| 13.8

Table 3. %WER oneval98 for variable number of Gaussians
— and lattice re-generation for MPE training.

lattices
numerator/denominator

ment data. Experimental results ewal98 are given in Table.
MPE Absolute gains of 0.3 and 0.2% were obtained for HLDA and MPE
models by allowing the number of Gaussians per state to vary.

4.5. Lattice re-generation for MPE training

Re-gen lattices

numerator/denominator . . . . .. .
In standard lattice-based discriminative training][ the lattices

which represent the confusable hypotheses for each utterance are
generated once and the model-level alignment is assumed to be
fixed. If the HMM parameters change significantly during dis-

M MPE-MAP F MPE-MAP criminative training this may not be a good approximation, so lat-
tice regeneration schemes were investigated.

After four iterations of MPE training the resulting acoustic

Fig. 1. Stages in final acoustic models building. models were used to regenerate a set of training lattices to en-
sure that the confusable word alternatives were represented for the

‘ [eval98 [ eval02 | subsequent iterations. This lattice generation also used a heavily

‘ GI (MPE) 150 136 ‘ prungd bigram LM ((_)n_ly about_ 5_Ok bigrams). In the subsequ_ent

‘ GD (MPE-MAP) 145 13.0 ‘ iterations of MPE training, statistics based on both sets of lattices

were employed.

As shown in Table3, the WER was reduced both for MPE
Table 2 %WER oneval98 andeval02 with GIMPE and GD ~ and MPE-MAP models by lattice regeneration. @ml98 |, an
MPE-MAP models. absolute gain of 0.4% WER was obtained with the GI MPE mod-
els. For GD MPE-MAP models, the combination of using variable
number of Gaussians and re-generating lattices gave 0.7% absolute

discriminative update counts with the prior counts. The MPE sys- Improvement. _ _ _
tem was used as the original model for adaptation and three it-  The MPE-MAP model trained using re-generated lattices (as
erations of MPE-MAP training were performed for each gender, Well as the original lattices) was 5.8% absolute (29.6% relative)

where only the Gaussian means and mixture weights were up_better than the basic ML model @val98 bef(_)re adaptation.
dated. The results, given in Table show that the resulting GD These MPE and MPE-MAP models were used in the actual evalu-

models gave 0.5 and 0.6% absolute error reductiom\ai98 ation system.
andeval02 , respectively.
As an alternative to MPE-MAP a simple approach to gener- 5. ADAPTATION AND ADAPTIVE TRAINING

ating GD models was investigated. After GI MPE training, a fur-
ther MPE iteration was performed on the male and female training . .
data separately. This gave just 0.2% absolute error reduction on5'1' Adaptation experiments

eval9g . Based on the MPE model described in section 4.2, several unsuper-
vised transcription-model adaptation experiments were conducted
to evaluate the effectiveness of various adaptation techniques for
these models and to choose the optimal adaptation strategy. Clus-
Our previous standard approach was to have a fixed number oftering was performed on the segments for each combination of
Gaussiansl{) per speech state ardV for silence states. Here, gender and bandwidth using the method describedldvjith the

this was modified to set the number of Gaussians as a function ofGaussian divergence distance metric and a minimum occupancy
the number of frames that are available to train each state, whileconstraint of 40 seconds.

keeping the average number of Gaussians per stadé. afhis After global 1-best MLLR adaptation, phone-marked lattices
method (VarMix) gave small, but consistent, gains on the develop- were generated. Using these lattices, 4 iterations of lattice MULR [

4.4, Variable number of Gaussians per state



| [ eval98 [ eval02 | | Models [ MPRON | SPRON]

same word lattices as in MPRON training were used. Four MPE
iterations were performed using the denominator lattices generated
with the ML models and a further 3 iterations using a combination

Table 5. %WER of SAT models omlev03 in comparison with ~ ©f the lattices generated with ML and MPE models. .
adaptation results based on GD models. Supervisions for 1-best  Table 6 shows results using unadapted single pass decoding

MLLR were obtained from 4-gram expansion after unadapted sin- With Gl wide-band triphone models and a trigram language model.

absolute. An additional experiment comparing GD versions of the
models gave 13.9%, which again is 0.5% absolute better than using

were performed. On each iteration the number of adaptation trans-th€ standard multi-pronunciation dictionary mode.
forms was increased using a regression-class fesupject to a

threshold on the amount of data per transform. Up to 8 MLLR

speech transforms and a global full-variance (FV) transfofn [ 7. LANGUAGE MODEL

were estimated. As shown in Tablethe WER was reduced by
9.3% relative oreval98 , and 11.8% omval02 . There were no
consistent gains from using more than 2 transforms.

\ unadapted (Gl MPE)\ 15.0 \ 13.6 \ \ ML 20.2 19.7
1-best MLLR 14.2 125 ‘ HLDA, VarMix, MPE 15.3 14.8 ‘
lat-MLLR 2trans 13.9 12.3
[at-MLLR 2trans+EV 13.7 12.0 Table 6. %WER ondev03 using ML and MPE triphone models
[at-MLLR 4trans+FV 13.6 121 with multiple (MPRON) and single (SPRON) pronunciation dic-
[a-MLLR 8trans+EV 13.6 12.0 tionaries. New trigram LM was used that is presented in seGtion
Table 4. %WER foreval98 & eval02 after adaptation based
on the GI MPE model. the necessary pronunciation statistics were obtained from align-
ment of the Switchboard and Broadcast News training corpora.
’ | MPE-MAP | SAT | The SPRON dictionaries were used to train bandwidth-specific,
[ 1-best MLLR \ 141 [ 134] GD triphone acoustic models in the same fashion as described be-
[Tat-MLLR 2trans | 138 | 134 fore, including the regeneration of phonetic decision trees. The
{

| lat-MLLR 2trans+FV 136 [ 13.0]

A 59k entry wordlist was chosen from the most frequent words in
the training texts listed in sectidh3using a weighted sum of fre-
guencies from various subsets of the training corpus. The weights
5.2. Speaker adaptive training were chosen to minimize the out-of-vocabulary (OOV) rate on the
dev03 transcriptions. The resulting vocabulary yields an OOV
rate of 0.47% orlev03 .

Word-based 4-gram language models were built for each of the
5 data sources separately. All word-based models were merged to

Starting from the HLDA ML estimated models, speaker adaptive
training (SAT) using constrained MLLR!] with the same trans-
formation for both the means and variances was applied. Global
full-matrix constrained (feature-space) MLLR transforms were es- ; X : .
timated for each speaker (one transform for silence, another for[0rM @ single model, where the interpolation weights were com-
speech). These transforms were applied to the acoustic training?!ted to minimise perplexity. After merging, the resulting lan-
data during re-estimation. guage model was pruned®] to 8.8M bigrams, 12.7M trigrams
Starting with the HLDA models with variable number of Gaus- and 6.6M 4-grams.
sians, five iterations of interleaved transform estimation and ML A class-based trigram language model was trained which used
parameter updates were performed. The transforms were thenl000 classes that were automatically derived based on word bi-
fixed and used with six iterations of MPE training to obtain SAT gram statistics1]. The model contained 0.8M bigrams and 10M
models. The denominator lattices generated for the previous MPEtrigrams. Finally, the word-based model was interpolated with the

training were used (without lattice re-generation). class-based model.

The results in Tabl& show that the SAT model outperformed Perplexities and WERs odev03 with the word-based tri-
MPE-MAP models omlev03 after 1-best MLLR and lattice MLLR  gram ¢g ), the word-based 4-grarfy( ), and the interpolated word-
with two transforms and full variance transforms. based 4-gram with the class-based trigrdgic( ) are given in

Table7. The WERs forfg andfgic were obtained using lattice
6. SINGLE PRONUNCIATION (SPRON) re-scoring based aig lattices. The modified MPE & MPE-MAP

models in sectiod.5were used as Gl & GD models.
SPRON dictionaries for training and testing were generated by
selecting pronunciation variants from the multiple pronunciation
dictionary using the probabilistic method describedth [Here 8. RT-03 BN-E EVALUATION SYSTEM

1Experimental results here were obtained with a preliminary version of . - .
the 2003 4-gram LM which did not include more recent Broadcast News 1N€ System structure is shown in Figieand more technical de-

text data. Also, since we only had a wideband SAT model, NB results from tails about fast system design can be found in a companion paper
MPE-MAP 1-best MLLR were used to calculate %WER. .



LM type | Perplexity %WER
GI [ GD
[ 1998 - [ 16.6 [ 16.1]
tg 140.9 149 14.4
fg 121.5 14.0 | 135
fgic 119.1 | 137 132

Table 7. Perplexities and %WERs atev03 with various LMs.

tg98 is the trigram from the 1998 CU-HTK BN-E system.

Lattice
Segmentation ——CN
"""""""""""""""""""""""""""""" — 1-best
Gl P1 WB/NB
MPE triphones, HLDA, 59Kk, fgint03
Gender labelling
Clustering
Y
GD P2 WB/NB
MLLR, 1 speech transform
MPE triphones, HLDA, 59k, fgintcat03
fgintcatO3 L attices
MPE Z N MPE
LatMLLR LatMLLR
HLDA 2 trans. 2 trans. HLDA
SAT Gl P3.1 wB Gl I:)3.2WB/NB SPron
FV Fv

Fig. 2. BN-E evaluation system structure.

8.1. Segmentation

Automatic segmentation was performed using a system similar to
that used in the 1998 CU-HTK BN-E KRT system [ 7]. For the

beamwidths. The output trigram lattices are rescored with the 4-
gram language model. All segments are gender-labelled by forced-
alignment of this transcription with GD HMMs (MPE-MAP). The
segments are then grouped gender and bandwidth dependently into
clusters comprising at least 40 seconds of data for adaptation pur-
poses in the following passés.

8.2.2. Pass2: lattice generation

Bandwidth-specific, GD triphone HMMs (MPE-MAP) were adapted
using transforms estimated based on global least squares regres-
sion and MLLR variance transformg][with the initial Pass1 tran-
scription as supervision. The data is decoded with the word-based
trigram at relatively conservative beamwidths yielding a lattice for
each segment. These lattices are expanded using the interpolation
of the word-based 4-gram and the class-based trigram.

8.2.3. Pass3: lattice rescoring

Two different models, SAT (Pass3.1) and SPRON (Pass3.2), were
used for lattice rescoring. Each model was adapted using a global
1-best MLLR transform and then used for model-marked lattice
generation. Based on these model-marked lattices, the following
transforms were estimated in stages using lattice MLLR: a global
MLLR transform; a full variance transform and upto 2 speech
MLLR transforms per cluster. The adapted models were used to
rescore the word lattices from Pass2.

8.2.4. Confusion networks and combination (CNC)

In each case the lattice output was converted to a confusion net-
work [10] for later system combination. The word lattices pro-
duced by the Viterbi decoder were used to generate confusion net-
works, which provide a compact representation of the most likely
word hypotheses and their associated word posterior probabilities.
The confusion networks produced in Pass2, Pass3.1 and Pass3.2
were combined using a dynamic programming procedure that em-
ployed the full set of alternative hypotheses and their posteriors to
find the optimal alignment of the outputs from the different stages
[1]. Given this alignment the final overall system hypothesis was
chosen based on the posterior distribution represented by the cor-
responding confusion network segments. For this final hypothesis
the corresponding word-level confidence scores were generated.

RT-03 evaluation system a new music model was built incorporat- 8.3. Performance
ing TDT-4 data, and the clustering/merging procedures within the The results on thdev03 andeval03 test sets for each of these

segmenter were changed to increase a segment purity measure

eval02 data [L6].

8.2. Decoding passes

&ages are shown in Tab#e Passl ran in 0.9xRT including data
coding and segmentation. Very tight beamwidths for fast process-
ing gave 1.6% of absolute loss dev03 compared to the num-
bers obtained with the development setup in section 4. GD models
adapted using a global 1-best MLLR in Pass2 gave 17-18% relative

Recognition runs in a number of passes and uses time-synchronougeduction in WER over Pass1. Lattice MLLR and lattice re-scoring
one-pass cross-word triphone decoders. The initial transcriptionwith the SAT model and SPRON system showed clear gains over
and the lattice generation passes employed a decoder based on thefe Pass2 results, though the gainewal03 was rather smaller
used in [L7], and the lattice rescoring passes used the HTK basedthan that ondev03. The CNC effectively combined three dif-

decoder HDecode.

8.2.1. Passl: initial transcription

ferent systems and gave another gain. After CNC the WER on

2Various minimum occupancy thresholds were tested for adaptation ex-
periments from 25s to 40s in the framework of the RT-03 evaluation sys-
tem, and it was found that WERs from different thresholds were almost the

The first pass generates an initial transcription of the data using Glsame after 1-best MLLR. As we use more transformations for lattice-based
triphone HMMs (MPE) and the word-based trigram with very tight MLLR, we selected 40s as the threshold.



| [ dev03 [ evalo3 | xRT |
Coding & . i 03
segment

Passl 15.9 14.6 0.6
Pass? 13.1 11.9 3.7
Pass3.1 12.0 11.4 2.5
Pass3.2 12.2 11.4 1.9
[CNC [ 116 | 107 | 01 |

Table 8 %WER ondev03 andeval03 and processing time
oneval03 for the RT-03 evaluation system. The system runs on
a single processor of a IBM x335 computer with a 2.8GHz Intel
Xeon processor/400MHz FSB.

dev03 andeval03 were 11.6% and 10.7%, respectively. The

full system oneval03

ran in 9.1xRT and the confidence scores

had a Normalised Cross Entropy (NCE) of 0.412.

9. CONCLUSIONS

(5]

(6]

[7]

(8]

(9]

(10]

(11]

This paper has described the development and performance of the
2003 CU-HTK BN-E transcription system. Many useful tech-
niques, including HLDA, MPE training and lattice-based adapta-
tion, have been successfully applied to the Broadcast News tran-
scription task for the first time. Furthermore, a number of new
techniques were used including MAP-style GD discriminative train- [13]
ing (MPE-MAP) and modified lattice-based discriminative train-

ing. The evaluation system was carefully designed to meet the

10x RT time restriction of the primary condition of the RT-03 BN-

E evaluation while still including a number of stages of decoding,
lattice-based adaptation and system combination. On the RT-03
current test set evaluation data the system gave an overall error
rate of 10.7%, the lowest error rate in the evaluation.
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