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ABSTRACT
This paper describes recent advances in the CU-HTK Broadcast
News English (BN-E) transcription system and its performance in
the DARPA/NIST Rich Transcription 2003 Speech-to-Text (RT-
03) evaluation. Heteroscedastic linear discriminant analysis (HLDA)
and discriminative training, which were previously developed in
the context of the recognition of conversational telephone speech,
have been successfully applied to the BN-E task for the first time.
A number of new features have also been added. These include
gender-dependent (GD) discriminative training; and modified dis-
criminative training using lattice re-generation and combination.
On the 2003 evaluation set the system gave an overall word error
rate of 10.7% in less than 10 times real time (10×RT).

1. INTRODUCTION

Broadcast News transcription has been one of the most challeng-
ing and interesting tasks in large vocabulary continuous speech
recognition over recent years. Significant progress has been made
despite the many difficult problems for automatic transcription that
are inherent in this type of data. These problems include the pres-
ence of various speaking styles (read, spontaneous and conversa-
tional); non-native speakers; background noise and/or music; and
different audio channel characteristics (wideband and telephone
band).

This paper presents technical details and experimental results
for the various acoustic models developed for the RT-03 evaluation
as well as the actual evaluation system. As the primary condition
for the RT-03 BN-E evaluation required the system to operate in
less than 10 times real-time (10×RT), we focus on the design and
performance of systems running with that constraint. The main ar-
eas of development include the use of HLDA; discriminative train-
ing using the minimum phone error (MPE) criterion; maximum a
posteriori (MAP)-style MPE (MPE-MAP) training for GD mod-
elling; a complementary part of the system using a single pronun-
ciation dictionary (SPRON); and system combination.

The rest of the paper is arranged as follows. First an overview
of our previous 10×RT BN-E system is given. This is followed
by a description of the data sets used in the experiments and then
by sections that discuss the acoustic model training, adaptation,
SPRON, and language models, respectively. Finally the complete
evaluation system is described and the results of each stage of pro-
cessing are presented.

2. PREVIOUS 10×RT CU-HTK BN SYSTEM OVERVIEW

The previous HTK 10×RT Broadcast News system was developed
in 1998 [12, 18] and runs in a number of stages. The input au-
dio stream is first segmented; a first recognition pass is performed

using gender-independent (GI) triphone HMMs and a trigram lan-
guage model (LM) to get an initial transcription for each segment;
the speaker gender for each segment is found automatically; the
segments are clustered, and unsupervised maximum likelihood lin-
ear regression (MLLR) [8] transforms estimated for each segment
cluster. This is followed by generating a lattice for each segment
using the adapted GD triphone models with a trigram LM and ex-
panding these lattice using a word 4-gram interpolated with a cate-
gory trigram LM. The 1-best hypothesis from the lattice represents
the final system output. All acoustic model parameters were esti-
mated using maximum likelihood (ML) training.

The audio segmentation aims to generate acoustically homo-
geneous speech segments and discard non-speech portions such
as music. The data is first split into regions of wideband speech,
telephone speech, speech with music/noise and pure music/noise
using a Gaussian mixture model (GMM) classifier. The music is
discarded and the speech with music/noise treated as wideband
speech. GD phone recognisers are then run to locate gender-change
points and silence portions to enable these regions to be split into
smaller segments. Finally similar adjacent segments are merged
and combined with the GMM classifier output to produce the final
segmentation with bandwidth and putative gender labels.

For recognition, each frame of input speech is represented
by a 39 dimensional feature vector that consists of 13 (including
c0) MF-PLP cepstral parameters and their first and second differ-
entials. Cepstral mean normalisation (CMN) is applied on each
segment. The HMMs were initially trained on all the wideband
analysed training data. Narrow-band sets were estimated by us-
ing a version of the training data with narrow-band analysis (125-
3750Hz). GD models for each bandwidth were generated. In test-
ing, the reduced bandwidth models are used for transcribing data
classified as narrow band.

3. BROADCAST NEWS DATA

3.1. Acoustic training data

For acoustic model training, the BN-E data released by the LDC in
1997 and 1998 was used. The 1997 data was annotated by the LDC
to ensure that each segment was acoustically homogeneous but the
1998 data was transcribed only at the speaker turn level without
distinguishing background conditions. In total, these amounted to
approximately 143 hours of usable data [5].

3.2. Development data

Three different data sets were used for system development. The
first is the 1998 Hub4 evaluation data and consists of two 1.5-hour
data files (eval98 ). This is the only test set which allowed mea-
suring the performance by focus condition. The second is the Rich
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Transcription 2002 BN-E evaluation data set which is approxi-
mately 60 minutes in length (eval02 ). Finally, six 30 minute
broadcasts were chosen from the last 2 weeks of the topic detection
and tracking (TDT4) data of Jan. 2001, and transcribed manually
in conjunction with other speech research sites (dev03 ).

3.3. Text corpora

The following five sets of broadcast and newswire text corpora
were used for LM training:.

• Primary Source Media Broadcast News transcriptions (1992-
1999) & TDT2+TDT3 closed captions

• CNN show transcriptions (1999-2001)

• TDT4 closed captions

• transcriptions from acoustic training data (1997 & 1998) &
acoustic transcriptions of Marketplace shows

• Los Angeles Times and Washington Post newswire service
texts (1995-1998) & New York Times newswire texts (1997-
2001)

No data produced after 15th January 2001 was used to ensure the
training data pre-dated both thedev03 and evaluation sets. The
amount of language model training text is approximately one bil-
lion words in total.

4. ACOUSTIC MODEL BUILDING

The basic acoustic model was built using conventional ML with
the same front-end as in previous system. Decision tree clustering
was used to define cross-word triphone models with about 7000
states. Each speech state was modelled with a 16 component Gaus-
sian mixture distribution.

The experimental results oneval98 andeval02 in this sec-
tion were obtained using a single-pass decoder with a 65k word
trigram language model taken from the 1998 CU-HTK BN-E tran-
scription evaluation system [18]. The decoder operated within
about 5×RT, and no adaptation was used.

The overall word error rate (WER) oneval98 with the basic
ML model was 19.6%. The detailed results broken down by the
various focus conditions are given in column (a) of Table1.

An overview of the complete acoustic model building proce-
dure, described in the following sections, is illustrated in Figure1.

4.1. HLDA projection

HLDA is an extension of LDA without the restriction that within
class covariance matrices have to be identical [7]. By the use of
an HLDA projection, an originald-dimensional feature space is
divided intop-dimensionalusefuland [d-p]-dimensionalnuisance
subspaces, and only theusefulsubspace is used for actual classifi-
cation.

In our experiments, a 52-dimensional feature vector was formed
by augmenting the basic acoustic representation with 3rd order
derivatives, in addition to the usual first and second order deriva-
tives. Acoustic models were built using single-pass re-training in
the extended feature space. The HLDA transform is optimised in
an iterative fashion using an EM algorithm (i.e. ML estimation).
Full covariance statistics were obtained from a system trained on
the non-transformed 52-dimensional feature vector and used for

F-cond Ratio (a) (b) (c) (d)

F0 30.6% 11.1 10.2 9.6 8.8
F1 19.3% 20.1 18.5 17.1 15.5
F2 3.4% 25.8 22.6 22.6 19.6
F3 4.3% 20.9 19.1 17.5 17.3
F4 28.2% 20.1 18.9 16.1 15.3
F5 0.7% 28.1 27.2 21.7 19.1
FX 13.5% 35.0 30.5 27.8 25.7

Overall 100.0% 19.6 17.9 16.2 15.0

Table 1. %WER oneval98 with (a) ML, (b) HLDA, (c) MPE,
and (d) HLDA+MPE (F0: prepared speech, F1: spontaneous
speech, F2: speech over telephone channels, F3: speech and mu-
sic, F4: speech with degraded acoustics, F5: non-native speakers,
FX: all other speech).

the optimisation of the HLDA projection. The nuisance dimen-
sions which contain the least discriminant information are mod-
elled explicitly using a global Gaussian distribution for all acous-
tic classes during transform optimisation and are eventually dis-
carded. Fisher-ratio values are used to select the nuisance dimen-
sions [9].

The experimental results show that the use of an HLDA pro-
jection reduced the WER by 1.7% absolute oneval98 compared
with the ML model as shown in column (b) of Table1. Consistent
improvements were observed in various poorly performing condi-
tions as well as for prepared broadcast speech (F0).

4.2. MPE training

MPE training [13] is an extension of our previous work on dis-
criminative training in a lattice-based framework [19]. It tries to
minimise an estimate of the training-set phone error rate computed
in a word recognition context. This phone error estimate is calcu-
lated based on lattices generated by recognising the training data.
A bigram LM trained on the acoustic transcriptions is used with
a fast decoder setup to generate word lattices. In a separate pass
these lattices were then aligned to find phone model boundaries
with the appropriate model set. The acoustic model log likelihoods
were scaled down using the usual language model scale factor dur-
ing training to increase the effective number of phone alternatives.
The I-smoothing scheme was used to improve the generalisation of
the discriminatively trained models which smoothes between the
discriminative and the ML estimates where the degree of smooth-
ing depends on the amount of data available [13].

As shown in column (c) of Table1, the MPE model reduced
the WER by 3.4% absolute from the ML model. Moreover, MPE
trained models on top of the HLDA model, (d) in Table1, was
1.2% absolute better than the MPE model on non-HLDA data, and
both of them showed improvements over all F-conditions. There-
fore, HLDA was used in all of the MPE based model sets described
below.

4.3. GD discriminative training

A MAP-style adaptation method for MPE training (MPE-MAP)
was introduced in [14]. Using the concept of weak-sense auxiliary
functions, it is simple to extend the MAP scheme to incorporate
discriminative training criteria, and results in smoothing the usual
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numerator/denominator

M MPE−MAP F MPE−MAP

numerator/denominator

MPE

Re−gen lattices

lattices

MLE
6976 clustered states, 16−mix

VarMix

HLDA
52x39 HLDA matrix

Fig. 1. Stages in final acoustic models building.

eval98 eval02

GI (MPE) 15.0 13.6
GD (MPE-MAP) 14.5 13.0

Table 2. %WER oneval98 andeval02 with GI MPE and GD
MPE-MAP models.

discriminative update counts with the prior counts. The MPE sys-
tem was used as the original model for adaptation and three it-
erations of MPE-MAP training were performed for each gender,
where only the Gaussian means and mixture weights were up-
dated. The results, given in Table2, show that the resulting GD
models gave 0.5 and 0.6% absolute error reduction oneval98
andeval02 , respectively.

As an alternative to MPE-MAP a simple approach to gener-
ating GD models was investigated. After GI MPE training, a fur-
ther MPE iteration was performed on the male and female training
data separately. This gave just 0.2% absolute error reduction on
eval98 .

4.4. Variable number of Gaussians per state

Our previous standard approach was to have a fixed number of
Gaussians (N ) per speech state and2N for silence states. Here,
this was modified to set the number of Gaussians as a function of
the number of frames that are available to train each state, while
keeping the average number of Gaussians per state atN . This
method (VarMix) gave small, but consistent, gains on the develop-

Number of Lattices WER
Gaussians for MPE (%)

HLDA fixed - 17.9
variable - 17.6

MPE fixed orig 15.0
variable orig 14.8
variable orig + re-gen 14.4

MPE-MAP fixed orig 14.5
variable orig + re-gen 13.8

Table 3. %WER oneval98 for variable number of Gaussians
and lattice re-generation for MPE training.

ment data. Experimental results oneval98 are given in Table3.
Absolute gains of 0.3 and 0.2% were obtained for HLDA and MPE
models by allowing the number of Gaussians per state to vary.

4.5. Lattice re-generation for MPE training

In standard lattice-based discriminative training [18], the lattices
which represent the confusable hypotheses for each utterance are
generated once and the model-level alignment is assumed to be
fixed. If the HMM parameters change significantly during dis-
criminative training this may not be a good approximation, so lat-
tice regeneration schemes were investigated.

After four iterations of MPE training the resulting acoustic
models were used to regenerate a set of training lattices to en-
sure that the confusable word alternatives were represented for the
subsequent iterations. This lattice generation also used a heavily
pruned bigram LM (only about 50k bigrams). In the subsequent
iterations of MPE training, statistics based on both sets of lattices
were employed.

As shown in Table3, the WER was reduced both for MPE
and MPE-MAP models by lattice regeneration. Oneval98 , an
absolute gain of 0.4% WER was obtained with the GI MPE mod-
els. For GD MPE-MAP models, the combination of using variable
number of Gaussians and re-generating lattices gave 0.7% absolute
improvement.

The MPE-MAP model trained using re-generated lattices (as
well as the original lattices) was 5.8% absolute (29.6% relative)
better than the basic ML model oneval98 before adaptation.
These MPE and MPE-MAP models were used in the actual evalu-
ation system.

5. ADAPTATION AND ADAPTIVE TRAINING

5.1. Adaptation experiments

Based on the MPE model described in section 4.2, several unsuper-
vised transcription-model adaptation experiments were conducted
to evaluate the effectiveness of various adaptation techniques for
these models and to choose the optimal adaptation strategy. Clus-
tering was performed on the segments for each combination of
gender and bandwidth using the method described in [16] with the
Gaussian divergence distance metric and a minimum occupancy
constraint of 40 seconds.

After global 1-best MLLR adaptation, phone-marked lattices
were generated. Using these lattices, 4 iterations of lattice MLLR [17]
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eval98 eval02

unadapted (GI MPE) 15.0 13.6

1-best MLLR 14.2 12.5
lat-MLLR 2trans 13.9 12.3
lat-MLLR 2trans+FV 13.7 12.0
lat-MLLR 4trans+FV 13.6 12.1
lat-MLLR 8trans+FV 13.6 12.0

Table 4. %WER foreval98 & eval02 after adaptation based
on the GI MPE model.

MPE-MAP SAT

1-best MLLR 14.1 13.4

lat-MLLR 2trans 13.8 13.4

lat-MLLR 2trans+FV 13.6 13.0

Table 5. %WER of SAT models ondev03 in comparison with
adaptation results based on GD models. Supervisions for 1-best
MLLR were obtained from 4-gram expansion after unadapted sin-
gle pass decoding using GD MPE-MAP models and trigram.

were performed. On each iteration the number of adaptation trans-
forms was increased using a regression-class tree [8] subject to a
threshold on the amount of data per transform. Up to 8 MLLR
speech transforms and a global full-variance (FV) transform [4]
were estimated. As shown in Table4, the WER was reduced by
9.3% relative oneval98 , and 11.8% oneval02 . There were no
consistent gains from using more than 2 transforms.

5.2. Speaker adaptive training

Starting from the HLDA ML estimated models, speaker adaptive
training (SAT) using constrained MLLR [4] with the same trans-
formation for both the means and variances was applied. Global
full-matrix constrained (feature-space) MLLR transforms were es-
timated for each speaker (one transform for silence, another for
speech). These transforms were applied to the acoustic training
data during re-estimation.

Starting with the HLDA models with variable number of Gaus-
sians, five iterations of interleaved transform estimation and ML
parameter updates were performed. The transforms were then
fixed and used with six iterations of MPE training to obtain SAT
models. The denominator lattices generated for the previous MPE
training were used (without lattice re-generation).

The results in Table5 show that the SAT model outperformed
MPE-MAP models ondev03 after 1-best MLLR and lattice MLLR
with two transforms and full variance transforms.1

6. SINGLE PRONUNCIATION (SPRON)

SPRON dictionaries for training and testing were generated by
selecting pronunciation variants from the multiple pronunciation
dictionary using the probabilistic method described in [6]. Here

1Experimental results here were obtained with a preliminary version of
the 2003 4-gram LM which did not include more recent Broadcast News
text data. Also, since we only had a wideband SAT model, NB results from
MPE-MAP 1-best MLLR were used to calculate %WER.

Models MPRON SPRON

ML 20.2 19.7
HLDA, VarMix, MPE 15.3 14.8

Table 6. %WER ondev03 using ML and MPE triphone models
with multiple (MPRON) and single (SPRON) pronunciation dic-
tionaries. New trigram LM was used that is presented in section7.

the necessary pronunciation statistics were obtained from align-
ment of the Switchboard and Broadcast News training corpora.
The SPRON dictionaries were used to train bandwidth-specific,
GD triphone acoustic models in the same fashion as described be-
fore, including the regeneration of phonetic decision trees. The
same word lattices as in MPRON training were used. Four MPE
iterations were performed using the denominator lattices generated
with the ML models and a further 3 iterations using a combination
of the lattices generated with ML and MPE models.

Table6 shows results using unadapted single pass decoding
with GI wide-band triphone models and a trigram language model.
For both ML and MPE-HLDA models the improvement was 0.5%
absolute. An additional experiment comparing GD versions of the
models gave 13.9%, which again is 0.5% absolute better than using
the standard multi-pronunciation dictionary model.

7. LANGUAGE MODEL

A 59k entry wordlist was chosen from the most frequent words in
the training texts listed in section3.3using a weighted sum of fre-
quencies from various subsets of the training corpus. The weights
were chosen to minimize the out-of-vocabulary (OOV) rate on the
dev03 transcriptions. The resulting vocabulary yields an OOV
rate of 0.47% ondev03 .

Word-based 4-gram language models were built for each of the
5 data sources separately. All word-based models were merged to
form a single model, where the interpolation weights were com-
puted to minimise perplexity. After merging, the resulting lan-
guage model was pruned [15] to 8.8M bigrams, 12.7M trigrams
and 6.6M 4-grams.

A class-based trigram language model was trained which used
1000 classes that were automatically derived based on word bi-
gram statistics [11]. The model contained 0.8M bigrams and 10M
trigrams. Finally, the word-based model was interpolated with the
class-based model.

Perplexities and WERs ondev03 with the word-based tri-
gram (tg ), the word-based 4-gram (fg ), and the interpolated word-
based 4-gram with the class-based trigram (fgic ) are given in
Table7. The WERs forfg andfgic were obtained using lattice
re-scoring based ontg lattices. The modified MPE & MPE-MAP
models in section4.5were used as GI & GD models.

8. RT-03 BN-E EVALUATION SYSTEM

The system structure is shown in Figure2, and more technical de-
tails about fast system design can be found in a companion paper
[2].
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LM type Perplexity %WER
GI GD

tg98 - 16.6 16.1

tg 140.9 14.9 14.4
fg 121.5 14.0 13.5
fgic 119.1 13.7 13.2

Table 7. Perplexities and %WERs ondev03 with various LMs.
tg98 is the trigram from the 1998 CU-HTK BN-E system.

Segmentation

P1

LatMLLR
2 trans.

P3.1

fgintcat03 Lattices

P2

LatMLLR
2 trans.

P3.2

MPE triphones, HLDA, 59k, fgint03

CNC
Alignment

1−best

CN

Lattice

FV

HLDA

MPE

SAT

CN

GI WB

Gender labelling

Clustering

MPE triphones, HLDA, 59k, fgintcat03

FV

SPron

HLDA

MPE

CN

MLLR, 1 speech transform
WB/NBGD

WB/NBGI

WB/NBGI

Fig. 2. BN-E evaluation system structure.

8.1. Segmentation

Automatic segmentation was performed using a system similar to
that used in the 1998 CU-HTK BN-E 10×RT system [12]. For the
RT-03 evaluation system a new music model was built incorporat-
ing TDT-4 data, and the clustering/merging procedures within the
segmenter were changed to increase a segment purity measure on
eval02 data [16].

8.2. Decoding passes

Recognition runs in a number of passes and uses time-synchronous
one-pass cross-word triphone decoders. The initial transcription
and the lattice generation passes employed a decoder based on that
used in [12], and the lattice rescoring passes used the HTK based
decoder HDecode.

8.2.1. Pass1: initial transcription

The first pass generates an initial transcription of the data using GI
triphone HMMs (MPE) and the word-based trigram with very tight

beamwidths. The output trigram lattices are rescored with the 4-
gram language model. All segments are gender-labelled by forced-
alignment of this transcription with GD HMMs (MPE-MAP). The
segments are then grouped gender and bandwidth dependently into
clusters comprising at least 40 seconds of data for adaptation pur-
poses in the following passes.2

8.2.2. Pass2: lattice generation

Bandwidth-specific, GD triphone HMMs (MPE-MAP) were adapted
using transforms estimated based on global least squares regres-
sion and MLLR variance transforms [3] with the initial Pass1 tran-
scription as supervision. The data is decoded with the word-based
trigram at relatively conservative beamwidths yielding a lattice for
each segment. These lattices are expanded using the interpolation
of the word-based 4-gram and the class-based trigram.

8.2.3. Pass3: lattice rescoring

Two different models, SAT (Pass3.1) and SPRON (Pass3.2), were
used for lattice rescoring. Each model was adapted using a global
1-best MLLR transform and then used for model-marked lattice
generation. Based on these model-marked lattices, the following
transforms were estimated in stages using lattice MLLR: a global
MLLR transform; a full variance transform and upto 2 speech
MLLR transforms per cluster. The adapted models were used to
rescore the word lattices from Pass2.

8.2.4. Confusion networks and combination (CNC)

In each case the lattice output was converted to a confusion net-
work [10] for later system combination. The word lattices pro-
duced by the Viterbi decoder were used to generate confusion net-
works, which provide a compact representation of the most likely
word hypotheses and their associated word posterior probabilities.

The confusion networks produced in Pass2, Pass3.1 and Pass3.2
were combined using a dynamic programming procedure that em-
ployed the full set of alternative hypotheses and their posteriors to
find the optimal alignment of the outputs from the different stages
[1]. Given this alignment the final overall system hypothesis was
chosen based on the posterior distribution represented by the cor-
responding confusion network segments. For this final hypothesis
the corresponding word-level confidence scores were generated.

8.3. Performance

The results on thedev03 andeval03 test sets for each of these
stages are shown in Table8. Pass1 ran in 0.9xRT including data
coding and segmentation. Very tight beamwidths for fast process-
ing gave 1.6% of absolute loss ondev03 compared to the num-
bers obtained with the development setup in section 4. GD models
adapted using a global 1-best MLLR in Pass2 gave 17-18% relative
reduction in WER over Pass1. Lattice MLLR and lattice re-scoring
with the SAT model and SPRON system showed clear gains over
the Pass2 results, though the gain oneval03 was rather smaller
than that ondev03 . The CNC effectively combined three dif-
ferent systems and gave another gain. After CNC the WER on

2Various minimum occupancy thresholds were tested for adaptation ex-
periments from 25s to 40s in the framework of the RT-03 evaluation sys-
tem, and it was found that WERs from different thresholds were almost the
same after 1-best MLLR. As we use more transformations for lattice-based
MLLR, we selected 40s as the threshold.
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dev03 eval03 xRT

Coding &
segment

- - 0.3

Pass1 15.9 14.6 0.6
Pass2 13.1 11.9 3.7
Pass3.1 12.0 11.4 2.5
Pass3.2 12.2 11.4 1.9

CNC 11.6 10.7 0.1

Table 8. %WER ondev03 and eval03 and processing time
on eval03 for the RT-03 evaluation system. The system runs on
a single processor of a IBM x335 computer with a 2.8GHz Intel
Xeon processor/400MHz FSB.

dev03 andeval03 were 11.6% and 10.7%, respectively. The
full system oneval03 ran in 9.1xRT and the confidence scores
had a Normalised Cross Entropy (NCE) of 0.412.

9. CONCLUSIONS

This paper has described the development and performance of the
2003 CU-HTK BN-E transcription system. Many useful tech-
niques, including HLDA, MPE training and lattice-based adapta-
tion, have been successfully applied to the Broadcast News tran-
scription task for the first time. Furthermore, a number of new
techniques were used including MAP-style GD discriminative train-
ing (MPE-MAP) and modified lattice-based discriminative train-
ing. The evaluation system was carefully designed to meet the
10×RT time restriction of the primary condition of the RT-03 BN-
E evaluation while still including a number of stages of decoding,
lattice-based adaptation and system combination. On the RT-03
current test set evaluation data the system gave an overall error
rate of 10.7%, the lowest error rate in the evaluation.
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